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DETERMINATION OF THE STABILITY OF
A NON-LINEAR ORDINARY DIFFERENTIAL
EQUATION BY LEAST SQUARE APPROXIMATION.

COMPUTATIONAL PROCEDURE

Tavyes BENOUAZ*, OvipE ARINO*

The purpose of this paper is to present a computational procedure, based on
the minimization in the least square sense, which is associated with a given
non-linear ordinary differential equation, when considered in the neighborhood
of one of its equilibrium points P, a linear ordinary differential equation, having
the same stability property as the non-linear equation at P.

1. Introduction

In the study of non-linear ordinary differential equations, linearization methods play
an important role. The principal method, when studying the stability of an equili-
brium point, is to consider the linear equation, which one gets by differentiating (in
the Frechet sense) the nonlinearity at this point. The linearized equation has the same
behaviour as the non-linear equation in the hyperbolic case i.e. when the eigenvalues
are not purely imaginary. However, there are three setbacks to this method:

1. Impossibility to locate the eigenvalues with respect to the imaginary axis; in par-

ticular if one or more eigenvalues are close to this axis.

2. If the equilibrium is a center, i.e. in case there are purely imaginary eigenvalues
and/or if 0 is an eigenvalue. The behaviour of the solution of the non-linear
equation in the neighborhood of such a point can be anything.

3. If the nonlinearity is not smooth enough in the neighborhood of a stationary point,
then, in general, one cannot calculate the Frechet derivative. This can happen, if
for instance, the function is only locally Lipschitzian.

These three problems justify the introduction of other techniques, methods or compu-
tations to analyze the stability. Among them is the method of optimal linearization,
which was introduced by Vujanovic (1973). This method was used recently by Jordan
et al. (1987a; 1987b).

To the best of our knowledge, however, no theoretical evidence of the validity of
the method has been given up to now. It is our intention to make some progress in
that direction, in order to, later on, apply the method to some specific problems. In
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the present work, we propose a new method, introducing an iterative computation of
the optimal linearization. In fact, our method yields many optimal equations. We
conjecture, however, that all the optimal equations have the same type of stability,
which should be the same as the stability of the non-linear equation. This fact holds
in the scalar case. The non-linear vector case is more difficult and will be dealt with
in a subsequent work.

2. Presentation of the Method

2.1. Position of the Problem

Consider the following system of non-linear ordinary differential equations:

d
Lo Few), 0= )
where z = (z1,.....,&,) is the unknown function, and F = (fi,....., fa) is a given

function on an open subset £ of IR™, which is locally Lipschitzian.
Our purpose is to elaborate a method of linearization, which will associate to
system (1) a system of the form:

dz . _
F=A®),  z(0)=x (2)

where A* € M, (IR) is to be determined. For this, we shall assume:
i) F(0)=0

i) The spectrum o (DF (z)) is contained in the set {z : Rez < 0} for every z # 0,
in the neighborhood of 0, for which DF (z) exists.

System (2), corresponding to system (1), will give an optimal approximation
with respect to curves, starting at the initial point z; and tending to 0 as ¢ goes to
infinity.

2.2. Formalism

Consider the functional defined by

+oo
G (4) = ] IF (2 (1)) - Az )| dt 3)

where F' is defined on an open subset Q of IR*, A € M, (IR) is to be determined
successively, z (¢) represents a function such that 0 suitably fast as ¢ — +oo. Later
on, we shall introduce functions z (¢) that are solutions of linear equations.

The minimization of the functional G (A) with respect to A will allow us to get
the optimal system (2). We have

DG(A)a:2/0+oo <Aa:(t)-F(a:(t)),a;c(t)>dt:O (4)
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for every matrix «. In particular for matrices a such that m =1, o;; =0, if

(4,7) # (I, m), we have

(42 () - F(z (1)) , 0z (1 )= [42(t)~ F (= () ] o (1) (5)

and
/+°° [Am(t)_F(x(t))] Tm()dt =0, V1<l m<n (6)
0 ! .

Let (a:;) denote the elements of matrix A. Then (6) yields

n

s ([ 5 0em)0) e ([Trewewa) o, @

i=1

Let

I'(z) = (/0+°° z; (&) 2 (1) dt>1sj,m$n - /0+°° o][=0] e ©
Then,

a=[[7 o)) @] rer o)

We have assumed the matrix T' to be non-singular. A necessary and sufficient con-
dition for this assumption to be satisfied is that the trajectory corresponding to z
does not lie in any strict subspace of IR™. If it is the case that z takes values in a
strict subspace of IR™, we can perturb z by a vector of the form

e—at

el . : a>0, e>0 (10)

.G—nat
Hence, if T' is an invertible matrix, the matrix A is uniquely determined.

2.3. Principle of the Method

The above computation will be used inductively. We shall assume that the successive
matrices are stable, that is, their spectrum is in {z : Rez < 0}. Verifying this fact
is a delicate problem. We have given conditions that ensure that this property is
satisfied. These results will be developed subsequently. The initial matrix is the
Jacobian matrix of F' at zg, assuming that z, is a point at which DF (z¢) exists.

Consider system (1)

dz
d—t:F(z(t)), z(0) = =g

Step 1. Compute Ay = DF (zy).
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Step 2. Compute A; from the solution of the equation

OB TOR (11)

by minimizing the functional

+o0 9
G(4) = / IF (4 (1)) — Ay ()| dt (12)

A; is uniquely determined by formula (9), where z is replaced by y, solution of (11).
Step 3. To compute A; from A;_;, we first solve

Yo lv®), 9O =2 (13)

Let y; be the solution of equation (13).
The minimization of the functional

400
G; (4) = ] IF (45 () — Ag; ()] dt (14)

yields A;.

In fact, we have the following relationship between A; and A;_;.

ar)= [ [ @) o] (15)

Assuming that T (y;) invertible, A; can be written as

a=][ 7 oo [so)] @ rwr (16)

If the sequence A; converges, then the limit A* is by definition the optimal linea-
rization of F' at zg. The optimal matrix depends on zy. We conjecture that the
stability property is independent of the initial point. Note, however, that if F is
linear, then the procedure gives F' at the first iteration.

Indeed, in this case, formula (9) can be written

UO+°° [Fm (t)] [z (t)]Tdt] U:w {m (t)} [a: (t)]Tdt]—l (17)

hence,

P kol [T Folko] ] =r o

Of course this is possible only when: I'(z) = [ 0+°° [z ()] [z ()T dt] is an invertible
matrix. This condition is satisfied if zg is chosen so that it has a non-zero compo-
nent on all the eigenspaces of F. Then z (t) should not be contained in any proper
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subspace of IR™. In this case, I' is non degenerate. Therefore, the optimal approxi-
mation of a linear system is the system itself. In this case, the result is independent
of xzg.

3. Applications

3.1. Examples of Non-linear Systems
3.1.1. Case of a System of Two Equations, One Linear, One Non-linear

Consider the following system

((11—: = —7.10%z — 2.103z2 — 2.10%y
q ) (-'L'O:y(]) = (510) (19)
av _ 3, 5
T 2.10°z — 2.10°y
with the value of DF (x,y) computed at (zo,yo)
—-207.102 -2.10°
DF (zo,y0) = 20
(%0, 40) [ 2.10° ~2.105] 20)

After the 4-th iteration, the computational procedure gives

~13.2710° 4.3110°
" [ 13.27 103 4.3 0} (1)

~ | 2.103 —92.10°

The curves in Figs. 1 and 2 represent the variation of solutions (z(t),y(t)) of sys-
tems (19), (21) as a function of time. In both figures, curve 1 represents the exact
result obtained by solving numerically the non-linear system (19), curve 2 corresponds
to the solution given by the optimal linear equation.

Remark. Note that the second equation in (19) is linear, and so is unchanged by
the transformation into the optimal system (21). Consider a more general system of
non-linear equations with a nonlinearity of the form

F(z)=Mz+ F (z) (22)
where M is linear.

The computation of matrix A; gives

A= :/:w 7 (z(t))] [z(t)]Tdt] r (:c)]—l (23)

which can be written as

A= CMI‘(:L')+ (/om [F ®)] [z(t)]Tdt)] '[r(a;)]_l (24)
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Fig. 1. The variation of the solution z(%) as a function of time for the initial
conditions (zo, %) = (5,0).
Curve 1 corresponds to the solution of system (19).
Curve 2 corresponds to the solution of system (21).
y(t)
0.05 —
1
2
— t
0.0305

Fig. 2. The variation of the solution y(t) as a function of time for the initial
conditions (zo;y0) = (5,0).
Cuzrve 1 corresponds to the solution of system (19).
Curve 2 corresponds to the solution of system (21
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and finally
A1:M+[/;+m[ﬁ(x(t))][x(t)]Tdt] [I‘(x)]_l (25)
Hence ) ) o . .
Ay = M+ 4, with 4, = [/0 [F )] [=0] dt] [r(@)]
Then, for all j we have

Aj =M+ 4 (26)
with

L=[[7 [Feo][-0] o re]” (21)

If, in particularA, some components of F' are linear, then the corresponding compo-

nents of F’ are zero, and the corresponding components of A; are those of F. If f;
1s linear, then the k-th row of matrix A; is equal to f.

3.1.2. Case of a System Which Cannot be Linearized at 0 Using
the Frechet Derivative

Consider a system with a function of the absolute value type that is non differentiable
at 0

dz

2 = o+ asin(ly)
t
4 , (Zo,%0) = (1,05), |af <1 (28)
d_zt} = —y+ asin(|z|)
Then we have for a = 0.5
-1 0.4387
DF (zo, = 29
(za,to) [ 02701 -1 } 29)

After the 5-th iteration, the computational procedure gives

~1.0207 05172
" [ 0207 0.5 J (30)

| 03502 —0.8336

The curves in Figs. 3 and 4 represent the variation of solutions (z (), (t)) of sys-
tems (28) and (30) as a function of time. In both figures, the exact result obtained
by solving numerically the non-linear system (28) and the approximate solution given
by the optimal linear equation (30) are the same. Note that the method enables us
to associate a linear system (optimal approximation) to a non-linear system in the
neighborhood of 0.
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t

10

Fig. 3. The variation of the solution z(t) as a function of time for the initial

conditions (zo,y0) = (1,0.5). In this case, the solution of the non-linear
system and optimal approximation are the same.

y(t)

0.5

10

Fig. 4. The variation of the solution y(t) as a function of time for the initial
conditions (zo,¥o0) = (1,0.5). In this case, the solution of the non-linear
system and optimal approximation are the same.
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3.2. Analytic Expression in the Scalar Case

Consider the following non-linear scalar equation

dz
T (z gt)) , z(0) =z (31)

where f:IR — IR, is locally Lipschitzian and satisfies the following conditions:
i) f(0)=0,

ii) f'(z) <0 at every point where f’(z) exists, in an interval |—a, +af, o > 0.

Choose zo € |—a,+o[ such that f/(zo) exists. Set ap = f'(z¢) and use the method
presented in 2.3.

We solve the linear equation
—-— = Qo (t) ) z (0) = Xg (32)
to obtain

z (t) = exp (aot) zo (33)

Substituting f for F' in expression (9), we get:

( 0+mf(:c ) e“O‘dt) )

a; = ) - (34)
(/+ e2aot dt) To
0
For zo # 0, f(z(t)) is almost everywhere differentiable and
d
3 1 (120 | = 7 (eo'0) %0tz ao (35)
This gives
+o00
f(z(t)) e*tdt
1 IR E T T aot
= a[f (z (1)) e of]o -= /0 (f' (z (1)) e? ofdt)zg a (36)

from which we obtain a;

ay =2 (Igfl + ao -/()+°° f(z(t)) e**? dt) (37)

Note that a; < 0.

Assume we have constructed the sequence a; for j =1 to n. We are going to
determine @,4;. For this, consider the function given by

Tny1 = exp (ant) o (38)
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which stays in ]—a, +af, V t > 0. Substituting f for F and z, for z in (9), we
get

+o0
( £ (@nss <t>)eantdt) )
U1 = =2 =" (39)

+oo
(/ e2antdt) *o
0

which we can write as follows

An+1 =2 (M + a, /+°° f’ (e“"tzo) Cza"tdt) (40)
0

Zo

Let z = e® 'z in the integral [™ f’(e®»'zo)e2~'dt, to get

+o0
/ fl (e“"two) eZant dt =
0

is exactly an41, so we have

a* (20) = (f (2o) _ / 1 (2) 2 dz> (42)

/ 7(2) 2 (41)

anzd

*

Finally, a

Remarks
1) a* is obtained at the first iteration.
2) if f'(0) exists, then a* (zo) — f'(0) as zo — 0.

3.3. Relationship Between the Stability of the Non-linear Ordinary
Differential Equation and the Stability of the Optimal Linear
Equation in the Scalar Case (in IR)

Consider the optimal linear equation
dz
dt

where a* is given by relation (42).

=a*z(t), z (0) = zo . (43)

To study the sign of a*, we consider the following quantity:

heo) =aof (e0) - [ ()2 (44)
Note that

o (20) = oh(z0) (45)

Let us calculate the derivative of h(zo). We have

h' (z0) = zof' (z0) + f (z0) = f' (z0) o = f (20) (46)
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Therefore, we have

hao) = | " f(s) ds (47)
If = is a solution of
& _ few) (48)
dt
then,
FEO= hew) L= (few) >0 (49)

If h(z) has a constant sign for z # 0, then A (z) is a Lyapunov function for equa-
tion (31)

Conclusion. If h(z) <0 for 0 < [z| < @, then: z(t) — 0 as t — +oo.

If h(z) >0 for 0 <|z| <, then: z(t) — 0 as t — —co.

In the scalar case, a* (2¢) is the value (up to a multiplicative constant) of a Lyapunov

function. Consequently, if a* (zo) has a constant sign on {z¢;0 < |zo| < @}, then
the solution is

o Asymptotically stable, if a* (zo) < 0

e Unstable, if a* (zg) > 0

In this case, the method of optimal approximation is equivalent to the Lyapunov

method.

4. Examples of Application of the Optimal Method for
Analyzing the Stability in the Vector Case

Note that the study of the vector case was motivated by the scalar case.

Example 1. Consider the following non-linear system (Kalman and Bertran, 1960)

d

d—f =y+az (22 + y?)

d 3 (zOJ yO) = (03 1) (50)
& =Tt a4y

For this system, the stability of the stationary point sets a problem. In fact, the
linearized equation has a center, i.e. the eigenvalues are purely imaginary.

Case 1. a = —1, system (50) reduces to

d
d_f:y'z(x2+y2)
d

——df =—z—y(z?+y?)

) (ﬂfo,yo) = (0’ 1) (51)
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The linearized equation DF (z,y) at (2o, y0) = (0,0) gives

DF(0,0) = [ _(1) (1) } (52)

whose eigenvalues are A; ; = 1. Hence, we cannot conclude from the linear equation.
In Fig. 5, curve 1 represents the solution (z (t),y(t)) of system (52) in the phase
space.

Now, compute the optimal matrix corresponding to system (51), starting from
the value of DF (z,y) computed at (zo,y0) = (0,1)

DF (20,%) = [ T } 6%

after the 10-th iteration, the computational procedure gives

—0.2 .
4 = 0.2669  0.9053 (54)
—1.0566 —0.5465
whose eigenvalues are
A = —0.4067 4 :0.9679
(55)

A} = —0.4067 — £0.9679

Re(A*) < 0 and Re(A%) < 0. Hence, the matrix is exponentially stable. Therefore,
the origin is asymptotically stable for the non-linear equation, which is in agreement
with the Lyapunov method (Kalman and Bertran, 1960). In Fig. 5, we have plotted
the solutions (z (¢),y(?)) in the phase space. Curve 2 represents the solution of
system (54), and curve 3 represents the exact solution of system (51).

Remark. Note that the type of stability of non-linear system (51) is a focus and the
eigenvalues of optimal approximation (54) are complex.

Case 2. a = +1. System (50) has the form

d

T =vre@+y)

d ) (:L‘o, yo) = (01 1) (56)
T =—z+y(e®+1?)

DF (0,0) is the same as in case 1, DF (zg,yo) reads

1 1
DF (zo,y0) = 57
(zo, Yo) [ _1 3 (57)
After the 10-th iteration, the procedure gives
0.2669 0.905
A* = 9 3 (58)
—1.0566 0.5465
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y (X(Of'yw)) = (o)

Fig. 5. The solutions (z(t),y(¢)) in the phase space.
Curve 1 corresponds to the solution of system g52§.

Curve 2 corresponds to the solution of system (54
Curve 3 corresponds to the solution of system (51

whose eigenvalues are

A} = 0.4067 + i0.9679

(59)
Al = 0.4067 — 10.9679
Re(A1) > 0 and Re(A%) > 0. In this case, A* is unstable. The origin is asymptotically
unstable for the non-linear equation, as shown by the Lyapunov method (Kalman and
Bertran, 1960).

Remark. We know, from the beginning, that system (56) is unstable. So we have to
deal with the problem of the convergence of the integral defined by (3). In the two
dimensional case, we integrate from 0 to —oo i.e. we write

¢ | IF @) - Az ) at (60)

Example 2. Here, we consider a non-linear system (Demailly, 1991) for which the
first order linearization at (0,0) has a node, while the analysis of the non-linear
system shows that the system has a focus.
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Consider the following system

dz i 2y
dt ~ 7 In(z2+9?)

) (130; yO) = (0, 05) (61)
dy 2z

dt —_y+ln(w2+y2)
in the open unit disk {(z,y) € IR%; 2% + 42 < 1}.

Note that _ W has a C! extension in the neighborhood of (0,0). It has a
In (22 4+ y?)
limit equal to zero at the origin. We can make a similar remark for ————218—
‘ | In (22 + y?)

Hence, the origin is a singular point.
The linearization gives

DF(0,0) = [ '(1) _2 } - (62)

The eigenvalues are :A; = Ay = —1. Hence system (62) has a stable proper node. In
Fig. 6, curve 1 represents the solution (z(t),y(t)) of the linearized equation in the
phase space.

The Jacobian matrix DF (z,y) computed at (zq,yo) = (0,0.5) gives

-1 3.524
DF (zg,y0) = 63
(20, u0) [ e } (63)
After the 8-th iteration, the computational procedure gives
—1.4934  1.2489
At = (64)
—0.5213 -1.1254
whose eigenvalues are
Af = —1.3094 — 20.7856
(65)

At = —1.3094 + i0.7856

Therefore, Re(A}) < 0 and Re(A}) < 0, and consequently the origin is a stable focus.
In Fig. 6, curve 2 corresponds to the solution of system (64) in the phase space.

Now, we are going to solve the original non-linear system (61) using polar coor-
dinates (r,6). This yields

dr _:1:2 +y? B
=TT

(66)
dé 1 2z% 4 292

dt ~ zZ+y? In (22 + y2)

1
Inr



Determination of the stability of a non-linear ordinary differential equation by... 47

Y

~ds 05

-0.5 -

Fig. 6. The solutions (z(t),y(t)) in the phase space.
Curve 1 corresponds to the solution of the first order linearized (63).
Curve 2 corresponds to the solution of system (64).
Curve 3 corresponds to the solution of system (61

The solution of the Cauchy problem is given by

T'(t) = roe"’, rg <1
t (67)
g(t) = 00 —In (1 - lnro)

for an initial data (rq,fg), given at ¢ = 0. The solution is defined on [Inrg + o0].
Also, we have r(t) — 0 and 6(t) — —o0, as t — +o0o. This shows that we have a
spiral converging to 0. The curve spirals inside the unit circle r = 1 when ¢t — In (rg)
from above, which shows that the system has a stable focus. In Fig. 6, curve 3
corresponds to the solution of the non-linear system (61) in the phase space. Observe
that the procedure gives an answer which agrees with the analysis of the non-linear
system.

5. Comments

We have presented a computational procedure which we have applied to several exam-
ples. The differential equations have been solved using the fourth order Runge-Kutta
method. The computational approximation procedure is based on the algorithm pre-
sented in 2.3, and written in Fortran language. Details can be provided on request.
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We should point out that

1) The optimal approximation is obtained after the first iteration in the scalar case. It
was possible to give a relationship between the stability of the non-linear equation
and that of the optimal linear equation. In this case, the method of optimal
approximation is equivalent to the method of Lyapunov.

2) The method enables us to associate a linear equation (optimal approximation) to
a non-linear equation in the neighborhood of 0 in the vector case, even though the
latter equation cannot be linearized around the origin. This is the case notably
when the functions involved are not smooth near the origin.

For the stability issue, the study of the vector case was motivated by the scalar case.
The examples we have seen illustrate some problems set in analyzing stability.

In the first example, the linearization based on the Frechet derivative does not allow
us to conclude the stability problem (eigenvalues are imaginary).

As shown in the second example the behaviour of the solutions of the linearized
equation (in the Frechet sense) is not the same as the behaviour of the solutions of the
non-linear equation, since the linear equation has a stable node, while the non-linear
equation has a stable focus. In both cases, the proposed procedure gives results in
agreement with the analysis of the original non-linear equation (same behaviour).
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