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COMPENSATOR DESIGN FOR THE KIRCHOFF
PLATE MODEL WITH BOUNDARY CONTROL!

Erik HENDRICKSON*

This paper presents a compensator design problem in optimal control theory.
An algorithm is developed to compute a finite-dimensional compensator based
on the Kalman filter theory. The algorithm is implemented using a standard
finite element scheme applied to a Kirchoff plate model with boundary control
and boundary observation. Convergence of feedback and compensator gains is
examined.

1. Introduction

This paper considers a performance optimization problem in control theory and the
design of an optimal feedback control law when only partial observation of the state
is available. The state dynamics and observation may be subject to sensor noise and

- disturbances. The standard approach involves the construction of a dynamical ob-
server which is based only upon the information available through the observation.
The optimal control law, called the compensator, is based on the observer (estimate)
and produces optimal performance of the resulting closed-loop system. One of the
difficulties of this problem, aside from the nature of the control (applied on the bo-
undary) is that the original system is infinite dimensional. But practicality requires
both the estimate and the compensator be finite dimensional. Hence, the main goal is
to develop an algorithm that constructs a finite-dimensional compensator that produ-
ces near optimal performance when applied to the original dynamics. The algorithm
includes a regularization of the original problem and an approximation of the regula-
rized problem. The regularization is necessary to ensure that critical approximation
assumptions are satisfied by the chosen numerical scheme.

The numerical work expands upon the recent theory in (Hendrickson; 1994;
Hendrickson and Lasiecka, 1993; Lasiecka, 1992) and examines the effect of various
design parameters on the compensator design process. The main goals of the paper
are twofold, (i) to assert numerical validity of the theoretical results predicted by
the theory presented in (Hendrickson, 1994), (ii) to examine the effect of various
parameters entering the design process with respect to the accuracy of the predicted
results. The emphasis of the investigation is divided into two parts which arise na-
turally due to the the separation principle. First we examine the feedback gain and
the associated closed-loop system arising in the deterministic control problem. We
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observe the effects of varying the weights in the cost functional as well as the effects
of the interior and boundary regularization terms. Convergence of the feedback gains
is examined as well as stabilization properties of the closed-loop system. Secondly, we
examine the estimator gain and the decay of the error between the estimated and full
state. We also consider the effects that the covariances of the noise processes have on
the decay rate of the estimation error.

2. Formulation of Problem

We consider the following system,

kwy — yAwy + A*w=0 on Qx(0,00) (1)
w(z,t) =0 on T
Aw(z,t)=0 on Ty x(0,00)

Aw(z,t)=u(t) on Ty1x(0,00), Lo JTy=T
w(z,0) = wo(z), wi(z,0)=wi(z) on £

with boundary observation
2(t) = C(w,w;) = %w(m,t) on T'jx(0,00) (2)

The variable w(z,t) represents the vertical displacement of the plate, u(t) acts as
a boundary control in the form of a bending moment, k pertains to the flexibility
of the plate, v > 0 is a parameter that is proportional to the plate thickness, and
the only observation is the normal derivative at the left endpoint. Notice that the
uncontrolled (u(¢) = 0) is unstable, i.e. there are infinitely many eigenvalues on the
imaginary axis. Hence, the selected boundary control must not only stabilize the
system but also be based on the available information from the boundary observation
and be finite-dimensional.

With (1) we associate the quadratic cost functional (performance index),

7(wuw) = [ (1Qulls + IRulf ) 3)

The combination of system (1) with the performance index (3) represents a regulator
problem, in which the goal is to return the system to its zero state in an optimal
fashion, or in a sense, track the desired zero state trajectory.

The control problem (3) can be placed into the following abstract fran;ework
2= (ww), ReL(Ly(I)), QeL(H)
where Hilbert spaces H, U, Z are defined as .
H=HYQ)NH}(Q)x H}(Q), U=LyT), Z=LyDI)

H = H}(Q) has inner product defined as (u,v)y = /uv dQ + 7/ vuvyvdQ
Q a
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We can express the energy of the system as

B() = [ 1Aw)P +9] 7wl + [wif a0
o)
and define the H-norm as the energy of the system, i.e.

el = E(z,1)

A___:O I
-A 0

Apy=Ay; D(Ap)= (y € H*(Q); ylr = 0)

: D(A)=D(A)xH, and B=

.

AZH—’H; .AE(I+7AD)‘1AD2
B=(I+vAp)'ApD
The Dirichlet map D, D € L(H*(T') — H*+/2(Q)), for any real s, is defined by

Du=g<=Ag=0in Q; glr=u

. 1 )
Notice that on D(Ap), A acts as a bounded perturbation of ;AD, which shows the

hyperbolic nature of the system (Lasiecka and Triggiani, 1991b). The operator B
satisfies (Lasiecka and Triggiani, 1991a) the following trace hypothesis

T
/0 IB*eA a3 dt < Crllell, = € D(A7) (@)

Hence, the Kirchoff plate model with full state observation can be written in a
semigroup form

z; = Az + Bu on [D(A*)) (5)

Remark 1. The operators A and B (with B unbounded from U — H) are
stabilizable and satisfy a “trace” assumption (Lasiecka and Triggiani, 1991a). A
complete LQR theory for the continuous Kirchoff model is available in (Lasiecka and
Triggiani, 1991a).

Since only the normal derivative of the displacement at I'y in (1) and (2) is
known, we design a dynamic observer that will reconstruct the full state such that
the error between the full and estimated states decays exponentially to zero. This
design can be subject to conditions such as optimality requirements or desired decay
rates. The estimator has the form

&(t) = AE(t) + Bu(t) + K (2(t) — C&(t)) = (A — KC)&(t) + Bu(t) + Kz(t) (6)
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We choose the feedback law F' and the compensator gain K such that
F=-B*P (7)
K = pC* (8)
where P, P € L(H) are the solutions to the following algebraic Riccati equations,
(A*Pz,y)u + (PAz,y)u — (B* Pz, B*Py)y + (Q*Qz,y)g =0 9)
(APz,y)g + (PA*z,y)g — (CPz,CPy)z + (§*Qz,y)g =0 (10)

where @, R € L(H). The theory of existence and uniqueness of solutions to algebraic
Riccati equations with unbounded control operators (such as B in our problem) has
been given in (Flandoli et al., 1988). In fact, it has been shown that equations (9)
and (10) are uniquely solvable provided that the following conditions, in addition to
the trace hypothesis (4), hold true,

(A*,C*), (A,B) are stabilizable on H (11)
(A*,Q), (A,Q) are detectable on H (12)

In this case, we obtain existence and uniqueness of bounded, self-adjoint, positive
operators, P, P € L(H) such that the feedback gain operator B*P is generally
unbounded, but densely defined, i.e.

B*Pe £(D(A);U)

and the compensator gain PC* € £L(H) (Adamian and Gibson, 1991; Gibson, 1979).
If, in addition, the weight @ satisfies a “smoothing” assumption (Da Prato et al.,
1986),

Q" QAll ey < M (13)

then it was shown in (Da Prato et al., 1986) that the gain operator B*P is in fact
bounded from H — U.

 To give more physical significance to the estimator problem and the compensator
design, we add noise terms to the input, u(¢), and output, z(t), in the original
system (1) (2). Let 6(2), v(t) € L2(000;T) be the stationary zero mean, Gaussian
white noise processes with covariances @ and R (resp ) that are added to the input
and output of system (1)-(2). This choice of Q and R, coupled with the choice of the
compensator gain PC* where P represents the constant error covariance, produces
the minimum variance estimate Z(t) of the full state z(t) (Anderson and Moore,

1989).
Combining the state equation (5) and estimator (6) yields

[ i(t) ] _ [ A -BF z(t) ] :A[ z(t) } (14)
20) KC A-KC - BF 2(t) 2(t)
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The separation principle reduces the above compensator design problem into two
subproblems,

1. Solve the estimator problem via Kalman filter theory, i.e. find the optimal estimate

$’
2. Determine the feedback control law with form u(t) = FZ(t) that will minimize
the deterministic cost in (3), subject to the dynamics of (1), via LQR. theory.

It has been shown by Lasiecka (1992) that under conditions (4), (11), (12), the
optimal compensator (14) produces uniformly stabilizing feedback, i.e.,

”eAt”C(Hx g) < Ce™*,  for some w >0

3. Variational Formulation

The variational formulation for system (1) is, for all ¢ € D(AY?) = H2(Q) N HL(Q),
(kwee, )a — Y(Awe, d)a + (A%w, ¢)a = 0 (15)

Applying Green’s theorem and the boundary conditions, we get

At the level of approximation, we introduce a family of finite-dimensional subspaces

(kwes, $)a + 7(Vwr, Vé)a + (Aw, Ag)a = (u(t),

Vi C D(AY?) = HA(Q) N HY(Q)

with orthogonal projection m,: HZ2(2) N H}(Q) onto Vi. In order to ensure the
convergence of the Riccati operators arising in the context of (11), (Hendrickson
and Lasiecka, 1993), it is necessary to consider a regularization of the system by
introducing certain viscosity boundary terms. This is to say that instead of (16)
we consider the finite-dimensional, regularized variational formulation, with w"

¢" € Vi,

)

(kw}y, 6™Ma + v(Vwl, véM)a + (Auwh, AgM)g + €1 (wh, ¢M)a (17)

v 0 0 0
h h h h _ h 3
tar(ver, vé )n+€2(6vw“8_z/¢ )I‘_ (u (t)’ﬁgb )1“

We apply a standard finite element algorithm to a special case when Q = [0, 1],
using the space of Hermite cubics defined on a uniform mesh of Q. This procedure
reduces the spatial and time differential equation into a time differential equation.
We denote k

Vi € D(AY?) = (v € H(0, )ln(0) = (1) = 0)
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as the family of finite dimensional subspaces and choose basis functions ¢f‘](x) € Vi,
which are defined on a reference (local) element as

$11(6) = %( —3+&7), $21(6) = %(2+3§ £%)

@)= 0-E-E+8),  dul®)=3(-1-E+€+8)
with

g(x):w) -1<¢<1

Ti — Tj-1

The displacement of the beam at an arbitrary time ¢ > 0 is given as a linear combi-
nation of the basis functions that use the displacement and slope of the displacement
at each node as data, i.e.,

N+1 2

M t)= D] ) ai()el(2) (18)

i=1 j=1

where «;1(t) = w(zi,t), and ais(t) = %w(xi,t) and N+1 is the number of equally

spaced nodes. Applying (18) to the variational formulation (17), we get the following
matrix representation of the FE system for the partial differential equation model of
the Kirchoff plate,

M&® 4+ Ka® 4 La® = B®Wy(t) (19)

40:3[?}

where M, K, L are 2N x 2N matrices such that

M) = f Bisbui + 7 it da (20)
() _ A d d
K = e M) + e 64(0) - éu(0)

. d2 &
and B is a 2N x1 column vector with B(1) = —1, B(j) =0, j > 1, and H is a
1x 4N row vector, with H(1)=1, H(j) =0, j > 1.

Further, since it is impractical to numerically calculate M~'K, M~1L, M~1B,
we perform a preliminary Cholesky transformation on M, M = M MT, such that
(19) becomes

Y+ Kmy+ Ly = Bru(t) (21)
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where y = MTa, Kpn = M7'KM;T, Ly = M7ULMT, By, = MIIB, or as a
first order matrix differential equation

HEEIAL

. 0
= Aenzn + Byup, zn=[y, 97, Bn= [ ] (22)

m

u(t)

This approximation scheme satisfies the usual consistency and stability properties that

are required in the approximation theory, (Hendrickson and Lasiecka, 1993; Lasiecka,
1992).

4. Regularization Procedure and Results

As can be seen in the previous section, the implementation of the standard finite
element method is straight-forward. But, when using numerical schemes in the context
of computations of algebraic Riccati equations, certain conditions must be upheld by
the method in order to ensure the convergence of the algorithm (Lasiecka, 1992).
These conditions are as follows,

|A7 mn — A Y|g — 0, zeH ' (23a)
(A= — A;Y)myBullg =0, welU (23b)
[|A=Y(Bn — B)u||lg — 0, uelU (23¢)
]](A,:l—A_l)BhuHH — 0, uel (23(1)

(An, Bn), (An", m,C*) are uniformly stabilizable with respect to h (24)
(An,Qn), (Ax*,Qy) are uniformly detectable with respect to h (25)

as well as the discrete trace regularity condition
T -
| 1Bzt mualy < Crllelly - (262)
0

1Qr@nArzhller < |2l (26b)

where Qy = mQ, Q) = m1Q. Recall that (A, Bg) are uniformly stabilizable iff
there exists F}, : V, — U, and constants wg > 0, M > 0 such that

HG(A;.+BhFh)t“£(H) < Ce™¥8'  uniform in h

and that at the finite dimensional level, uniform detectability of (A4, Cy) holds iff
the discrete pair (A", C}) is uniformly stablizable. Under conditions (23)—(26)

7
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the desired convergence properties of the solutions Py, P, € L(H) to the discrete
algebraic Riccati equations,

AL Py + PyAy — PoByR™'BiPy+ Qn =0 (27)
APy + Py AT — BLCIR'ChPr+ Q1 =0 (28)

as well as the gains B} Py, P,m,C* are proved by Lasiecka (1992). Using the solutions
to (27)—(28), we choose our finite-dimensional feedback and compensator gains to have
the forms,

Fy=-B.P, (29)
Ky = Pym,C* (30)
We specify the operators R, Rn, Qn, Qn to be

h
Rh:Rh:aHh, thh:Qhwh:Qh(wh ):(Oh ) (31)
w; w

It should be noted that the standard FEM, when applied to the original problem (1)
with €, = e = 0, fails to satisfy the criteria in (23)—(26), (Banks et al., 1991;
Hendrickson and Lasiecka, 1993). For this reason, to prevent the loss of uniformity at
the level of approximation, (Hendrickson and Lasiecka, 1993) proposed a regulariza-
tion and approximation scheme which assures that conditions (23)—(26) are satisfied
by the approximation. Consequently, it was proved in (Hendrickson and Lasiecka,
1993) that the Riccati operators and corresponding gains are convergent for the regu-
larization scheme. The ¢; regularization term serves to guarantee that the uniform
stabilizability conditions are satisfied, while the ¢, regularization term acts to provide
that the uniform trace regularity condition (26a) is maintained by the approximation
scheme. This algorithm is outlined below.

Step 1. Initially, the regularization of the entire system (full state z(¢) and dynamic
estimator &(t)) is performed such that the feedback gain F.and compensator
gain K depend upon the regularized dynamics A, and are denoted F.
(resp. K.). Hence, the system becomes

) af®)=(4 BE “) @
dt \ 3z z K.C A+ BF.—-K.C z

Step 2. Performing step 1 avoids the failure, at the implementation level, of the
chosen approximation scheme to maintain uniformly the asymptotic stabi-
lity properties of the continuous system. But these schemes, now applied
to (32), inherently preserve the asymptotic stability properties, uniformly
in h and guarantee the convergence of the Riccati operators, (Hendrickson,
1994). The next step in the procedure follows from the finite dimensional
approximation to the regularized estimator with e = (1, €5),

%ﬁh(t) = (A + BuFamn)n(t) + KenC (a(t) — 24 (1)) (33)
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and the regula:rized, finite dimensional control law
'U'eh(t) = thﬂ'h.’i‘h(t) (34)

The new system becomes

d x - z
il = A
i(5)=5(%)

_ AE BFeh’Jrh X (35)
"\ KaC Awmh+ ByFeomn — K C Eh

Notice that the discretization procedure in step 2 did not affect the (1,1)
term in (35). This term represents the continuous dynamics of the regulari-
zed system. We do not wish to finite-dimensionalize the original dynamics,
and we shall see in the last step that we recover the original, continuous,
full state dynamics. The process fits in with the design goal of developing
a finite dimensional compensator that produces near optimal performance
when applied to the original, continuous dynamics.

Step 3. Since we desire the finite dimensional compensator to act upon the original,
continuous dynamics, while obeying the control law (34), we have

S a(t) = Az(t) + BEamén() (36)

Considering this, we arrive at the ultimate approximation

d x T
al = Ap .
5 (5)2 (5 )

_ A BFchﬂ'h i X (37)
K, C Agmp + BpFepmn — K C Zp

The main result is summarized in the following theorem.

Theorem 1. For the continuous problem (1)-(2), assume that both regularity con-
ditions (4), (13) hold, as well as the stabilizability/detectability conditions (11)-(12).
Assume that conditions (23)-(26) hold for the standard finite element approrima-
tion to (1)-(2). Then, if the feedback gain is given as in (7), (resp. (29)), and the
estimator gain has form (8), (resp. (30))

Then, for €1 > 0 fized and for all T = (z,w) € H = H x H, there ezists ¢g > 0
such that for all € < €o there is some ho(€) such that for all h < ho,

Ah’ﬁtE“Lz(Ooo;’H) < C”‘E“‘H» te [O:T] (38)

(Convergence of controls)

lle

Jim i Jlup,e = ull 2000ty = 0 (39)

(Convergence of gains)
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lim lim ||FepZ — Fz|ly =0 (40)

52—'0 h—0

(Convergence of Performance Indez)

lim lim J(uhye, x(uh,€)> - J(u, x(u)) =0 (41)

€2—0 h—0

(Uniform stability)
There ezists wo > 0 such that for all T = (z,0),

[l < Ce™|2 | (42)

Remarks:

1. Theresult in Theorem 1 requires the original system to be weakly damped (Russell,
1975), which is satisfied by fixing ¢; > 0. However, letting ¢; — 0 recover
the convergence properties of the performance index but the uniform stability of
eA<1art would be lost.

2. Lasiecka (1992) proved the convergence of the compensators eAho! (¢ = 0) under
additional conditions that

T
/ |Br*eA* z||3 < C||z)|}, uniformly in k>0 (i)
0

(An,Bp) are uniformly stabilizable (i)

Since the above assumptions may fail for certain convergent approximations such
as FEM, the main point for introducing the regularization was to avoid require-
ment (i) and (ii).

3. Under the minimal approximation hypotheses for stability and consistency, the
main result of Theorem 1 provides an algorithm for the construction of a finite
dimensional control wus . which, when inserted into the original system, gives a
near optimal performance of the system. The resulting compensator system retains
the uniform stability properties (see (42)), provided that the initial condition for
the estimator equation, i.e. wy, is sufficiently regular. Typically wg = 0, so that
this regularity requirement is satisfied automatically. But, the need to assume
higher regularity for initial condition wq results from an interesting new feature of
the problem which is the lack of a uniform Cy-semigroup estimate for the operator
eAr<! In fact, eA»<! is a one time integrated semigroup while lleA® <t £ 2y is of

1
order (\/_5_2_)

5. Effect of Regularization on the Open-Loop Problem

The purpose of the regularization process is to guarantee that the uniform stabili-
zability and uniform trace assumptions (Hendrickson and Lasiecka, 1993; Lasiecka,
1992) are satisfied by such desirable schemes as finite elements (Banks et al, 1991;
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for an example of a weakly damped wave equation failing to satisfy these conditions).
Without any damping, the spectrum of the open-loop system lies on the imaginary
axis. The €; term, in effect, shifts the spectrum into the open left-half plane along a
vertical line, as seen in Fig. 1.
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Fig. 1. Open-loop spectrum with €1 = .001(¢0), = .01(4+), = .1(0), €2 = 0.

Remark 2. If the interior regularization term is €;w; rather than € (w; — yAw,),
then we observe in Fig. 2 that the lower frequencies have larger negative real parts, i.e.
are more highly damped, than the higher frequencies. More importantly, we see that
as the number of elements increases, then higher frequncies asymptotically approach
the imaginary axis. Again, this effect is due to the fact that the regularization term
can be written abstractly as a compact operator, and uniform stabilization cannot be
achieved by a compact operator (Gibson, 1980; Russell, 1975; Triggiani, 1975; 1989).

In Figs. 3 and 4 we see the effect of the e3-term. We observe that for .0001 < e; <
.0005 the high eigenfrequencies are more highly damped than the lower frequencies.
But for .001 < €3, the higher eigenfrequencies appear to tend towards the imaginary
axis, although never reaching the imaginary axis. For €3 = .1 we observe that the
entire spectrum begins to shift towards the imaginary axis. This observation confirms
that the decay rates are not proportional to the damping coefficients. Due to this
phenomena, the choice of the magnitude of the boundary regularization term must
be carefully selected to avoid an undesirable shift of the open-loop spectrum.

6. Linear Quadratic Regulator

The stabilization of the beam with a non-zero initial state can be brought to rest
by constructing a control using state feedback based on the solution to an algebraic
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Fig. 2. Open-loop spectrum with ¢; =.1, N = 16(0), N =32(+), N =64(0), ¢2 =0
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Fig. 3. Open-loop spectrum with e; = 0, ez =.005(0), .01(+), .1(0).

Riccati equation. The cost functional in (3) is reduced, via the approximation by

finite elements, to the familiar finite dimensional functional,

J(uh,xh(uh)) = /0 ” (m;;(t)thh(t)+u;{(t)Rhuh(t)) &

(45)
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Fig. 4. Open-loop spectrum with €; =0, e2 =.0001(0), .0005(+), .001(D0).

where z(t) is the state vector consisting of displacements, slopes, and their velocities,
and up(t) is the control vector. After the Cholesky decomposition performed earlier
on the state z(t), the matrix Q; in (31) becomes

m:[é g} (46)

This matrix )5 represents the transformed matrix representation with respect to the
H-inner product of the Q term satisfying a smoothing assumption (26b).

The following graphs plot the optimal control, ul(t) = —Bj Pyzx(t), against
time, for N = 4,8,16 and P, is the solution to the associated matrix algebraic
Riccati equation. The initial state is taken to be the first mode, sin7z (Figs. 5
and 6).

Remark 3. We can intepret the magnitude and sign of the control u(t) as the
magnitude of the torque applied at the z = 0 end and the sign as corresponding to
the clockwise or counterclockwise direction to which the torque is applied.

We observe that the optimal control u%(t) — 0 as t — co. The amplitude of
the regularized control is slightly less than that of the unregularized control, due to
the damping introduced by the regularization. Next, we examine the stabilization of
the midpoint of the beam when the beam has an initial displacement, sin7z. The
interior regularization term (viscous damping) causes a slightly faster decay rate, as
expected.
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Fig. 5. u(t)vs. t,for N =4,8,16.
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Fig. 6. u(t)vs. t,for N =4,8,16, ¢1 = .1, e2 = .00001.

The effect of regularization coupled with the design parameter @} is quite appa-
rent on the spectrum of the closed-loop poles. In Fig. 8, we compare o(A— BB* P)vs.
o(Ac — BB*P.) for three cases: (i) €; =.00lez = 0.0 (o), (ii) €; = €5 = .01 (+),
and (iii) €; = .1, €3 =.00001 (O). We have taken @) to be as in equation (44).
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Fig. 7. Stabilization of midpoint for N =16: €1 = €2 =0, €; = .1 € = .00001.
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Fig. 8. Closed-loop poles for N=16: ¢; = €2 = 0, €1 = €2 = .01, €3 = .1lep = .00001.

Notice that the structures of the regularized closed-loop poles are very similar
to the open-loop poles with boundary regularization. This seems to show, in this
example, that the feedback control u°(t) has a similar effect to a viscous damping
term with large magnitude on the boundary. Also, the choice of the state penalty
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term () determines the character of the closed-loop spectrum, while the regulariza-
tion parameters act to produce spectrums of only slight variations from the original,
unregularized system.

Remark 4. If we recall from the abstract formulation of the Kirchoff plate in (1)
that

u’(t) = —B*Pz(t) = —%P(w, wy)

we recognize the similar construction between the form of the Riccati-based, feedback

S a
control and the boundary regularization term, e, Ewt(o,t).
Also, since @, satisfies the “smoothing” assumption (26b) which yields a boun-
ded gain operator Bj P, the effect of the control on the higher frequencies is less.

If the cost functional penalizes the energy of the state instead of the Hl-norm
of the displacement (i.e. @ = I in the performance index (3)), then the @, matrix
becomes, after the decomposition and variable change,

L, 0
oo[m0] -

This choice of @ does not satisfy the smoothing hypothesis (26b), hence the
conclusions of Theorem 1 do not apply for this Q. But it is interesting to note
how this @) affects the associated LQR. problem, in particular the change of the
distribution of o(As — By B} P,). Here, the feedback control has a stronger effect on
the high frequency modes than with the previous choice of Q. The observation is due
to the result that the gain B*P is now an unbounded, but densely-defined operator
on H. Figure 9 illustrates the loss of uniform stability in the closed-loop spectrum .
of the unregularized system. We see that as N increases, the eigenvalues move to
the right towards the imaginary axis. The magnitudes of the Rea (A — ByBj} Py)
are significantly less than those resulting from the @) in (44). This confirms that
regularization is necessary to achieve numerical stability of the margin of uniform
decay.

When regularization is applied to the system, the resulting closed-loop system
maintains the uniform stability, asserted in the theory. Figure 10 reflects this outcome.

We next see the plot of the optimal control for the @ in (45). We observe that
the amplitudes of oscillation of the control decrease very slowly, unless a sufficient
amount of interior damping is added.

The settling time for the midpoint of the beam is several seconds, even with
interior damping present (Fig. 12). Several factors contribute to the long settling
time, including the choices of @ and R, as well as the physical parameters describing
the plate flexibility. ‘
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Fig. 10. Closed-loop poles for N = 16,32 with e, =.1e; =0: N =16 (¢), N = 32(+).
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control u(t)

os ’ ' v T T T T T
"control4g21® —
"controde1q2" -----
“controlde10q2" -----
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03} ]
0.2 ]

0.1

8 10 12 14 16 18 20
time t
Fig. 11. u(t)vs. t: e1 =€ =0, e = €2 = .01, €, =.1 e = .00001,
€&1=1 e =0.
0v4 T ¥ L] L]
*stableBe10q2" —
03 o
02 F o
01} 4
0

01 F
_0‘2 ' A L 1

0 2 4 6 8 10
Fig. 12. Stabilization of the midpoint for N =8 : ¢; = .1, €2 =.00001.

The settling speed of the beam can be adjusted by tuning the control weight R.
We find that the decay of the transients is greatest for larger R. Figure 13 examines
the settling time of the midpoint of the beam with R = .1, 1, 10, 100.



Compensator design for the Kirchoff plate model with boundary control

79

04 T

displacement w(.5.1)

“stable8q2” —

“stable8q2r1®
“stable8q2r2"

*stable8q2r3" - 1

Fig. 13. Stabilization of the midpoint for N =8: R = .1,1,10, 100.

time t

The following table provides convergence results for the feedback gains with Q
as in (45). In the norm evaluation, we take the projection of the first mode, sin 7z,
and compute the Ly(T') norm.

Table 1. Table of feedback gains.

N €1 €2 ”B'Pﬂ'hfl)”Lz(p) |N{ - Ni—ll
4 0.0 0.0 4103374247

8 0.0 0.0 4060941806 4.24324E-3
16 | 0.0 0.0 .4050818062 1.01237E-3
32 | 0.0 0.0 4048344324 2.47374E-4
4 | 0.01 0.01 410537790

8 | 0.01 0.01 406297160 4.24063E-3
16 | 0.01 0.01 405285026 1.01214E-3
4 | 0.01 0.0 .410542991

8 | 0.01 0.0 .406302556 4.24143E-3
16 | 0.01 0.0 1405290440 1.10121E-3
4 0.1 0.0001 1412352966

8 0.1 0.0001 1408137198 4.21576E-3
16 | 0.1 0.0001 407127355 1.00984E-3
4 0.1 | 0.00001 1412353132

8 0.1 | 0.00001 408137366 4.21576E-3
16 | 0.1 | 0.00001 407127523 1.00984E-3

If we chose @5 as in (44), we expect the “smoothing” effect by this term to pro-
vide better convergence results for the gains when compared with the Q5 from (45).
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Also we see that the behaviour of the gains depends more on the choice of @ than
on the regularization parameters. Although, the regularized gains give slightly better
convergence rates than the unregularized gains as long as the boundary regularization
term is chosen to be small with respect to the interior regularization term. The rates
of convergence of the feedback gains for @ in (45) are significantly less that for (44),
as we see in Tab. 5. Here, we take a projection of a function in H, but not in a dense
subspace of H. The function used is

1

Hxy=-4x{x-1) —

f(x)=sin{pi x} —

o8 0.8

06} 06

o2r 0.2

005 01 015 02 025 03 035 04 045 05 05 055 06 065 07 075 08 085 08 095 1

f(z)=—4z(z—1), 0< 2 < .5, f(z) =sin(rz), 5<zr<1

where the third derivative is not an L,(0,1) function.

Table 2. Table of feedback gains.

N €1 €2 ]|B*P7rh:c||L2(r) |Ni—Ni—1]

4 0.0 0.0 1.060237698

8 0.0 0.0 1.061722961 1.48526E-3

16 | 0.0 0.0 1.062162030 4.39069E-4

32| 0.0 0.0 1.062329752 1.67722E-4

4 | 0.01 0.01 1.020574611

8 10.01 0.01 1.022192353 1.61774E-3

16 | 0.01 0.01 1.022656556 4.64203E-4

4 | 0.01 0.0 1.058490539

8 | 0.01 0.0 1.059972368 1.48182E-3

16 | 0.01 0.0 1.060411031 4.38663E-4
0.1 0.0001 1.042623230

8 0.1 0.0001 1.044074828 1.45160E-3

16 | 0.1 0.0001 1.044509881 4.35053E-4
0.1 { 0.00001 1.042974428

8 0.1 | 0.00001 1.044425883 1.45145E-3

16 | 0.1 | 0.00001 1.044860920 4.35037E-4

If we change @, to be as in (45) and use the function given above, then the
strong convergence results for the feedback gains are not provided for in theory and
the following results support this conclusion. Notice that as N increases, we see the
absolute errors of the feedback gains remain constant.

-



Compensator design for the Kirchoff plate model with boundary control 81
Table 3. Table of feedback gains
N | e« €2 ||B'P1rha:||L2(p) |Ni — Ni_1|
4 | 0.0 0.0 2.6619197344
8 | 0.0 0.0 2.9859345307 3.24014F-1
16 | 0.0 0.0 3.3089636957 3.23029E-1
4 | 0.1 | 0.00001 2.6167926367
8 0.1 | 0.00001 2.9406881592 3.23895E-1
16 | 0.1 | 0.00001 3.2637029992 3.23014E-1
7. Observer Design
Recall the form of the dynamic observer
B(t) = Aa(t) + Bu(t) + K (2(t) - Ca(t)) (48)

where A, B are as in (20) and C is a 1x4N row vector with C(1) = 1.0,
C(7) = 0.0, £ > 1. Combining the estimator and the state equation yields the matrix

equation
e(t) | _ x(t)
[ i) ] - [ 3(0) } )

The compensator is based on the estimated state, obeying the control law
u(t) = Fi(t) (50)

and F' will be based on the solution to the appropriate algebraic Riccati equation.
We can rewrite the above system via a similarity transformation as

gt)—&(t) | | A-KC 0 z(t) — &(t)
&(t) | KC A-BF &(t)

We have already examined the infinite time horizon LQR problem for the system,
hence we will refer to the previous section for results concerning the feedback gains
(convergence) of the form

A —BF
KC A-KC-BF

(51)

F=-R!'B*P (52)
where P = P* > 0 solves the matrix algebraic Riccati equation

ATP 4+ PA—PBR'B*P+Q=0 (53)
Remark 5. Recall that the infinite-time regulator problem is to find u(t) €
Ly(000;T) that minimizes (3) when the system has zero noise processes and the

full state as output. The minimum variance estimate of z(¢) satisfies (37), given the
output z(¢). The optimal compensator gain K satisfies the form

K = PC*R™! (54)
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where P = P* > 0 solves the matrix algebraic Riccati equation
AP+ PAT — PC*R™'CP+Q =0 (55)

and represents the constant error covariance. Hence, this procedure determines K
such that the matrix A — KC is exponentially stable and produces the minimum
variance estimate of the full state z(#) (Anderson and Moore, 1989).

In our simulation we consider ), R as parameters and examine how these terms
affect the gain convergence as well as the error decay rates.

Remark 6. Another method of determining K such that A — KC is exponentially
stable is via pole placement, which is possible under the stabilizability and detectabi-
lity conditions. But this method does not necessarily produce the minimum variance
estimate of the full state z(¢). This method may be desired if certain error decay
rates are required.

The following table provides convergence results for the estimator gains, K.
In the norm evaluation, we take the Lj-projection of sinmz and compute the
Ly(T)-norm of K* = C'TP For these results, we take

R I 0 R

Table 4. Table of estimator gains.

€1 €2 ”C*Prha:”f_,zr |N: — Ni_i| | max (real();))
0.01 | 0.00001 .9007208167 -3.24093E-1
0.01 | 0.00001 .9006375545 8.32626E-5 -3.34147E-1
0.01 | 0.00001 .9006375054 4.91239E-8 -3.84241E-1
100 0.01 | 0.00001 | 8.2125333541 -3.43417E-2
100 0.01 | 0.00001 | 8.2147065267 2.17317E-3 -4.94082E-2
16 100 0.01 | 0.00001 | 8.2149378433 2.31317E-4 -1.09796E-1
R=100 | 0.01 | 0.00001 | .09816099636 -3.21135E-1
8 | R=100 | 0.01 | 0.00001 | .09814139841 1.95979E-5 -3.18319E-1
16 | R=100 | 0.01 | 0.00001 | .09814064244 7.55963E-7 -3.09710E-1

e ] B

N
4
8

16
4
8

We see that the state weight, @ = 100, decreases the error decay rate. Changing
the control weight R also affects the decay rate. (Xia and Manitius, 1993) observes an
optimal value of R which causes the fastest decay rate for afixed @. In the plot below,
we observe that the initial error decays rapidly for the case when N = 16, R = 1,
a=1, ¢ =.01, and e5 = .00001.
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Fig. 14. Observer error decay in time, mode 1.

Also, by increasing R to 100, i.e, increasing the weight on the control, we see
that the error settles rapidly and the frequency of oscillation, when compared to the
IRt = 1 case, decreases. We assertain that increasing o causes a reduction of the

decay rate. We project that increasing R will move move the closed-loop spectrum
towards the open-loop poles.

displacement
"akcstate-r2* ——

0.26

Fig. 15. Observer error decay in time, mode 1, R = 100.

If we choose @ to have the form

0 0 .
Q:all I], R=1 (57)

then we get the following convergence results as seen in Tab. 5.
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Table 5. Table of estimator gains.

o €1 €2 |IC* Prnz||L,r | |Ni— Nica| | max (real(X:))
1.0 0.01 | 0.00001 7556027158 -1.85624E-1
1.0 0.01 | 0.00001 7587099045 3.10719E-3 -1.89531E-1
1.0 0.01 | 0.00001 7596589864 9.49082E-4 -2.23588E-1
100 1.0 | 0.00001 | 7.6612995781 -6.51302E-1
100 1.0 | 0.00001 [ 7.6610169515 2.82527E-4 -6.66233E-1
16 100 1.0 | 0.00001 | 7.6610672197 —5.02681E—5 -7.22639E-1
R=100 | 0.01 | 0.00001 .0774326618 -2.40037E-1
8 | R=100 | 0.01 | 0.00001 .0774493157 1.66538E-5 -2.38333E-1
16 | R=100 | 0.01 | 0.00001 .0774583759 9.06023E-6 -2.33571E-1

o |5 0wz

The damping needs to be increased when « is increased to maintain the stability
of ¢(A— KC). We also notice that the decay rates vary as the forms of @ and R
change. If we change the type of observation from a boundary observation to a point
observation, we must add sufficient damping to the system to ensure that the stability
assumptions are satisfied. Here, we take a point observation

y=Cz = cob(z — .5) (58)

where ¢y = 1 and z = .5 is the midpoint of the beam. So, in the finite element
formulation, €' is a 1x4N column row vector with C(N) =1, C(:) =0, i # N.
We plot the observer error with () as in (45) and ¢; = 1.0 and ¢ = .00001.

displacement
“akept-state” ——

\
0.1k . /0/0‘5 x

0 5 10

Fig. 16. Observer error decay in time, mode 1, midpoint observation.
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Appendix
Description of Numerical Integration Technique

The numerical integration method following in the calculations in this research uses
the LSODE.f routine from ODEPACK. We apply the time discretization scheme to the
system in (22), rather than compute the discrete-time equivalent of the system in (22).
Also, the design process for the observer, in the latter sections, will be performed on
the continuous time model, then applying the time discretization scheme. We refer to
(Xia and Manitius, 1993) for another method involving a Diagonally Implicit Runga
Kutta technique, which displays very good numerical accuracy when applied to an
Euler-Bernoulli beam model.

This section gives a measure of the numerical accuracy of the integration package
that is used, by examining the period and energy preservation of the method when
applied to the undamped Kirchoff model. For the numerical computations, we take
¥ =.0001 and k= .02.

The analytical solution to the undamped Kirchoff beam is given by
w(z,t) = sin nwz cos wyt (A1)
with initial conditions
w(z,0) =sinnre,  w(z,0)=0
and natural frequencies, w,,

Zzﬂ n=12

w vEREIY 2, ..

Table 1A gives a comparision of the natural frequencies, w, , of the undamped Kirchoff
beam, with 4y = 0.0001 and the computed eigenfrequencies for the finite element
models with N = 4,8,16,32,64. We see that the first few natural frequencies are
quite accurately modelled by the finite element approximation, whereas the high
frequencies are not.

Table 2A gives the Ly and energy norms of the errors between the exact solution ,
which we take to be the modal solution w(z,t) = sinnwz cosw,t and the numerical
solution. The errors are computed at times ¢t = 1,3,7,10 with both the first and
third mode excited. The accuracy of the method declines as the higher modes are
excited. This is due to the more oscillatory nature of the solution and the inability of
the numerical scheme to accurately approximate the more oscillatory systems. The
discrete energy norm for the Kirchoff beam is given by

L 0 Lm O
||$hIIH=I§f[ 0 i ] Th = y;‘f[ 0 7 } vn = |lynller (A.2)
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Table 1A. Table of exact and computed natural frequencies.

Mode N wy ws wie w32 we4 Wn

1 1.3955 1.3951 1.3951 1.3951 1.3951 1.3951

2 5.5941 5.5736 5.5722 5.5721 5.5721 5.5721

3 12.7349 12.5226 12.5076 12.5066 12.5065 12.5065
4 24.5911 22.2455 22.1638 22.1585 22.1581 22.1581
5 38.9116 34.7907 34.4933 34.4730 34.4717 34.4716
6 61.1622 50.2778 49.4412 49.3823 49.3785 49.3783
7 90.8837 68.8660 66.9535 66.8070 66.7974 66.7968
8 109.9543 96.1202 86.9762 86.6577 86.6366 86.6351
9 118.7372 | 109.4651 | 108.8375 | 108.7954 | 108.7926
10 150.2052 | 134.3877 | 133.2441 | 133.1660 | 133.1607
11 187.7955 | 161.7249 | 159.7713 | 159.6351 | 159.6258
12 232.3158 | 191.4696 | 188.3116 | 188.0861 | 188.0706
13 283.6452 | 223.6114 | 218.7580 | 218.4003 | 218.3755
14 338.6452 | 258.0699 | 251.0054 | 250.4586 | 250.4204
15 384.3465 | 294.2416 | 284.9525 | 284.1430 | 284.0861
16 403.3654 | 353.8757 | 320.5029 | 319.3377 | 319.2551

Table 2A. Table of energy and L2 error

norms at ¢ =1,3,7,10 seconds.

N lle(t)llo lle(t2)llo lle(t3)llo lle(t)llo
Mode 1
4 2.664400E-3 8.1762500E-3 1.322834E-2 1.086700E-2
8 1.901370E-3 1.352502E-4 2.715498E-3 3.177980E-3
16 4.0450400E-4 6.448990E-4 2.441851E-3 3.169890E-5
32 5.954986E-6 1.365655E-5 2.975317E-5 5.525490E-5
Mode 3
4 2.204498E-0 5.974480E-0 12.000810E-0 | 13.999552E-0
8 2.6150307E-1 | 4.3865203E-1 9.318058E-1 1.242059E-0
16 5.586599E-2 5.268059E-2 5.869446E-2 8.999222E-2
32 9.731832E-3 4.159589E-3 2.466896E-2 3.032769E-2
N lle(ta)ll= lle(t)ll= lle(ts)ll= Nle(te)l| =
Mode 1
4 2.647000E-3 8.049070E-3 1.321399E-2 1.057080E-2
8 1.901300E-3 1.285039E-4 2.715498E-3 3.177980E-3
16 4.045020E-4 6.448900E-4 2.441850E-3 2.985832E-5
32 5.897427E-6 1.252193E-5 1.262182E-5 5.525490E-5
Mode 3 )
4 2.204425E-0 5.973837E-0 11.994815E-0 | 13.983628E-0
8 2.615021E-1 4.386160E-1 9.931375E-1 1.24077E-0
16 5.586595E-2 5.267914E-2 5.8657T3E-2 8.98983E-2
32 9.9731831E-3 4.159512E-3 2.466861E-2 3.032657TE-2
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Table 3A displays the period preservation ability over a long time interval of the
LSODE f program, for N = 4,8,16. T is the difference between the 1st and 445-th
zero, i.e. we allow 222 periods to pass. We take T to be the exact period, based upon
the first computed eigenfrequency. 7' is the difference between the numerical 1st and
445-th zeros. The zeros are computed by linear interpolation. The time step for these
results was 0.01.

Table 3A. Table of period preservation for integration package.

¥ N T (sec) T (sec) i T — T (sec)
0001 | 4 | 999.584598422 | 999.8645162116366 | 2.79917778E-1
.0001 | 8 | 999.827710190 | 999.8676994583235 | 3.9989210E-2
.0001 | 16 | 999.843118771 | 999.873116416919 2.9997629E-2
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