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THROUGHFLOW OF A BINGHAM FLUID
IN A SLOT BETWEEN ROTATING SURFACES
OF REVOLUTION

EpwarD WALICKI*, ANNA WALICKA*

This paper contains formulae which define such parameters of the steady laminar
flow of a Bingham fluid between rotating surfaces of revolution as the velocity
components vz, vg, vy and pressure p. The linearized equations of motion of
the Bingham fluid flow for axial symmetry in the intrinisic curvilinear coordinate
system z, 6, y are used. The solutions of the equations of motion have been
illustrated by the example of fluid flow through the slot of constant thickness
between rotating disks and between rotating spherical surfaces.

1. Introduction

The steady laminar flows of incompressible or compressible viscous Newtonian fluid
in a narrow space between rotating surfaces of revolution have been examined theo-
retically and experimentally. Analytical studies of these flows have been presented in
(McAlister and Rice, 1970; Walicka, 1989).

The problem of viscous Newtonian throughflow between rotating surfaces of re-
volution, the shapes of which are described by the functions satisfying any conditions
for which similar solutions exist, is solved by McAlister and Rice (1970). The same
flow in a more general statement is examined in (Walicka, 1989).

Many fluids of engineering interest appear to exhibit yield behaviour, where flow
occurs only when the imposed stress exceeds a critical yield stress. Such viscoplastic
fluids, which were first analyzed systematically by Prager (1961), Coleman et al.
(1966) and Schulman (1975, 1982) include some polymer liquid crystals and some
filled thermoplastics.

To describe the rheological behaviour of viscoplastic (non-Newtonian) fluids in
complex geometries the Bingham model is often used (cf. e.g. Dai and Bird, 1981;
Lipscomb and Dean, 1984; Sandru and Camenschi, 1988; Walicka and Walicki, 1994).

Our interest in this paper is to examine the steady laminar flow of a Bingham
fluid in the slot of small thickness between rotating curvilinear surfaces of revolution
having a common axis of symmetry as shown in Fig. 1. The problem is solved with
the partial influence of inertia terms in equations of motion (rotational inertia), i.e.,
under the assumption that the velocity of circumferential flow is great in comparison
to the velocity of longitudinal flow.
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Fig. 1. Slot of small thickness between rotating surfaces of revolution.
Coordinate system and geometry of surfaces.

2. Equations of Motion in a Thin Layer

The configuration of the flow is shown in Fig. 1. The curvilinear surfaces are discribed
by function R(z) which denotes the radius of the median surface between the rotating
surfaces plus function A(z) which denotes the distance to each surface from the
median. An intrinsic curvilinear orthogonal coordinate system =z, 6, y is depicted in
Fig. 1. The inner surface has angular velocity w; and the outer surface has angular
velocity wsy.

The physical parameters of the flow are the velocity components vz, vy, vy
and pressure p. With regard to axial symmetry of the flow these parameters are not
dependent on the angle 4.

Let us make the assumption typical for the flow in a narrow space that

and the assumption on the velocity orders which can be expressed in the form

- hm h2
v =0 (UmR_> ) vg = 0(um), vy =0 (Umk%)

where vp, is the mean value of the velocity of circumferential flow and h,,, R,, are,
respectively, the mean values of A(z) and R(z) in the slot.

Taking into consideration the above assumptions we can make order — of —
magnitude arguments in the equations governing the steady flow of a Bingham fluid.

If the asymptotic transformations have been made, the same as in (Walicka,
1989), these equations can be reduced to a simpler form

1 0(Rvz) | Ovy
R oz Ty =0 (1)

R - 06p 0 v
=27 it
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is the function of viscosity. The “prime” denotes everywhere derivation with respect
to z.

After asymptotic transformations the equation of motion in the y-direction in-
dicates that

p(z,y) = p(z) (6)

The problem statement is complete after specification of boundary conditions. These
conditions for the velocity components are stated as follows

vp(z £ h) =10 (M
vg(z, —h) = Ruw, vg(, +h) = Rw, (8)
vy(z, £h) =0 9)

The boundary conditions for the pressure are
P(ﬁi) = Pi, P(wo) =Po (10)'
thus, z; denotes the inlet coordinate and zy — the outlet coordinate.

3. Solution of the Equations of Motion

Integrating in sequence equations (2)—(4) with respect to y in the interval
—h < y < +h and determining the arbitrary constants from the boundary condi-
tions (7) and (8) we obtain

R
vy = 5— wo + W1 +(w2—w1’)%] (11)
2 2 ! 2 2
y*—h?dp pRR'|y*—h
w=Tgr g ap |z rten)’
12
yP—yh? N 2 -
+ 3h (w2+w1)+ 19h2 (w2+wl)

with

_ 2H pR(wgy —wy)
L= Rlws — w] (TO + 2 ) (13)
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Next integrating the equation of continuity (1) across the slot and taking into
account boundary conditions (7) and (9) we have

+h *
C
vy dy = —— 14
L1 -
where C* is an arbitrary constant. Substituting (12) into (14) we find

dp  CL  pRR
dz ~ RA3 4

Q? (15)
where
1
Q2 = (we —wy)? + —5—(w2 —wy)? (16)

and C is a new arbitrary constant.

Integrating (15) and taking into account boundary conditions (10) we obtain

[A(i”) - AO] (pi — B;) — [A(ﬂf) - Ai] (Po — Bo)

pla) = B(s) + - (17
the constant C' is equal to
pi — po — (Bi — Bo

C= pAi_(AO ) (18)
where:

Alz) = / % dz, A;= A(z;), Ao= A(zo)

(19)
B(z) = pR;QQ, B; = B(x;), Bo = B(x)

Substituting (15) into (12) we may present the formula for velocity component v, in

the form
. C y? pRR' A2 y2 y 5
"= T3Rh (1‘;72) " aaor [\ O TR ) (e men)
y Y2

Taking into account the result obtained above in (1) and integrating this equation
with respect to y we get the formula for velocity component v,

19 Cy y? pR2R'E3 |y y: vt
T {——(3 + (1 L

T ROz |6 R\~ h2 240L
vyt
x (wg —wy)? +5 (l - 2h—2 + F) (w2 — wi)
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Note that for Newtonian fluid we have: L = pnewt., i.€., the function of viscosity
passes on Newtonian shear (dynamic) viscosity. In this case, all the above formulae
are identical with those given for Newtonian flow and they are true for all the values
of w; and ws. :

The solution for Bingham fluid presented here is also true for all the values of
w1 and wsy, except when w; = wy, because in this case formula (13) for the function
of viscosity is no longer valid.

4. Examples

4.1. Non-dimensional Form of the Solution for the Slot of
Constant Thickness

Equations (11), (13) and (16)—(20) can be made non-dimensional by using the follo-
wing parameters

~  ZT =~ R _ R ~_ Y
I—R_(), RO—R_O; E_Ro’ y_h
~ _2R0hv o0 = Vg ~_ _£
T — C T 9 — Rowla p - po
(22)
~ L(I) ~ hB Di
L(z) = , A(z) = —A(z), 6= —
@) == @) = —4() u
W2 2 Go 2hT0
— T F= ) G= ) G - T
w1 w? |f=1] 0 pRowy
hence, we have
~ mo  §=14By—B; .. A;(1-Bo)— Ay(6— B;)
= B z + —~'~—A z + —~ — 23
P= @)+ ) > (23)
~ 1 ~ o~~~ '
Vg = E(l—fﬂ) + I II(R)RR' V(7)) (24)
% = RV () (25)
where
Va(y) = (1 = 657 +5§")(f — 1) — 20(5 — $*)(f* - 1)
1 ~ G 1
Ve() == |f+14+3(f -1)], Ai:/(,v—-l-—;)d%'
@ =3 -, A@= [ (4=
A = A@), A = A(F) (26)

B(¥) = FP.R?, B;=FPe®  By=FP,
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ﬁc — Pc(A’i _~A0) — ﬁ(ﬁ) — __]E_:_
15(6 — 1+ By — B;) G+R
Here
_ pREW? 1

*T 8Py, ~ 8Eu (27)

and Fu denotes the Euler number for the circumferential flow in the outlet cross —
section of the slot, P, represents the inertia effects due to the circumferential motion
of fluid in the slot.

4.2. Throughflow Between the Parallel Disks

For the parallel disks shown in Fig. 2 the geometric relations are: R = &,
R; = z;, Ro = zg, € = z;/zo. The non-dimensional quantities are: R = Z,
Ry=1, R;=¢, R' =1, and the non-dimentional formulation assumes the form:

_ 2
g=rpz4 i1 =)FF <1n5-9->

Ine — (% ~1)G v
(ne - g) (1- P,)+ G(6 — FP.c?) 28
T e (e
£
Tp = i(1—@2)+ﬁc—ivx(m (29)
7 Gtz
s = Vs (P) (30)
where
_ Ine — (é — 1)G
T = B _Tra-Fp] (31)
y

-[ Ri=)(i

;, ——— = R
— 4 ey
= h
Ro=xo

Fig. 2. Slot between parallel disks.
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Figures 3 and 4 show the pressure distributions for f = 0 (only one disk rotates
in the flow configuration presented in Fig. 2) and for two values of the coefficient P,
namely: P, =2 and P, = 3. It can be seen from Fig. 4 that the value of P, = 3 and
the value of the plasticity coefficient Gg = 5 are the limit values when the cavitation
does not occur yet in the flow.

Figures 5 and 6 show the pressure distributions for f = —1 (both disks rotate
at the same angular velocities, equal, but opposed with respect to the sign) and for
two values of the coefficient P.: P, =2 and P, = 4. It can be seen from Figs. 3-6
that the pressure decreases with respect to the Newtonian pressure distribution with
the increase of the values or coeficients P. and Gy and this phenomenon is more
intensive for f = 0 than for f = —1.

Figures 7 and 8 show the profiles of the velocity component ¥, for f = 0 and for
two values of P, namely: for P, = 2 and for P, = 3, respectively. The continuous
lines represent the case of Newtonian flow; the dashed lines represent the Bingham
fluid flow for Go = 1, but the dash-dot lines — the flow for Gy = 5. The velocity
profiles are made for three positions of the cross-section, for 7 = 0.3, 0.6 or 0.9,
respectively.

It can be seen from these figures that the influence of inertia effects is considerable
and it is visible in the cross-sections lying near the outlet to the slot (% = 0.9). The
maximum of velocity profiles shifts in the direction of the rotating disk with the
increase of P,. In the middle regions of the slot the inertia effects are inconsiderable
(i.e., the differences between the velocity curves are very small for 7 = 0.6 and for
all the values of P. and Gy).

Figure 9 shows the “halves” of graphs of the velocity profiles o, for f = —1 and
for two values of P, namely: P. =2 (upper graphs) and P, = 4 (lower graphs); the
continuous lines represent the case of Newtonian flow, the dashed lines — the case of
the Bingham flow for G = 1, but the dash-dot lines — the same flow for Gg = 5.

In this case, the velocity curves are symmetrical with respect to the median
surface of the slot and the inertia effects have also the same nature as that in the
previous case where f = 0. It is easy to see from eqn. (25) that the profiles of velocity
component Uy are always straight lines.

4.3. Throughflow Between the Concentric Spherical Surfaces

For the concentric spherical surfaces shown in Fig. 10 the geometric relations are given
as follows:

R = R;sinp, R; = R sin;, Ry = R sin g

oz __ sing;
(P_Rs’ "~ sin g
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Fig. 3. Dimensionless pressure distributions for the flow between parallel disks for the
value of P =2 and f =0 (only one disk rotates) vs. Gy as a parameter.
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Fig. 4. Dimensionless pressure distributions for the flow between parallel disks for the
value of P.=3 and f=0.
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Fig. 5. Dimensionless pressure distributions for the flow between parallel disks for the
values: P. =2 and f = —1 (both disks rotate at the same angular velocities,
equal, but opposed with respect to the sign).
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Fig. 6. Dimensionless pressure distributions for the flow between parallel disks for the
values: P, =4 and f = —1.
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Fig. 7. Dimensionless profiles of the velocity component v, for the flow between parallel
disks for f =0 and P. =2 at the cross-section described by 7 = 0.3, 7 = 0.6

and T = 0.9.
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Fig. 8. Dimensionless profiles of the velocity component v, for the flow between parallel
disks for the values: f=0 and P =

The non-dimensional quantities are (for po = 90°): R=sinp, Ry=1, Ri=¢=
sin ¢;, = ¢, and the non-dimensional formulation assumes the form:

1+(1——s1n @;)FP.
lntg—2— —Gctge;

p= FP.sin ¢ +

(l thD G ctg go) +1—-FP, (32)

n2
_ ___9"_ .
" sin (,0(1 ) + H ‘G +singp V2 (®) (33)
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Fig. 9. Dimensionless profiles of the velocity component v, for the flow be-
tween parallel disks for the value of f = —1; the upper graphs are made
for P. = 2, the lower ones — for P, = 4.
z
Fig. 10. Slot between concentric spherical surfaces.

Ug = sin pVp(y) (34)

where
i
_ In tg-2~ —Getgo;
I, = - P 35
15[6 — 1 + (L —sin? ;) FP,] " (35)

Figures 11-14 show the pressure distributions for f = 0 and for f = —1, re-
spectively, for two values of P, namely: P, = 2 or P, = 4, and for different values

of Go.
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Fig. 11. Dimensionless pressure disributions for the flow between concentric
spherical surfaces for f =0 and P. = 2.
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Fig. 12. Dimensionless pressure distributions for the flow between concentric
spherical surfaces for f =0 and P. = 4.
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Fig. 13. Dimensionless pressure distributions for the fiow between concentric
spherical surfaces for f = —1 and P. =2.
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Fig. 14. Dimensionless pressure distributions for the flow between concentric
spherical surfaces for f = —1 and P. =4.
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The general nature of the graphs presented in these figures is similar to that for
the flow between rotating disks, but in this case there is no flow with cavitation. Note
that the character of changes of the velocity components U, and vy in this case of
flow configuration is the same as in the previous one.

5. Conclusions

The analysis of the formulae derived allows us to confirm the fact that fluid flow in a
slot is generated due to two reasons: the difference of pressures at the inlet and the
outlet, and the rotational motion of the surfaces. It results from formula (25) that
the profile of tangential velocity vy for the fixed cross — section is rectilinear and it
is identical with the profile of Couette flow between two moving planes.

However, it results from the formulae for longitudinal velocity v, that the main
part — in approximation proposed here — has a profile identical with the profile of
flat Poiseuille flow. This flow is generated by the difference of pressures and rotational
motion of surfaces limiting the slot. The part of the secondary flow which is generated
by the suction effect of the rotating surfaces is imposed on the main part of the
longitudinal velocity.

The secondary flow is described by the second term of the formula for the longi-
tudinal velocity v; and by cross velocity v,. From the formulae for pressure distri-
butions it results that the inertia effect is considerable; it causes the pressure changes
which increase with angular velocities of rotating surfaces. The influence of inertia
forces is more visible in the flow between two disks (surfaces with rectilinear genera-
trices) than in that one between two spheres (surfaces with curvilinear generatrices).
The nature of this influence depends on the magnitude of the plasticity coefficient
Go.
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