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ANALOG NEURAL NETWORKS FOR SOLVING
IN REAL-TIME LINEAR INVERSE AND TOTAL
LEAST SQUARES PROBLEMS

AnDRZEJ CICHOCKT*, TaADEUSZ KACZOREK**
Janusz MAZUREK***

A class of simplified low-cost artificial neural networks with on-line adaptive
learning algorithms are discussed for solving large system of algebraic equations
and related problems in real-time. The proposed learning algorithms for Least
Squares (LS), Total Least Squares (TLS) and Data Least Squares (DLS) pro-
blems can be considered as an extension and generalization of the well known
Least Mean Squares (LMS) and Kaczmarz algorithms. A generalized maximum
entropy and minimum p-norm criteria are used as a principle for reconstructing
images and/or signals from noisy and incomplete projection data. The inverse
problem is reformulated as a suitable optimization problem and solved by a
unified neural network.

1. Introduction

Machine intelligence will be probably the dominant technology in the near future.
Artificial Neural Networks (ANN) are important components of intelligent systems.
ANN’s are today undoubtely one of the fastest growing areas of research. ANN’s
are not composed of one approach but are rather a broad body of often loosy related
knowlegde, tools and techniques. The main objective of this paper is the development
of adaptive algorithms for solving a wide class of inverse problems and total least
squares problems.

Many problems in science and technology involve solving a large system of linear
equations (Cichocki and Kaczorek, 1992a; 1992b; Cichocki and Unbehauen, 1992;
1994a; 1994b; Cichocki et al, 1992; 1995; Kaczmarz, 1937; Osowski, 1993; Lillo
et al., 1993)

Az =b (1)

where A € IR™*" is a data matrix, b € IR™ is an observation vector. Usually
A and b are perturbated versions of the exact but unobservable matrices Ag, bo,
respectively, i.e. the exact relation is described by the matrix equation

Aol’ = bo (2)
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Such a description appears in a broad class of scientific and engineering problems. For
example, in image and signal restoration the matrix A is the degradation matrix, in
deconvolution problems it is the convolution matrix; in wave propagation problems, in
electromagnetics and acoustics, it is the propagation matrix. Moreover, every linear
parameter estimation problem arising in automatic control, system identification, sig-
nal processing, physics, biology and medicine gives rise to an overdetermined set of
linear equations (1) (Cichocki and Unbehauen, 1994a; DeGroat and Dowling, 1993;
Marrian and Peckerar, 1989; Osowski, 1993). The system of equations is sometimes
underdetermined due to the lack of information, but often it is greatly overdeter-
mined and usually inconsistent (i.e. it is self-contradictory) due to errors, noise and
other perturbations. Generally speaking, in signal processing applications the over-
determined case (m > n) describes filtering, estimation of parameters, enhancement,
deconvolution and identification problems, while the underdetermined (m < n) case
describes inverse and extrapolation problems (Cichocki and Unbehauen, 1994a).

In many applications (e.g. robotics, signal processing, automatic control) an on-
line (i.e. in real time) solution of a system of linear equations is desired. For such
real time applications, when the solution is to be obtained within a time of the order
of hundred nanoseconds a digital computer often cannot comply with the desired
computation time or its use is too expensive. One possible approach for solving such
a problem is to employ analog artificial neural networks (Cichocki and Unbehauen,
1994a). However, known methods and network architectures require to use at least n
(n is the number of unknown variables) artificial neurons (processing units) (Cichocki
and Unbehauen, 1992; 1994a; Hopfield 1984; Kennedy and Chua, 1988; Marrian and
Peckerar, 1989; Tank and Hopfield, 1986). In many engineering applications, e.g. in
Image reconstruction and in computer tomopraphy it is required to solve very large
systems of linear algebraic equations with high speed and throughput rate (Herman,
1980; Herman et al., 1991; Kak and Slaney, 1987; Lu et al., 1992; Madych, 1991;
Rosenfield and Kak, 1981; Wang and Lu, 1992) For such problems, a known neural
network architecture requires an extremely large number of processing units (artificial
neurons) so that a practical hardware implementation of the neural network may be
difficult, expensive and even impossible.

In this paper we will propose a new analog artificial neural network containing
only one simplified neuron (single adaptive processing unit) with an on chip implemen-
ted adaptive learning algorithm. Many researchers in different scientific desciplines
have developed a class of efficient adaptive algorithms for solving systems of linear
equations and related problems. As early as 1937 a Polish mathematician (Banach
School) Kaczmarz (1937) developed a very simple and efficient Row-Action Projec-
tion (RAP) algorithm. Since the systems of linear equations have been used in many
diverse disciplines and problems, the Kaczmarz RAP algorithm and its modifications
have been independently and repeatedly rediscovered and in fact they appear under
different names in different applications. For example, in the field of medical imaging
for computerized tomography it is often called an Algebraic Reconstructed Technique
(ART) (Censor et al., 1989); in the adapative filtering literature it is known as the
a-LMS algorithm or Widrow-Hoff delta rule (Cichocki and Unbehauen, 1994a).
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The main objective of this paper is analog circuit design of a neural network
for implementing such adaptive algorithms. The second objective is to propose some
extensions and modifications of the existing adaptive algorithms. The third objective
is to demonstrate the validity and high performance of the proposed neural network
models by computer simulation experiments.

2. Formulation of the Problems

In general, without reference to any specific application, the overdetermined problem
can be stated as follows. Let us assume that we want to solve a set of linear algebraic
equations written in scalar form as

Zaija:j =p; (1=1,2,...,m) with m > n typically m > n (3a)
j=1

or in the matrix form
Az =b (3b)

Here, z is the n-dimensional unknown vector, b is the m-dimensional observation
vector and A = [ai]-] is the mx n real coefficient matrix with known elements.
Note that the number of equations is generally not restricted to n; it can be less
than, equal to or greater than the number of variables. In the ordinary Least Squares
(LS) approach to problem (3a)-(3b) the measurements in the matrix A are assumed
to be free from error and all errors are confined to the observation vector . In this
approach one defines a cost (error function) E(x) as

1
E(z) = —”A ——b“2 “ ”2 (Az —b)T (4 Il:—b)+§V.Z'T$

m (4)
Z 2(z) + = VZa:

where the upper index T' denotes the transposition, the residuals are given as

n

ri(z) =alz —b; = Zaijl‘j —b;

ji=1

and v > 0 is the regularization parameter. The first term is the standard least
squares term and it forces the sum of square residuals to be minimal. The second
term is the regularization term whose purpose is to force a smoothness constraint on
the estimated solution z* for ill-conditioned problems. The regularization parameter
determines the relative importance of this term (Cichocki and Unbehauen, 1994a).
Using a standard gradient approach for the minimization of the cost function the
problem can be mapped to the system of linear differential equations

i_;g =—pu [AT(AJI -b)+ I/JZ] (5a)
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with any initial conditions z(0) = z(®) (typically z(0) = 0), where
p = diag(pi, p2, .. pn),  p; >0 Vj

Note that the direct implementation of system (5a) requires the use of m + n linear
processing units (Cichocki and Unbehauen, 1994a). In fact, the number of processing
units can be reduced to n units since eqn. (5a) can be simplified as

% = — [(Wz —-9)+ Vx] (5b)

where
W= AT A4, 6= ATp

but this requires extra precalculations and it is inconvenient for large matrices espe-
cially when the entries a;; and/or b; are slowly changing in time (i.e. are time varia-
ble). In the next section we will show how we can avoid this disadvantage. In other
words, the known neural network realizations for solving a linear Least Squares (LS)
problem requires (cf. eqns. (5a)—(5b)) an excessive number of building blocks (analog
multipliers and summers). In the next section we will propose a new approach which
enables us to solve the LS problem more efficiently and econonomically.

The ordinary LS problem is optimal only if all errors are confined to the ob-
servation vector b and they have the Gaussian distribution. The measurements in
the data matrix are assumed to be free from errors. However, such an assumption
is often unrealistic (e.g. in image recognition and computer vision) since sampling
errors, modeling errors and instrument errors may imply noise inaccuracies of the
data matrix A (Cichocki and Unbehauen, 1994b). The Total Least Squares problem
(TLS) has been devised as a more global and often more reliable fitting method than
the standard LS problem for solving an overdetermined set of linear equations when
the measurements in b as well as in A are subject to errors.

Especially, if the errors are (approximately) uncorrelated with zero a mean and
equal variance, the TLS solution is more accurate than the LS solution (Golub and
Van Loan, 1980; 1989; Van Huffel and Vandewalle, 1989; 1991). Golub and Van
Loan (1989) were the first to introduce the TLS approach into the field of numerical
analysis and they developed an algorithm based on the Singular Value Decomposition
(SVD) (Golub and Van Loan, 1980; 1989). Van Huffel and Vandewalle (1989; 1991)
investigated the problem, presented a detailed analysis and extended the analysis to
cover the non-generic TLS case.

While the LS problem confines all errors to the observation vector b, the TLS
problem assumes a perturbation of the data matrix A (by a matrix AA) and the
observation vector b (by a vector) and tries to compensate for these. The TLS
problem can be formulated as the optimization problem to find the vector z%;¢ that
minimizes

2 2
|a4]lp+ | ab] (®)
subject to the equality constraint

(A— AA)zr g = (b— Ab)
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where ”A“F denotes the Frobenius norm of A. In other words, the TLS problem
seeks to
Inimi A; B} — [Ao; b
(oo e (o) [|[4; B] = [Ao; bo} | .

subject to range (bo) C range (Ag)

The main tool for solving the TLS problem is the singular value decomposition (SVD)
of the matrix A and the extended matrix [A,b]. Let

T
Un41 = [Ul,n+1, V2,n41y -« vn+1,n+1]

be the right singular vector corresponding to the smallest singular value 0,4 of the
extended matrix [4, b]. The TLS solution z%g is obtained as (Golub and Van Loan,
1980).

1
z'}Ls = ‘"—-—“—[Ul,n+1, V2,n41y - -+, vn+1,n+1]T (8)
Un+41,n+1
As the singular value ¢4 goes to zero, the LS and TLS solutions approach each
other.

It is important to point out that the ordinary LS problem minimizes the sum of
the squared residuals
n

T'i(a:) = Z a,;jzj —_ bi (9)

i=1
while the TLS problem minimizes a sum of the weighted residuals
(Ax —b)

rrus(z) = ST

(10)
In other words, the TLS problem can be equivalently formulated as the minimization
(with respect to the vector z) of the cost function

In comparison with the standard LS approach, it is generally quite burdensome and
very time consuming to obtain the solution of the TLS problem (Van Huffel and
Vandewalle, 1991). This is probably why the TLS approach has not been as widely
used as the usual LS approach although the TLS approach was investigated in robust
statistics long ago. We will propose a very simple and efficient algorithm (or more
precisely a class of algorithms) to solve the TLS problem by using only one single
artificial neuron.

The underdetermined problem usually has an infinite number of solutions. In
order to find optimal unique solution the problem is formulated as the following
optimization problem

minimize f(z) (12a)
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subject to the equality constraints

Az =b (12b)
and eventually to the inequality box (simple bounds) constraints

Timin < & < Tjmax (12¢)
(typically z; > 0), where f(z) is a suitable cost (objective) function.

Sometimes the optimization problem is formulated as
" minimize f(z) (13a)

subject to the equality constraints

Az <b (13b)
and

Timin S Tj < Tjmax V7 (1=1,2,...,n) (13¢)

The choice of equality constraints (12b) or inequality constraints (13b) depends on
the character of the noise (Censor et al., 1989; Frieden and Zoltani, 1985; Herman
1980; Herman et al., 1991; Kak and Slaney, 1987; Lu et al., 1992; Madych, 1991;
Rosenfield and Kak, 1981; Wang and Lu, 1992).

In practice, two classes of criteria or two classes of objective functions f(z) are
often used:

1) The minimum p-norm criteria,
2) The maximum entropy criteria.

For the minimum p-norm problem the objective function can take the form:

f(z) = %Z 257 (14)

j=1
for 1 <p< .
We are particularly interested in the following three special cases:

a) the minimum l-norm problem, sometimes called minimum fuel problem,

b) the standard minimum 2-norm problem, sometimes called minimum energy pro-
blem,

¢) the minimum infinity (Chebyshev)-norm problem, called minimum amplitude pro-
blem which minimizes:

flz) = m]ax{|mj|} S (15)

subject to Az = b.



Analog neural networks for solving in real-time linear inverse ... 111

It is interesting to note that for the standard minimum 2-norm problem, i.e. for

f(z) = ” ”2 2;’312 (16)

subject to Az = b, there are algorithms based on linear algebra which may solve the
problem explicitly (Cichocki and Unbehauen, 1994a).

It is well known that the optimal solution z* can be explicitly expressed as
z* = AT(AAT) 'b = A%b (17a)
or

z* = lim(vI + AATY1ATh = (AAT)t ATb = A*b (17b)

(where A% means the pseudo-inverse matrix of A) and the resulting value of the
2-norm reads

o, = (57 (aa7)-18) " (18)

However, for image reconstruction problems the matrices A are typically too large
to allow us to use the above formulas!. Moreover, for p # 2 the minimum p-
norm problems are somewhat more complex and we look rather for one unifying and
generalized algorithm to solve problem (12) or (13).

For maximum entropy estimation problems the objective function is defined as
(Censor et al., 1989)

f(z) = ~S(a) (19)

where S(z) is a suitable entropy measure. Here, the entropy function S(z) is taken
with the minus sign in order to have a minimization problem instead of the maximi-
zation problem.

Three common choices of the entropy are (Censor et al., 1989; Frieden and Zol-
tani, 1985):

1) Shannon’s entropy

Su(z) = —Zz]- Inz; with z; >0 (20a)
i=1

2) Burg’s entropy
Sp(z) = Eln z;  with z; >0 (20b)
3) Friden’s and Zoltani’s entropy

n
Srz(z) = —Z [rj Inz; 4 (2 max — ;) In(2; max — 1:])] (20¢)
i=1
with constraints 0 < z; < Zjmax V j.

1 Typically m and n are in the order of hundreds or even thousands (see Example 4)
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The maximum entropy estimation criteria are attractive alternatives to the minimum
p-norm estimation measure with a solid theoretical background (Censor et al., 1989;
Frieden and Zoltani, 1985; Herman 1980; Herman et al., 1991; Kak and Slaney, 1987;
Lu et al,, 1992; Madych, 1991; Rosenfield and Kak, 1981; Wang and Lu, 1992). The
main idea is to estimate the variables (signals) which satisfy specified constraints and
to provide a maximum entropy. Roughly speaking, the maximum entropy criteria
enable us to find estimates of a vector z that provides minimum information or in
the absence of a prior knowledge assumes as small value as possible.

An extensive literature is available, which theoretically and also experimentally
justifies the use of objective functions f(z) (cf. eqns. (14), (15), (20a)-(20c)). In
image reconstruction, the application of these criteria has been proposed on a more
experimental basis. It is out of the scope of this paper to compare the various criteria
and associated objective functions. They all have some theoretical basis and are
related to the maximum likelihood estimation. Our main purpose is to develop new
“general-purpose” neural network architectures and associated algorithms for solving
optimization problems (11), (12) or (13). Since optimization problems (12) and (13)
are of quite a general nature and arise in many scientific problems, e.g. in optical image
resoration, signal reconstruction, high resolution spectrum estimation, beam forming,
extrapolation, control of discrete systems etc., we will carry our futher considerations
without any specific applications.

3. Neural Networks Models for Underdetermined Problems
3.1. General Unified Model-Standard Approach

'The mapping of a constrained optimization problem into an appropriate energy (cost)
function is the standard (commonly) applied strategy in the design of neural networks
(Cichocki and Unbehauen, 1994a; Hopfield, 1984; Kennedy and Chua, 1988; Marrian
and Peckerar, 1989; Tank and Hopfield, 1986). In other words, in order to formulate
optimization problem (12) or (13) in terms of artificial neural network, the key step
is to construct an appropriate energy (cost) function E(z) so that the lowest energy
state will correspond to the desired estimate (optimal solution) z*. The construction
of a suitable energy function enables us to transform the minimization problem into
a system of differential or difference equations on the basis of which we can design
an associated artificial neural network with appropriate connection weights (synaptic
strength) and input excitations.

For optimization problems (12) and (13) we can construct the general energy
function (on the basis of the penatly method) (Cichocki and Unbehauen, 1994a)

E(z) = vf(z) + i P(ri(z)) (21)

with 2 min < 2; < Zjmax V j, where v > 0,

is the scaling coefficient called penalty parameter. P(r;) are the penalty function
terms and r;j(z) are the residuals defined as
n
r,-(z):a?z—b,':Zaij:cj—b,-, i=1,2,...,m (22)

ji=1
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Exemplary penalty function terms for equality constraints (2b) can take, e.g. one of
the following forms (see Fig. 2):

P(r)= %r2 (quadratic) (23a)
P(r)= %|r|p, p>1 (pis the order of growth) (23b)
r for |r| <8
2
P(r)= , (23¢)
flr| =2 for || > 8
P(r) = % In cosh (%) . B>0 (23d)

1 1
P(r) = ;|r|p+ 57'2, p>1 eg. p:g

g (23¢)

For inequality constraints (13b) the penalty function terms are typically defined as

-1—1'2 if >0
P(r)={ 2 (24a)
0 otherwise
or
Kipey f‘—z|r|” if >0
P(r) = 2 p , (24b)
0 otherwise

with p>1, K, >0, Ky >0 (typically K1 = K = 1).

It should be emphasized here that instead of the penalty technique we can employ
the Lagrange multiplier or augmented Lagrange multiplier method (Cichocki and
Unbehauen, 1994a). However, in order to streamline and simplify our further consi-
derations we limit here our discussion to the energy function given by eqn. (21).

Using the standard gradient descent approach (Cichocki and Unbehauen, 1994a;
Tank and Hopfield, 1986) for the minimization of the energy function FE(z) the
problem can be mapped to a non-linear system of ordinary diferential equations, i.e.

dz;  0E(z)

o =M ry with >0 (25)
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Hence taking into account eqn. (21) we have

dz; =
o = ~# |veles) + > ai (i) (26)
i=1
where p; > 0 is the learning rate, v > 0,
o(z;) = 35(33) are the activation functions of the output neurons,
Zj
P(r; .. . .
U(r;) = 0 6(r ) are the activation functions of the input neurons,
L)
i=1,2,...,m j=12,...,n riz)=afz—-b = Zaijl'j —b;

ji=1

On the basis of the system of differential equations (26) we can design the associated
artificial neural network (ANN) with suitable connection weights (synaptic strenght),
activation functions and input excitations. The functional block diagram of the ANN
is depicted in Fig. 1. The network can be considered as a modification of the well-
known Tank-Hopfield model (Hopfield 1984; Kennedy and Chua, 1988; Tank and
Hopfield, 1986). The network consists of integrators, adders (summing amplifiers)
with associated connection weights and non-linear building blocks realizing the speci-
fied activation functions ¢(z;) and ¥(r;). The connection weights a;; can be fixed
or time-variable depending on the entries of the matrix A. In practice, they can be
realized, e.g. by using VLSI analog multipliers, tunable (voltage controlled) transcon-
ductors, programmable switched-capacitors or by high-resistivity polysilicon thin-film
resistors (Cichocki and Unbehauen, 1992; Unbehauen and Cichocki, 1989). However,
it is beyond the scope of this paper to discuss Very Large Scale Integration (VLSI)
implementations of the proposed neural networks, architectures, since the advance
in this field is rapid and many choices are available. We rather concentrate here on
developing universal and flexible network architectures so that the user can apply
them to his specific applications in practical environments. The network of Fig. 1
consists of two layers of processing units. The first layer called input layer or the
“sensor layer” (since it senses the actual variables z;) computes the actual residuals
ri(z) and actual errors (activation functions) ¥(r(z)). The desired variables z; are
computed in the second layer called the output layer, where the signals U(r;) are
combined integrated in time by analog integrators (Cichocki and Unbehauen, 1994a).

The activation functions ¥(r;) and ¢(z;) can take different forms. Exemplary
plots of the activation functions are shown in Fig. 2a—2d and Fig. 3. It should be noted
that simple box (bound) constraints & min < zj < &j max may be fulfilled by emplo-
ying limiting integrators with non-linear (hardware) limiters as their outputs. This
means that the input signal of an integrator is integrated but cannot drive the output
z; beyond the specified limits (cf. Fig. 1). In such an approach all box constraints
are “hard”, i.e. the constraints must never be violated; neither at the final solution
nor during the optimization process. An alternative approach is to employ “soft” box
constraints which may be violated somehow during the optimization process (Cichocki
and Unbehauen, 1994a).
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Fig. 1. A neural network architecture for solving the optimization problem (12a)—(12c).

It is interesting to note that the general architecture shown in Fig. 1 can be somewhat
simplified for some special cases. Let us consider optimization problem (12) for which

we can construct a specific energy function with a quadratic penatly term:

B(e) = v 1(2) + 54z = b = f(2) + 5 3 rE(a)
i=1

with v >0, ri(z) = afz - b;.

Minimizing energy function (17) leads to the system of differential equations

dz; i

o = H |vele) + 3 ani(z)
i=1

where g > 0.

Taking into account that

n

ri(z) =alz —b; = Zﬂijl’j —b;

j=1
the system of differential equations can be written as

dz; "
5 = H el + I;ijxk —0;

where wi; = Y v aixaij, 05 =Y ;v aijbi, or in compact form

(27)

(28)

(29)

(30a)
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Fig. 2. Plots of examplary penatly functions P(r) and the corresponding
activation functions W(r) (see eqn. (23)).

T=—pu [1/ o(z) + AT Az| + pATb = —p [u o(z) + Wm} + pb

where W := ATA and 6 := ATb.

(30b)

A block diagram illustrating the implementation of this system of differential equa-
tions (302)—-(30b) is shown in Fig. 4. This is a Hopfield-type analog neural network
with only one layer of processing units (Cichocki and Unbehauen, 1994a).
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Fig. 4. A simplified neural network for optimization problem (12a)-(12c) (see
equs. (30a)-(30b)). Note that the network requires precomputed values
of the biases §; and synaptic weights w;;.
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The approach described above is very simple and straightforward, however, some
problems may arise in practical implementations of the system of differential equa-
tions, especially, if the matrix A is very large. Firstly, the VLSI implementation of
the neural network architectures shown in Fig. 1 and 4 is a difficult problem because
of the complex connectivity between a large number of processing units. The wiring of
the large number of processing units on a two-dimensional surface of silicon wafer re-
presents a major bottleneck for VLSI implementations. Secondly, the neural networks
proposed in Fig. 1 and Fig. 4 require an extremely large number of programmable
weights while the network in Fig. 4 needs mn weights (which can be realized for
example as analog four quadrant multipliers). Thirdly, analog VLSI neural circuits
are strongly influenced by device mismatches from the fabrication process and a va-
riety of parasitic fabrication processes and consequently a variety of parasitic effects
may degrade the final performance. Motivated by the desire to maximally simplify
the neural network architecture and alleviate the problems mentioned above, in the
next section we will propose a new approach which enables us to design a considerably
simplified neural network.

3.2. Simplified Model — Novel Approach

In this section we will limit our considerations to the following optimization problem:

minimize f(z)

(31)

subject to Az =1b
and
Zimin < Zj < Zjmax

Note that any inequality constraint a7z < b; can be converted to the standard

equality form by adding a slack variable, i.e.
a?af: +Zngi=b; Vi
with zp4; >0

To solve optimization problem (31) by an appropriate ANN the key step is to con-
struct a suitable computational energy function E(z). For this purpose we can define
instantaneous residuum (or error) function

F(x(t)) =sT(Az —b) = isi (t)r; (x(t)) (32)

where ri(z) = Y07, ajjz; —b; and s := [s1(2), 52(2), . . .,sm(t)]T is in general the
set of zero-mean mutually independent (or uncorrelated) identically distributed (i.i.d.)
external excitation signals (e.g. uncorrelated high frequency or pseudorandom deter-
ministic signals). Note that the actual value of the error (residuum) function is equal
to zero at any time instant (or during any time period) if and only if the constraint
Az = b is exactly satisfied.
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The instantaneous error function F(z(t)) can be developed as

7(a()) = i—n:si(t)r,- (=) = is;(t) (zn:'a;j:cj(t) - bi>

j=1

-y (.Z“” s (t)) ()~ Y b)) = 3 3,0 - H)

(33)

where @;(t) 1= 3O, aijsi(t), b(t) = o™ bisi(t).

For the so-formulated residuum function we can construct the instantaneous estimate
of the computational energy (cost) function at the time ¢ as

E(a(t)) = v f(z) + P F(=®)] (34)

where v >0 and P(¥) is the penalty function defined by one of the equations (23).

Minimization of the energy function by the gradient descent method leads to the
system of differential equations

T =-ulre(n0) 40U [FG0)]] =12n @

where u > 0, V> 0, go(.z-j) = %ﬁjﬂl, \Il[?(z(t))J = 61;# and
Hz(t)) = 7o, @ ()z;(t) — b(t).

In the special case of P(¥) = —21—'F2 the system of differential equations simplifies to

diliagt(t) =—u [vgo(mj(t)) +5](t)?[?(m(t))]j| , J=L12,...,n (36)

The system of differential equations (35) can be considered as the basic adaptive
learning algorithm of a single artificial neuron as shown in Fig. 5 and 6a. The net-
work consists of analog integrators, summers, activation functions and analog four
quadrant multipliers (see Figs. 6a,b). The network is driven by the incoming data
a;; and b; multiplied (modulated) by high frequency zero-mean mutually uncorre-
lated source signals s;(t). The artificial neuron shown in Fig. 6a with an on chip
adaptive learning algorithm allows processing of the information fully simultaneously.
If only one signal generator (or a pseudo-random generator) is available in order to

generate m excitation signals s;(t) a chain of unit delays can be employed as shown
in Fig. 6b.
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Fig. 5. Functional block diagram of a single artificial neuron with adaptive
synaptic weights z; (7 =1,2,...,n) and with preprocessed network.

In order to further simplify the neural network implementation we have found
that rather expensive analog multipliers can be replaced by the simple CMOS swit-
ches S; to S, as shown in Fig. 7a. Various different strategies for controlling the
switches can be chosen. In the simplest strategy the switches can be controlled by a
multiphase clock, i.e. the switches will be closed and opened cyclically. In this case
the network processes the set of equations (constraints) in a cyclical order, i.e. in each
clock only one constraint is active. On the other hand, in order to perform a fully
simultaneous processing of all the constraints afz —b; = 0 (i = 1,2,...,m), the
switches S; to S, should be controlled by a digital generator producing multiple
pseudo-random, uncorrelated bit streams. As such a generator, for example, a simple
feedback shift register can be used which is able to generate uncorrelated multiple
mutually shifted pseudorandom bit streams with very good noise-like properties (see
Fig. 7b) (Alspector et al., 1991).
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Fig. 6. a) Structure of artificial neuron with continuous-time learning
algorithm (36), ‘
b) Exemplary implementation of the system for generating m
pseudorandom noise sources s;(t).

4. Simplified Neural Network Models for TLS Problem

For the total least squares problem formulated in Section 2 we can construct the
instantaneous energy function

e’(t)

Tz 41 (37)

1
Erps(x) = 3
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Fig. 7. a) Simplified implementation of the artificial neuron of Fig. 6a,
b) Exemplary realization of a digital circuit generating multiple,
mutually uncorreleted, pseudo-random bit streams.

where

¢ = [zl(t),xz(t),...,zn(t)]T
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and

Applying the standard gradient descent algorithm we obtain the set of differential
equations

ﬁ 6ETLS (.’E)

a; () (zTz —e(t)x;
i = —u(0 ) - e BN OB0

(zTz + 1)2

where p(t) > 0. The above system of differential equations, after linearization, can
be simplified as

20— —u@e a0 +50200)] 9

The above set of differential equations constitutes a basic adaptive parallel learning
algorithm for solving the TLS problem for overdetermined linear systems Az = b.

For an ill-conditioned problem the instataneous estimate of the energy function
can be formulated as

1 e%(t)
22Tz +1

E(z,v) = + %”x“j (40)

where v > 0 is the standard regularization parameter. In this case the learning
algorithm (39) is modified as

dffigt) _ —,u(t){e(t) [E(t) +?;(t):c(t)] + v x(t)} (41)

with u(t) > 0.

An analog (continuous-time) implementation of algorithm (39) is illustrated in
Fig. 8. Note that algorithms (39) and (42) can be considered as a generalization
(extension) of the “standard” LS algorithm. Clearly, algorithms (39), (41) can be
converted to discrete-time iterative algorithms by applying the Euler rule (Cichocki
and Unbehauen, 1994a).



124 A. Cichocki, T. Kaczorek and J. Mazurek

u(t)o—r

Fig. 8. Architecture of single artificial neuron with continuous-time learning
algorithm (39) for the standard LS problem (8 = 0), for the TLS
problem (# =1) and the DLS problem (8 > 1).

Motivated by the desire to increase the maximal convergence speed of the itera-
tive algorithms and inspired by the “averaging concept” proposed recently by Polyak
for a recursive formula of stochastic approximation (Polyak, 1990), the following itera-
tive LS/TLS learning algorithm has been proposed (Cichocki and Unbehauen, 1994a;
1994b):

B+ = 56— Te(k) [a(k) + Gb(k)7 )] (42a)
1
(B+1) — p(B) 4 _ = (z(k+1) _ 4(k)
z T +k+1(x T ) (42b)
where 79 > 0, % <A< 1, a(k) = [ai(k),as,. ..,En(lc)]T, k=0, 1,1..,; and =0

for the LS problem or § =1 for the TLS problem. The proposed learning algorithm
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combines two processes. The first computing process is a standard stochastic recur-
sive algorithm described by the set of difference equations (32a) with a learning rate

k) = Zi, (% <A< 1). The second process is an averaging process described

by the set of difference equations (42b) with a learning rate n{*) = 1/(k + 1). The
implementation of the algorithm is illustrated in Fig. 9. The switches are control-
led in general by a multiphase pseudo-random generator. The important feature of
the learning algorithm (42a)-(42b) is that in contrast to the standard approach two
discrete time sequences are constructed where {z(¥)} is the arithmetic average of

{E(k)}. Another essential feature of the algorithm is that it employs two learning
rates: %) = nok=* and n®*) = (k + 1)1 where % < A< 1 Notethat A =1 is

excluded from the above algorithm and that the learning rate 7(¥) decreases more
slowly than (*) = 1/(k+1). It should be noted that one may use only the set of eqns.
(42a) but at the expense of a slower convergence speed. The use of the second set of
equations (cf. eqn. (42b)) improves the convergence speed, i.e. it renders it possible
to get the optimal values z* considerably faster.

m
S, 726
o—/
b(k)
__?“ v¢
°-—/ Y 5= {1 for TLS, =1
72% °=10 for LS
an°—"2 Ea‘(k) . Re(k)
A3y o—v" s =
o e A
aml°_"'l/
(k+1)
m
s, 7EQin
Qyp O—
S, $42a, (k)
%zn oo o) ?
N J/ x Tn
aﬂm
-1
. + i + z-,sk_’_l) I,(‘ki'l)
DTRE
~)_To
=X 1
CY
mTERFLT

Optional Averaging

Fig. 9. Functional block diagram illustrating realization of the discrete time
(iterative) learning algorithm (42a} (42b) (For fully simultaneosly ope-
rating switches y = 0.5, for cylically operating switches v = 0).
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In practice, the averaging process will start not at ¥ = 0 but from k > kg
for which Z(*) enters the neighbourhood of the desired optimal solution z*, i.e. the
algorithm can take the following special form:

F(R+1) _ (k) _ n(a??f(k) — b;)(a; + Bb;7P))

Ta (43a)
g*+) = 3®)  for k=0,1,2,..., ko, with 0<n<?2

and »
F+D) = 30 _ Z_g(a?a;(k) — b;)(a; + Bb;EH)) (43b)

gF+1) = (k) _ El—k(z(k“) —2®) for k> ko, no >0, y=0 (43c)
— ko

A sequence of indices ¢ = {'i(k)};:ozo according to which the rows of the matrix A and
the elements of the vector b are taken up is called a control strategy. Clearly, various
different strategies for controlling the switches {S,-} can be chosen (cf. Fig. 7). In the
simplest control strategy we have i = k (mod m) + 1; i.e. the switches are closed and
opened cyclically. In this case the switches can be controlled by a simple multiphase
clock generator. The important problem of choosing an optimal control strategy is
out of the scope of this paper and is left for future investigations.

The proposed algorithm (43) has the following features:
i) No operations are performed on a linear system Az = b as a whole,
ii) Each iterative step requires the access to only one row of the matrix' A and b,

iii) The fact that the algorithm needs only one row at a single iterative step ma-
kes this scheme an especially useful tool for solving large unstructured systems
according to the LS and/or TLS criterion,

iv) As shown by some computer experiments the algorithm allows us to increase the
rate of convergence in comparison to the “standard” iterative algorithm without
averaging.

Algorithm (43) can be considered as an extension (generalization) of the
Kaczmarz algorithm.

5. Further Extensions and Generalizations
of Neural Network Models

It 1s interesting that the neural network models shown in Figs. 8-9 can be employed
not only to solve LS or TLS problems but they can easily be modified and/or extended
to related problems: e.g. linear and quadratic programming, iteratively reweighted
LS problems (Cichocki and Unbehauen, 1992), minimum norm (1 < p < oo) and/or
maximum entropy problems (Censor et al., 1989).

Furthermore, by changing the value of the parameter § (cf. Figs. 8,9) more or
less emphasis can be given to errors of the matrix A with respect to errors of the
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vector b. In an extreme case, for large § (say B = 100) it can be assumed that the
vector b 1s almost free of error and the error lies in the data matrix A only. Such a
case is referred to as the so called DLS (data least squares) problem (since the error
occurs in A but not in b) (DeGroat and Dowling, 1993).

The DLS problem can be formulated as an optimization problem of finding an
optimal vector z* = zj);, which satisfies the overdetermined system of linear equa-
tions

(A+AA)zpg =0 (44)

under the condition that the Frobenius norm of the error matrix ||AA|| P 1S minimal.

It can easily be demonstrated that the neural networks of Figs. 8 and 9 solve approxi-
mately the DLS problem for a large § (typically g =50 to 100, see Example 3). In
other words, the DLS problem can be solved by simulating the system of differential
equations

) - uwre) [a0 + B50)2(0) (45)

with p(t) >0, 8> 1.
For complex-valued elements (signals) the algorithm can further be generalized as

40 — u(eyet) [ac(v) + ABe(0(0) (45b)

where the superscript ¢ denotes the complex-conjugate operation, and 8 = 0 for
the LS-problem, # = 1 for the TLS problem or > 1 for the DLS problem. Very
recently, it has been shown that the DLS estimation is more appropriate than TLS and
ordinary LS for certain types of signal processing problems (DeGroat and Dowling,
1993).

6. Computer Simulation Results

To check to correctness and performance of the proposed algorithms and associated
neural network structures we have simulated them extensively on a computer. The
networks shown in Figs. 6-9, 1 have been investigated for many different numerical
examples and a good agreement with the theoretical considerations has been obtained.
Due to limited space in this paper we shall present only some illustrative examples.

Example 1. Consider the problem of finding the minimal 2-norm solution of the
underdetermined system of linear equations (Lillo et al., 1993)

Az =10
with

A=(5 1 -3 1 2 0}, b=
1 -2 1 -5 -1 4 —4



128 A. Cichocki, T. Kaczorek and J. Mazurek

Clearly the above set of equations has infinitly many solutions. However, there is a
unique minimum norm solution which we want to find. On the basis of the general
architectures shown in Fig. 6 corresponding continuous-time (analog) circuits have
been designed and simulated on a computer. For the network of Fig. 6 as excitation
signals s;(t) (i = 1,2,3) pseudo-random, independent signals over the range [—1,1]
were used.

For the network of Fig. 7 the switches were controlled by a three phase clock with
clock frequency f, = 100 MHz. Exemplary computer simulation results are shown in
Fig. 10. The final solution (equilibrium point) was

T
z* = 0.0882, 0.1083, 0.2733, 0.5047, 0.3828, —0.3097

which is in excellent agreement with the exact minimum 2-norm solution obtained
by using MATLAB. Note that the network of Fig. 6 reaches the solution in a time
less than 100 nanoseconds. The implementation of the network architecture shown in
Fig. 8 leads to the same results.

p.6609988
[
8.5806880
Zz5
9.488680 [
z
9.3669908 [
9.2680680
[
8.1888828
\_I1
8.8608
-9, 1860660
-9.2688680 1
. z
-8.3009980 YA
-9.4880808 e

0.8888 Tinme 566 .888E-89

Fig. 10. Computer simulated trajectories z;(¢) and the energy function E(%)
for Example 1.

Example 2. Find the pseudodoinverse of the singular matrix

A=

~N A
co Tt o
© o w
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In order to find the pseudoinverse matrix B = A%, we need to make the observation
vector b successively [1,0,0]7, [0, 1,0]7 and [0,0, 1]7. We have repeated the
computation three times for each observation vector b to find three columns of the
pseudoinverted matrix B. Fig. 11 shows the exemplary computer simulated state
trajectories b;;(t) (i,7 = 1,2,3) by employing the network architecture shown in
Fig. 8. The network was able to find
—0.6387 —0.1663  0.3055
B=A%Y = -0.0554 —0.0001 0.0552

0.5277  0.1666 —0.1942
in the total time less thank 8 us. The pseudoinverse matrix found by MATLAB reads
—0.6389 —0.1667  0.3056

Afiatrap = | —0.0556 —0.0000  0.0556
0.5278  0.1667 —0.1944

1.8608
8.8080868
8.6860800 /~ an
B.4688088 b
9.2008800 _
b2z bz
p.8200
82 a ¥521 /_612
-9.260808 =
Kb:s:s
-9.4600009
-8.6028688 [bu
-9.8600808
’1.8688 A 'Y A N A A i A A )
8.8888 Tine 2.580E-86

Fig. 11. Computer simulated trajectories b;;(t) for Example 2.

Example 3. Let us consider the following linear parameter estimation problem
described by the set of linear equations (Cichocki and Unbehauen, 1994b)

(11 1
1

ML

2 2

2

W S S

2
3
4
5
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It is required to find an optimal solution according to the LS, TLS and DLS criterion.

To solve the problem we have employed neural network architectures depicted
in Figs. 8 and 9. Exemplary computer simulated results are shown in Fig. 12a and
Fig. 12b. It has been found that the analog (fully simultaneous) network of Fig. 8
shows better perfomance (higheconvergence speed) in comparison to the discrete-time
(one equation per iterative step) network of Fig. 9. For example the network of Fig. 8
was able to find, in a time less than 400 nanoseconds, the following parameters

as = [21,23)7 = [0.706, 0.298]", for B=0
ohps = [o], 23] = [0.8531,0.2591]7,  for B=1

ohs = [o1,23]7 = [1.1132,0.1898]7,  for B =150

which are in good agreement with the exact results obtained by using MATLAB:
* T
zismarLas = [0.7, 0.3]

thysmaToap = 08544, 0.2587]7

zhrsmarLas = [1-1200, 0.1867]"

Example 4. In order to test the performance of the proposed neural network for a
large number of variables we have simulated it for a tomographic image reconstruc-
tion problem from projection (Censor et al., 1989; Frieden and Zoltani, 1985; Kak and
Slaney, 1987; Lu et al., 1992; Madych, 1991; Wang and Lu, 1992). In the computer
simulation experiments a modification of the Shepp and Logan head phantom has
been used as an original image. The Shepp and Logan phantom is often used for
testing different numerical algorithms for image reconstruction because it approxima-
tely represents a cross-section of the human head which is known to place the greatest
demands on a tomographic system with respect to its accuracy (Censor et al., 1989;
Frieden and Zoltani, 1985; Lu et al., 1992; Madych, 1991; Wang and Lu, 1992).

Consider a 2-D discrete model for the nxn cross-section image. Let z;
(4 =1,2,...,n) denote the density (gray) level of the j-th pixel and b; =} 7_, a;;z;
(¢t =1,2,...,m) represent the ¢-th ray and j-th pixel. Thus the reconstruction of
images from projection can be formulated as a problem of solving a linear system of
equations: Az = b, where A € IR™*™ is the projection matrix, b € IR™ is the pro-
jection data (measurement) vector and z € IR™ is the density, while n is the number
of pixels and m is the number of measurements. Thus the goal is to find or estimate
a density vector z assuming that the projection matrix A and data vector b are
known. Using the Shepp and Logan head phantom model, we analytically determined
the projection matrix A € IR™*™ for the test image with 64 rays in each of the 56
projections; and the image is reconstructed on a 64 x 64 sampling lattice. Note that
the involved system of linear equations is underdetermined, i.e. n = 4096 variables
(pixels) and m = 3584 equations have been used. k
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Fig. 12. Exemplary simulated trajectories for Example 3
a) for the LS problem (8 = 0),
b) for the TLS problem (8 =1).
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The image reconstruction has been simulated by using the neural network archi-
tecture shown in Fig. 7. The parameters of the network have been chosen as follows:
p(t) = 108 = const, v = 0.02 all switches were controlled by a multiphase pseudo-
random binary generator with a basic clock frequency f, = 100 MHz = 108 Hz. The
exemplary images reconstructed from the same projection data, starting from zero
initial conditions at the time 1pus, 2pus, 5us and 10 ps are shown in Figs. 13-15.
The image quality has been evaluated by using the normalized root mean squared
(NRMS) error defined as

n 2
> (@ —z5)*

e iz
> (zj — )2
j=1

where z} is the reconstructed image at the j-th pixel, z; is the original image, 7 is
the mean of the original image and = is the total number of pixels. In our computer
experiments we obtain e.g. the NRMS error ¢ = 0.0547 for 1-norm criterium after
a time less that 10 us, which means that the reconstructed image was a quite good
replica of the original image. It is also interesting to note that the computation time
(i.e. the settling time in our experiments less than 10 mircoseconds) was principally
not influenced by the size of the problem (in contrast to the standard digital compu-
ters) but rather depends on the values of the parameters; the learning rate u(t), the

regularization parameter v(t) and the clock frequency f..

7. Conclusions

New, very simple and low-cost analog neural networks for solving least squares and
total least squares problems have been proposed. In fact, such problems can be solved
by using only one single highly simplified artificial neuron with an on chip learning
capability. The proposed networks are able to estimate the unknown parameters
in real time, i.e. in a time of the order of hundreds or thousands of nanoseconds.
The network architectures are suitable for currently available VLSI implementations.
The potential usefulness of the proposed networks may be atractive for real time
and/or high throughput rate applications, e.g. in robotics, computed tomography
and automatic control when the entries of the observation vector and the model
matrix are changing in time and it is necessary to continuously track or update the
solutions. An interesting and important feature of the proposed algorithmic scheme
is its universality and flexibility. It allows either the processing of all equations fully
simultaneously in time (cf. Figs. 5,6 and Fig. 8) or processing of groups of equations
(i.e. blocks) in every iterative step (cf. Figs. 7,9). These blocks need not be fixed but
may rather vary dynamically throughout the iterations. In a special case it allows the
processing only of one equation per block, i.e. in each iterative step only one single
equation can be processed. We believe that the fully simultaneous algorithmic scheme
opens new, and till now not fully explored, vistas in many areas in which the problem
arises to solve large systems of linear equations in real time.
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Head Phantom 64 x 64;

<] 10 20 30 40 50 60
Original Image

0 10 20 30 40 S0 60
t=2>5us

0 10 20 30 40 50 60
t =10 us

Fig. 13. Original and reconstructed 64 x 64 head-phantom starting with zero initial
conditions at the time 0, 1 us, 2 us, 5 us and 10 ps, using 1-norm criterion.
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
Original Image t=0

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t=1us t=2us

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t=35us . t=10us

Fig. 14. Original and reconstructed head-phantom starting from non-zero initial conditions
at the time 0, 1 pus, 2 s, 5 us and 10 us, using maximum entropy criterion.
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Fig. 15. Reconstructed head-phantom images 64 x 64 starting from zero initial
conditions at the time 1 ps, 5 us and 10 ps, using:

a) the minimum 1-norm cntrion (e; = 0.0476),
b) the minimum 2-norm critrion

€2 = 0.0635),

c) the maximum Shanon entropy critrion (emE = 0.0297).
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