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OPERATIONAL RATE DISTORTION THEORY

ILan SADEH*

The paper treats data compression from the viewpoint of information theory
where a certain error probability is tolerable. We obtain bounds for the minimal
rate given an error probability for blockcoding of general stationary ergodic
sources. An application of the theory of large deviations provides numerical
methods to compute for memoryless sources, the minimal compression rate given
a tolerable error probability. Interesting connections between Cramer’s functions
and Shannon’s theory for lossy coding are found.

1. Introduction

We study the problem of source coding with a fidelity criterion. The reader interested
in an up-to-date and comprehensive survey of the subject can profitably consult the
paper of Kieffer (1993). We consider the coding problem as a deterministic partition
problem and obtain coding theorems for the general ergodic and stationary sources.

The source produces a random sequence {U;} and the decoder presents a random
sequence {Vi} to the user. In general, the finite alphabet V can differ from the
source alphabet U. Given u € U and v € V a distortion-measure is any real
positive function d : [U x V] — R*. The function d measures the distortion (cost,
penalty, loss) suffered each time the source produces letters u € U and the user is
presented with letters v € V. Let pi(4;%) — denote the distortion for a block- the
average of the per letter distortions for the letters that comprise the block.

l

p(@59) = 7 3 d(a; ) ®

i=1

Let D be a given tolerable level of distortion relative to the memoryless distortion
measure d(u,v). Shannon’s approach discusses the problem of D as a bound on the
expected value of p;(%; 7). We will consider D as a bound on the average distortion.
Both approaches converge as [ — oco. The existence of blockcodes subject to a
fidelity criterion has been proved under various assumptions on the class of sources,
the fidelity criterion and the type of convergence of the rates to the rate distortion
function R(D). The problem was studied by Berger (1971), Ziv (1972), Neuhoff
(1975), Kieffer (1978), Mackenthum and Pursley (1978), Ornstein and Shields (1990)
and others.
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Our approach to the problem is different in the sense that we consider it mainly
as a deterministic partition problem on a bipartite graph, unlike most of the known
results which are based on random coding arguments.

We begin with the general ergodic stationary case. The basic idea is to study the
subject by carving up the source output space into a high probability region, which can
be partitioned so that all partition cells are contained in D-Balls of a radius D and the
center of the D Ballis associated with a codeword (with zero distance) included in the
Codebook. The low probability region, having probability P., contains the remaining
vectors. The main results are obtained by using the partition and covering procedure.
We present the tradeoffs among the the compression rate, the error probability and
block length ! for a given D. Our results, also apply, virtually without change in
proof, to random fields.

Similar ideas have been used in practice by Eyuboglu and Forney (1993) to design
lattice vector quantizers. A subset of a lattice covers the high probability region
wherein every cell is inside a ball and a low probability region outside the lattice has
no bound on distortion. By constraining P, and then picking a good lattice, they
have minimized the granular noise.

Next, a terse review of the Theory of Large Deviations, in particular the the
asymptotic theory for Markov jump processes, described in (Knessl et al., 1985), is
given and followed by two examples in i.i.d. sources, the information and the empirical
distribution. Next we apply the results of large deviations associated to these random
vectors to treat the old problem of data compression for i.1.d. sources.

The problem for i.i.d. sources was first introduced by Shannon (1948). He re-
turned to the problem in 1959 when he introduced the study of performance measu-
res for data compression and provided the first source compression coding theorems
(Shannon C.E. (1959). Strengthened versions of the coding theorems were proved by
Berger (1971), Omura (1973), Ziv (1972), Blahut (1972); (1974) and others. Arimoto
(1973), Dueck and Korner (1979) and Marton (1974) proved the exponential decay of
the error probability for memoryless sources. We attempt to solve a question which
has been open since Shannon’s days. The issue is what is the expression of the mini-
mal compression rate given a tolerable error probability. The solution is described by
numerical methods, based on linear programming. The simplex structure plays a ma-
jor part in the results. Interesting connections are found between Cramer’s functions
and Shannon theory.

The paper is organized as follows. Section 2 presents definitions and source
compression coding theorems for the general ergodic sources. All are based on the
partition and covering concept on bipartite graphs. Section 3 presents the general
results of the asymptotic theory of large deviations, while section 4 presents the
application to the empirical distribution and the average information of a process.
Section 5 presents the results concerning data compression of i.i.d. (and Markovian)
sources where all aspects of the subject are studied for finite blocklength. We treat
in detail the issue of the best compression rate given a tolerable error probability. In
section 6 we summarize the results and main contributions and outline future research
trends in the area. The appendix presents in detail the asymptotic theory of large
deviations.
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2. The General Ergodic Stationary Case

The source produces a stationary ergodic sequence {Ux} and the decoder presents a
random sequence {Vjx} to the user. In general, the finite alphabet V' can differ from
the source alphabet U. The function d measures the distortion (cost, penalty, loss)
suffered each time the source produces letters u € U and the user is presented with
letters v € V.. Let p;(@;7) — denote the distortion for a block- the average of the per
letter distortions for the letters that comprise the block.

!
p(7) = 7 (@) 2)
i=1
Let D be a given tolerable level of expected distortion relative to the memoryless
distortion measure d(u,v). The rate distortion function R(D) is given by the mini-
mal mutual information per source symbol subject to the constraint on the average
distortion. It is known (Berger, 1971) that given a source u

lim inf 1IA(ug-l, v ) = R(D) (3)
1—"00 ’Q‘ [ Q .

where the infimum with respect to @ is taken over all the conditional probability
measures on U' x V' satisfying

Eapz(ﬂ,ﬁ) <D (4)

Shannon-Berger’s theorem shows (Berger, 1971) that for stationary and ergodic so-
urces, R(D) is the lowest attainable rate by any block code with average distortion
not exceeding D and it always exists. Gray et al. (1975) used process definitions to
show that the minimization of the mutual information between input and output sub-
ject to an expected distortion constraint can be performed over stationary or ergodic
processes.

The function R(D) has been intensively studied, although much needs to be
done in terms of obtaining explicit formulas for rate-distortion-function or, lacking
this, obtaining iterative algorithms for computation of rate-distortion-functions. Some
of its properties are:

1. It is convex U shape.
2. R'(D) is continuous for 0 < D < Dyqg.
3. RI(D) — —o0 as D — 0.

4. R'(D) is a monotonic non-decreasing function.

The value of R(D) is the limit effective rate at which the source produces infor-
mation subject to the requirement that the source output must be reproduced with
an expected average distortion not exceeding the value D. However, it is always a
limit value which is true only as ! tends to infinity. In real life, we are interested in
the rate convergence and the dependence on the blocklength I. Moreover, due to the
nature of the problem, there are almost always sourcewords that cannot be encoded
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to codewords in the Codebook. Hence, an error event occurs. We discuss the mutual
dependence of compression ratio and the error probability.

The following definitions and theorems establish the relations in the general sta-
tionary ergodic case. We relate to the problem as a partition and covering on a
bipartite graph where the sourcewords are located on one side of the graph and the
codewords on the other side of the graph. A partition on the sourcewords space is
performed subject to the fidelity criterion.

2.1. The Deterministic Partition Approach

The set of all possible codewords is partitioned into two disjoint subsets: Codebook
and its complement set. The Codebook contains all the codewords in the code.
Each sourceword @ of length [ is mapped onto exactly one of the codewords in the
Codebook provided the distortion of the block is not larger than ID. Otherwise, the
sourceword 1s included in the Error set and a coding failure is said to have occurred.

First we apply a deterministic partition to the sourcewords space and to the
codewords. The partition algorithm assumes a fixed blocklength [ and for a source
with known probability structure p = p'...p' defined on U'. First we define a
D-Ball covering on the sourcewords space.

Definition 1. A D-Ball covering of a codeword @, denoted T(v), is a set of all
sourcewords such that

1) = {aln(s, < 1} )

That is, we define spheres around all the possible codewords ©. But these spheres
do not define probabilities on the codewords. Each sourceword should be mapped to
exactly one codeword. Thus, we denote the set of the sourcewords that map to the
codeword ¥ after a partition, as A(7). We construct a partition such that for all
m < |V]' the subsets A(9™) form a full partition of the set of all sourcewords.
The probability of each codeword # is defined as the probability of the set A(%).
Obviously, the l-order entropy of the codewords, denoted by H,(I) for all [, is also
defined by the partition since the partition induces probabilities on the codewords,
Pr(97) = Pr(A(%#)) for all j. The Codebook has the following properties as a sorted
list of codewords,

APYNAG™) =0, Vji#m
Pr(#) = Pr (A(#)) > Pr(#™) = Pr (A(5™)), Vji<m
and consequently the induced I-order entropy is,

Ho(l) = —%Elog Pr(5).

Definition 2. An acceptable partition of blocklength [ is a partition on the space
of ! length sourcewords such that for all o, the associated subset A(¥) satisfies
A(9) C T(v) and that limy_ Hy(l) exists.
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As [ tends to infinity we have to discuss a pair random process rather than finite
words. If one has a pair random process {U,,V,}, then it will be of interest to find
conditions under which there is a limiting per symbol distortion in the sense that

.1
poo(u)v) = 11_1.13,10 Tpl(ulavl)

exists. We require here that the distortion measure is single letter fidelity. It is shown
by Gray (1990) that if the pair process is Asymptotically Mean Stationary (AMS)
then the limiting distortion will exist and it is invariant from the ergodic theorem.
We will restrict ourselves to stationary pair random process {U,, V,}.

By definition the induced entropy H,(!) for an acceptable partition algorithm
tends to be the specific entropy rate H, as obtained after a sequence of such partitions
for blocklength [ that tends to infinity. Actually, the partition is being performed on a
space of realizations of stationary and ergodic process u that are mapped to stationary
and ergodic processes v defined on a finite-valued alphabet V. However, we stress
that we mean a partition which determines a deterministic mapping from the source
process to the output process, as an extension of finite blocklength blockcoding, and
it should be distinguished from an infinite sequence of coded blocks of finite length. A
sequence of [ length coded blocks is not stationary and clearly, its n order entropy,
if the source has memory, does not converge to the entropy rate in the general case.
The induced l-order entropy by using process definitions is obtained in the limit as,

lim H,(1) = H, (6)
Definition 3. The set D — Ball(@) is defined as,

D — Ball(a) = {a)p,(a, 7) < D} (7

Definition 4. The operational rate distortion function denoted by ﬁz(D, P.), is the
minimal rate needed to cover with D-Balls a subset of sourcewords of probability
1-P,.

Actually, Ornstein and Shields (1990) defined the limit operational rate distortion
function as,

R(D) = Jim lim R,(D, P) (8)

That is, the best one can do on the average with block codes if an arbitrarily small
part of the sourcewords space is removed.

Ornstein and Shields (1990) presented a blockcoding algorithm and proved almost
sure convergence for Hamming distance. That is almost sure R(D) = R(D). Their
proof is true in principle for other distortion measure as well. Next, we show the
extension of the celebrated Shannon McMillan Breiman Theorem (Breiman, 1957)
to the lossy compression case. An error occurs in the event that a D-Ball around a
sourceword % does not contain any word from the selected Codebook.
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The following theorem generalizes that theorem (Breiman, 1957) by using the
acceptable partition concept and the covering definition. Loosely, the theorems say
that almost all the codewords sequences in the Codebook are nearly equiprobable and
concentrated around the induced l-order entropy H,(!).

Block-Coding Theorem. For any acceptable partition of blocklength | and given
any 6 > 0, the set of all possible sourcewords of blocklength | produced by the source
can be partitioned into two sets, Error and Error®, for which the following state-
ments hold:

i) Assuming a stationary system, the probability of a sourceword belonging to
Error, vanishes as | tends to infinity.

1) If a sourceword @ is in Error®, then its associated codeword % is in the Codebook
and its probability of occurrence is more than e='H+()+6)

iii) The number of codewords in the Codebook is at most e/(H+(N+8),

Proof. The idea of the proof is based on optimal selection of codewords for the Code-
book. Optimality means minimum error probability for a given acceptable partition.
Once the acceptable partition on the sourcewords space is determined and perfor-
med, the best selection of the Codebook in the sense of minimal error probability,
is to take for the Codebook all the most probable codewords as produced by the
acceptable partition algorithm.

The partition algorithm induces the probabilities that are assigned to each code-
word. Recall that

_% Elog Pr(s) = H,(l) (9)

We define a certain threshold probability p;, and define the Codebook Set by,
£ = {olPr(o) 2 i S

Its cardinality is denoted I Iy | We choose p; such that p, = e~ HH(N+8)  where
H, (1) is the I order entropy of the process v as determined by the ! length partition
algorithm. Thus, the requirements of Statement 2 of the theorem are satisfied and
the Codebook set is defined by,

(D, 6) = {6] Pr(9) > exp (—I(Hv(l) + 6))} (11)

Clearly, | Iy(8, D) | e="Hv(D+8) < 1. Thus Statement 3 of the theorem holds.

An error occurs in the event that a D—Ball around a sourceword % does not
contain any word from the selected codebook. Thus, the Error set is obtained by
using (10),

E =qu v
rror(§, D) {ul ﬁ:p(qlq%((D Pr(9) < Pt} (12)

1,7)<
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after substituting for p; and using (11) we have,

Error(§,D) = {ﬁl l_“p(rg{iﬁx;s]) ——% log Pr(v) — Hy(1) > 6} (13)
The probability of the codewords is induced by the partition on the sourcewords space.

Thus, the error probability is equal to the probability of the compliment set of the
C' codebook. That is,

Pr {Ermr(a, D)} = Pr {a; - —}log Pr(v) — Hy(l) > 5} (14)

The system preserves stationarity. Hence, as we increase the blocklength ! to infinity,
we map each source process to an ergodic and stationary process. For a given source
process u, the output v is a finite-valued stationary ergodic process with entropy rate
H,. We use the Breiman refinement of the Shannon-McMillan theorem (Breiman,
1957) and its modern modifications of Barron (1985), Orey (1985), Algoet and Cover
(1988), which assert that,

. 1

Pr{ lim —= log Pr(%) = Hu} =1 (15)
l—o00 l

The convergence almost surely to the entropy rate implies that the Error set (12) has

a measure that tends to zero for all positive § as | — co. This completes the proof

of Statement 1. |

Actually, the theorem can be generalized to AMS systems and additive fidelity
criteria. A large majority of information theory is devoted to additive distortion
measures and this bias is reflected in this work. Such generalization uses the theory
of Gray (1990) and the strong Asymptotic Equipartition Property (AEP) that was
recently proved by Algoet and Cover (1988) for processes that are stationary but not
necessarily ergodic and for AMS processes satisfying an extra hypothesis.

We can obtain information from the theorem on the tradeoffs among Codebook
size and error probability, given D. The error event contains information measured
by —logP.. Consider the information related term of the problem, &, as the ori-
ginal parameter of the problem. That is, given codewords of length ! and 6§ extra
nats of information, we will try to estimate the number of nats (bits) needed for
D-semi-faithful encoding of a symbol from the sourcewords whose associated code-
word’s average information does not exceed H,(!)+6 nats. It is obviousthat H, ()+6
nats would be enough, since any of the considered codewords has lower average in-
formation. We conclude from the theorem that the number of nats needed is at most
Hy(I) + 6. We expect to gain a few nats from the non-uniform distribution of code-
words in the Codebook. Most of the mass is obviously concentrated around H,(l)
nats. Next, we state the properties of the Codebook where the error probability P,,
the distortion level D and the blocklength ! are given.

Corollary. Given is a-stationary ergodic source u with known probabilities for all
blocklengths 1, an acceptable average distortion D and a tolerable error probability
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P.. Assuming the | order entropy induced by the chosen acceptable partition is H,(l),
then the following statements hold,

i) The optimal code set is,
Pz(D, 6) = {1_1! Pr(f)) > e—l(Hu(1)+5)} (16)

where a value & s determined by the error probability.

ii) The error set is defined by,

Errori(8,D) = {ﬂ[ ﬁ'p(réli;;(l)—-]l; log Pr(v) — Hy(1) > 5} (17)

3. An Asymptotic Theory of Large Deviations

A summary of the results of (Knessl et al., 1985) and of Schuss—Gofman unpublished
work is presented. Let {X,} be K-dimensional mean of i.i.d. Z, such that,

1 n
Xn =~ ;
n=2) %
i=1
where {Z,} is a zero mean K-dimensional i.i.d. whose p.d.f. is

aK
ml’r {Zn S Z} = ’LU(Z) (18)

We are interested in the evaluation of the probability density function, for large n:
_ oK _
PHm) = g Pr{Xa < 7] (19)
We generalize the main results of the one dimensional theory of (Knessl et al., 1985) to

higher dimensions. The principles are described in the Appendix. Following (Knessl
et al., 1985) Method we construct an approximation to p(g,n) for n>> 1.

p(@n) ~ Vi exp(-n¥(®)) (Ko@) + Ka(@)/n +- ) (20)

M(6) is the moment generating function of Z,

M) = /_-:0 /::) [exp(ez)w(z)} dzy ---dzg (21a)
It is known that
¥(y) = 5VU(G) — log M (VE(7)) (21b)

which is equivalent to:

U(y) = s1;p (t?yj — log M(6)) (21¢)
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It 1s sufficient to compute K(j) for almost all practical applications. We show that
the approximated density function is:

p(g,n) ~ (27r/n)_K/2\/det C(y)exp {—n‘l’(g)} (22)
where

_ 0*¥(y)
Oy; Oy;

C; ;(9) (23)

4. The Empirical Distribution and The Information

We apply the large deviations results of Section 3 to the memoryless source case.

4.1. The Empirical Distribution

The probability p(u) is the a priori probability of a source letter u taken from the
source alphabet U. Denote by @ a word in U'.

Definition 6. N(u;%) denotes the number of indices k € [1-- -] such that @ = u.
That is, the number of occurrences of the letter u in the vector @ = {1~ w}.

Definition 7. The random vector X;(u) defines the deviations of the empirical
distribution from the probability measure p.

Xi() = { (i‘f_(“%“_) —p(ul)); s (Aﬂ"_f"l_-li) -p(uN_l))} (24)

with K = N —~1=|U| -1 components.

For a stationary and memoryless source — the random vector Xi(@) is a large
deviations process with K = N — 1 components, satisfying X; = %21?:1 Z; where
the random vector Z; is a sequence of zero mean, i.i.d. K-dim random variable, such
that Pr (ZI =¢ — 17) = p;. Thus, following (18), its probability density function
w(z) is defined by

w(z) = Pr {z, =2} = ipié(ég —5—7) (25)

=1
where €; is a unit vector at the i-th index and p is the vector of the a priori
probabilities.

The result can be applied in a straightforward manner to the jointly pair or
triples sequences and so on. We define the deviation from the joint distribution,

x,0) = { (FED gy ). (LT iy )]

V(u,v) EUxV — {un,upm}
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where p = (p(ul, v1)...p(un, UM—1)) . Following (18) we obtain the density function,

N =K

*M-1
wz)= Y. pbE—5—2)
k=1

Without loss of generality we have omitted the last component (N, M) to con-
struct K = N*M —1 random variables. Obviously, the K components are mutually
dependent. This vector is defined in the sample space R¥X.

4.2. The Information

Definition 8. Given a memoryless source with entropy H and sequences of block-
length !, we define the deviation of the information from entropy as the 1.i.d. random
variables 7;(u;) = —logp(w;)— H i=1...L

The sample mean of the deviations from the entropy is denoted by

i: ( — log p(u;) — H) (26a)

It is clear that E(XM) =0.

Following (18), the probability density function of the deviation of the average
information 1is:

Xy (a) =

~] =

U]
w(z) = Zp,-é(— logp; — H — 2) (26b)

4.3. The Mutual Connections

We show that the random variable associated with the weakly typical sequences (the
information), can be easily derived from the distribution of the empirical distribution
for memoryless sources. That is, because

N
ﬁ) = HP(UI)N(ul,ﬁ) . 'p(UN)N(uN'ﬁ)

we have from (26a) that,

Xp (@) = Zlogp ul)( l’u) ~p(w)) +

+oga(un) (97 _ i)

Denoting the vector of constants,

= p(w) . _ - N
fislog oS, i=l..K=N-1 (27)
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we find that
XP(@) = -Xi(u)f (28)

4.4. The Distribution of the Empirical Distribution

We present here the appropriate terms in the general large deviations distribution
function, that identify the distribution of the deviations of the empirical distribution.
Following (22),
—— 5% _ _
PO, = gy * {XI(U) < y}
= (2m/))~%/? /At C(5) exp {~1%(5) }

(29a)

where:

¥(5) = sup (95~ log M(9))

Setting p = (p(ul)...p(uN_l)) we have,

N-1=K

M(8) = exp(=6p) Y prexp(fi)

k=1

ov(y) - _ Pk + Tk
= 0= o8 (M)

where ¥(0) = 0. Hence

Zl (Pk + Uk ) (G + px) — log (M) (29b)

Ek:l Dk
R () G S P
Cii(9) = Oyidy; (Pi +17i)6m
det C(y) = ﬁ ( ! - ) (29¢)
boy \PET Yk

4.5. The Distribution of the Information

The p.d.f. of the deviation of the sample mean of the information from the entropy is
given following (22) by,

p(y, 1) = a—Pr{X‘” <y}

~ (£)"vFwes (-}

(30a)
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where:
Y(y) = sgp (Hy —log M(G))
which is equivalent to the solution of

¥(v) = w'(4) ~ log M (¥'(4) (30b)
vl
P(y) = sup <9(H +y) — logZp(ui)l"") (30¢)

5. Coding of Memoryless Sources

The requirement for data compression comes when one needs to communicate source
data that is generated at a rate greater than channel capacity. We address the follo-
wing issue: given a tolerable probability of error P. what is the best compression ratio
R for a finite blocklength I and distortion level D. Such issues arise in the design of
communications systems, such as image communications, where channel capacity and
source statistics are known and where a specific rate of error is tolerable. The exact
connections between all these parameters are studied for discrete memoryless sources,
and can be extended to more complicated cases. Random fields can be analyzed in a
similar way.

Recent research trends have been in parallel directions. The first is a determi-
nation of R(D). If the source is memoryless, then explicit formulas are known for
certain distortion measures (Berger, 1971 — ch.2), and for general distortion measures
the algorithm of Blahut (1972) can be used to compute successive approximations to
R(D). However, for more complicated cases, a description of R(D) valid for all D
is not known. On the other hand, error exponents in source coding have been stu-
died intensively. Considerable success has been achieved in determining the nature
of error exponents in the zero-error case (i.e., the D = 0 case) when the source is
memoryless or Markov source. Results were obtained in Anantharam (1990), Csiszar
and Longo (1971), Davisson et al. (1981), Longo and Sgarro (1979), Merhav and
Neuhoff (1992), Natarajan (1985) and Covo and Schuss (1991). Much less is known
concerning error exponents in the D > 0 case. Marton (1974) obtained a result for
a memoryless source. In this section we will unify the two approaches and discuss
the combination of the two issues. That is, for a given P, a bound on the average
distortion level D and a blocklength I, we shall seek the best compression rate. The
results, developed for memoryless source might be generalized for classes of sources
for which there is a well-developed body of large deviations results for the source

output process. (See also applications of large deviations theory to source coding by
Sadowsky and Bucklew (1990).)

Our approach to the problem is described in the following steps;
a. Definitions and explanation of the stochasic approach.

b. Transformation of the deterministic problem to a stochastic one and calculation
of the error probability.
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c. Performance analysis and procedures to calculate the rate R for i.i.d. (and
Markovian) sources, by specifying the tolerable error probability.

5.1. Definitions and the Stochastic Approach

Given is a source u with known probabilities and an acceptable average distortion
D. Then for each blocklength I, a partition algorithm induces the probabilities on
the codewords and define entropy H,(l). We omit the subscript ! for convenience.
The encoding procedure defines the optimal code set,

(D, H,) = {a] Pr(7) > exp (—I(H,, + 5))} (31)

The value § is determined by the tolerable error probability. We describe the Error
set as a function of the induced entropy H, and del.

Error(6,D,H,) = {ﬁ| min —llogPr(f)) —-H,> 6} (32)
a:p(@,0)<D

As mentioned above the encoder- decoder pair is a deterministic machine. Neverthe-
less, when restricting our attention to a single source output symbol without know-
ledge of the previous output symbols, the reproducing symbol is not predetermined.
At this level it is an output of a transition matrix and a memoryless source, even
though at the block level the encoding is deterministic. We may describe the deter-
ministic coding algorithm as a stochastic one with the “best” transition matrix Q
that simulates the data compression at the level of a single symbol. By considering
the deterministic problem as a stochastic one, we use the theory of large deviations
and describe all induced properties as a function of Q.

Hereandafter the index ¢ denotes a letter in the source alphabet and j denotes
the reproducing letters.

Definition 9. The entropy of codewords H, of a memoryless source is given by,

Hy(Q) = =3 > p(a(ili)log 3 p()a(il) (33)

J

Definition 10. The expected value of the distortion between the sourcewords and
codewords, denoted as do, is a function of the transition matrix @, and its value is,

4(Q) = 33 p(i)a(ili)d(i, ) | (34)

Definition 11. The vector # with N —1 components denotes the deviations of the

empirical distribution of a sourceword, from the probability measure defined on the
alphabet U. That is,

Epei = (N—(;@ - p(i)) (35)
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Definition 12. The vector y, with NM — 1 components, denotes the deviations
of the joint empirical distribution of one sourceword and a codeword, from the joint
probability measure defined on the Cartesian product U x V,

_ N, jlu, v ..
ooy = (AR ) (36)
Definition 13. The vector d with NM — 1 components, is defined by

di=gi.jy = (d(G, ) — d(N, M) (37)
Without loss of generality we may assume that d(N, M) = 0.
Definition 14. The vector 7 is defined as]

fhegig) = log( IZ(JM))> (38)

Without loss of generality we may assume that p(M) is the least probable symbol
with positive probability.

Recall the definitions of W(z), C(Z) in (29a)-(29¢) and ¥(y) in (30a)-(30c).

5.2. The Operational Rate Distortion Function

In this section we deal with the analysis of the classical problem of D-semifaithful
source coding known as data compression of a memoryless source with dependence
on the algorithm simulated by @. We provide numerical procedures to estimate the
best compression given a tolerable error probability P,.

The Operational Rate Distortion Theorem. The minimal compression rate R
given a tolerable error probability P., a distortion level D, by blockcoding of bloc-
klength | for an i.i.d. source, is given by

‘ log " (8) I
R inf { H, +6 - () - sty V(QW)I(l—V)(é)) (39)

where Q s found iteratively and & is determined iteratively by the tolerable error
probability P,.

The minimum of ¥(Z) on the boundary of D defined in (41) is given by
_log P,
l

~¥(z*) = fg:')qu’(m) (40)
The term 6 defines the region D for the matrix @ such that (40) is satisfied and,

D= {z | 7" (z, D)t > 5} (41)
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where §*(Z, D)t is the solution of the following simplex problem,
Minimize gt subject to
Ay=1z
—p(ui, v;) < Jep=(i,j) < 1 —p(ui,v;) Vk=1..NM -1 (42)
p(un,vm) — 1 < g1y < p(un,vn)
§d < D —do
where A represents the transform matrix between j to Z, 1, is a vector with 1 in all

of its components and & is a unit vector. The terms v, ¥ (29a)—(29¢), (30a)—(30c),
and do,p(u,v),t, H, are known functions of @ (33)—(38).

The Markovian source case has a similar expansion.
Proof.

STEP 1: The Error Event.
Define the random variable as in (17),

XP () = ,% log Pr(3) — H, (43)

Following (31) we choose the code set to be all the codewords that satisfy the condition
Pr(X} (v) < 6) for some transition matrix ¢ which simulate the partition that induce
probabilities on the codewords.

Given the partition simulated by @, we define the random variable P(u) as

the probability of the most probable codeword contained in the D-Ball around the
sourceword .

o s
P(a) s 1(7) (44)

and from (1) and Definition 6, the average of the per letter distortions for the letters
that comprise the ! length blocks is,

pi(@,9) = 5 (49)

Hence, (44) is transformed to,

M

 max Hp(vj)zij\f(u;,uj]u,u) (46)
_Z Z (u vh“')d(i,j)SD je1
The error is the event that a D-Ball around the sourceword # does not contain

any word from the selected codebook defined in (31). Following (32) (44), recall the
definition of the error event,

P(a) =

Error(8,D) = {ﬁ| - %logP(ﬁ) —H, > 6} (47)
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Next, we define the random variable Z(%) from (44) and (47),
2(5) = 7 log P(8) ~ H, (48)

which by (46) is,

M _
Z(#) = min Z 2 (A—&”———ITQM — p(u;, vj)) log p(v;)

j=1i=1
subject to
. M (N (ui, v5]8, 9) N (us|@)
Vi=1...N-1 I :
z 3! (M)  (Mtuim
M N
EZ(N(UH;)JW)’U)) =1
j=11i=1
Vi,j 1> N(“"’;’”“’”) >0
M N
ZZ(N(““;’J|“’”))d(z,J)<D
j=1l:=1
or
M N _
Z(@) = min ZZ (MM - P(Ui,vj)) log p(v;)
j=11i=1
subject to
M _ _
Vi=1..N-1 Z(/—\[—(—E‘——;’M) — p(ui,vj) = (M) — p(ws)
j=1
L (N (ui, v, 5)
35 (MUB0) 0
j=1i=1 (49)
Vi,j 1> A&LL}QM >0

M N T
ZE(M) — p(ui, v;)d(i, ) < D= do

j=li=1

Without loss of generality we may assume that p(M) is the least probable code
symbol. We denote by the index N the source symbol with zero distance from the
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least probable code symbol M i.e. d(N, M) = 0. Therefore, all elements of  and all
elements of d are non negative.

Thus using Definitions 9-14 formula (49) changes to the form of a simplex pro-
blem,

Z(z) = min gt
subject to
Ag=1% (50)
—p(ui, vj) < Jer=(i,j) <1 —p(ui,v;) Vk=1...NM—1
p(un,var) — 1 < g1y < p(un,vnr)
gd< D—dp

where A represents the transform matrix between § to Z, 1, is a vector with 1 in
all of its components , and &; is a unit vector.

We denote the vertex point 3*(Z,D) as the minimum feasible solution which
minimizes § under the constraints. Thus, :

Z(z) = g*(z, D)t , (51)

Next, we identify the region of Z that correspond to the error event in (46)—(47) and
the definition of z in Definition 11,

D= {:Z‘ | #*(z, D)t > 5} (52)

Note that the deviations of the empirical distribution of the sourceword @ de-
noted by = are defined as a random vector variable depending on #. Thus, we can
describe the error event with Z instead of @ as in (32). The probability of the error
event, following (47)—(52), is

Pr(2(2) > §) = / p(2,1) dz (53)

D

where p(Z,1) is the p.d.f. of the deviations of the empirical distribution of sourcewords
from the probability measure, as givenin (29a)—(29c). The minimum error probability
1s obtained by

P.(6,1,D) = /Dp(a“:,l) dz (54)

where the term 6 determines the size of the codebook as S = expIR.

The value of P,(6,D,!) (54) can be evaluated by the large deviations theory
(18)~(30). The error probability is found in regions where integral (53) converges to
its approximate value.
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In the region where the origin Z = 0 is included in D, see (52), integral (53) is
almost equal to 1, while in all other regions of (D, §) integral (563) decays exponentially
as [ increases.

Suppose the zero point Z = 0 is not an interior point of D. Then, the minimum
of ¥(Z) on the boundary of D is obtained at z*. That is,

¥(z") = inf ¥(3) (55)

Clearly, the point z* is a function of (§, D,l). Hence, the minimal probability of
error is derived from (52)—(55), and has the form

1 if (z=0)eD

Sl Y PR LR G Gy

where D is in (52).

(56)

STEP 2: Finding the rate as a function of 6.

In this step we consider the construction of the Codebook, as defined in (31). The
error event is equivalent to the occurrence of a codeword, after the optimal partition
has induced the probabilities on the codewords, outside the Codebook I';. That event
is also equivalent to a large deviation of X} (%) from its mean- the entropy H,(!). In
other words, once the partition simulated by @ has induced probabilities and entropy
on the codewords, an error occurs upon the appearance of a codeword containing more
than an average of H, + 6 nats per symbol. The § nats of excess information allowed
per symbol are related to the coding rate R. In this step we still have to find the
functional relation between 6, [ and R. We use the density function of the deviation
of average information from entropy as found in (30a)-(30c¢) for that goal.

As in (Covo and Schuss, 1991), we slice the set I';(6)(see (31)), into disjoint
subsets each containing words ¥ with almost equal probabilities. Let T}, be such a
subset, using (43);

Tm(ym;ym+1) = {1_) | Ym < X:' (6) < Ym41 }

where —H, =yo < y1...< Ymazr = 6. Since all v € T,,, have equal probabilities, we
have that the number of words in each slice is nearly the slice probability divided by
the probability of each member. That is,

!Tml = p(ym: I)Aym exp l(Hu + ’!Jm)

The set I';(6) is the union of all the distinct subsets Tj,. Hence, summing over the
slices gives the size of Codebook.

| T6) [= D Tl =D P(Ym, ) Ay exp I(Hy + ym) (57)
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By the mean value theorem and as the partition-norm is decreasing to zero — the
summation (57) tends to

| T(6) |= /_H expn(H, + y)p(y, 1) dy (58)

where p(y,!) is the p.d.f. of the deviation of the average information of the codewords
v from their entropy given in (30a)—(30c).

On the other hand, we have defined the cardinality of the code as
| T4(6) |= exp (IR) (59)
Thus, by equating both expressions for | ING) I, (58) and (59), we obtain

4 1"
JR / H /l¢27(ry)e(z(m+y—w(y))>dy (60)

In (Covo, 1992) it is shown that the exponent function y— ¥(y) reaches its maximum
In the relevant range at the boundary point y = §. Therefore we expand Yy —P(y)
in Taylor’s series about §. Then we change variables and use Laplace method to
evaluate integral (60). It is known that the value of the integral for large ! is affected
only by the neighborhood of é§ (Bleistein and Handelsman, 1975). That is,

_ [ 1 . 1
R _ _2771——1,//(7)6(1(11 +6-9(6))) (1 + 0(7)) (61)

after neglecting terms of O(1/!) in the exponent, and terms which decay exponen-

tially. The relation between R, I, 6 is found from (30a)-(30c), and (61), as
wl! 6 1

logl YV 'Gm T=v'@)

21 l

We have omitted most of the technical development and its reasoning, since we believe
it does not contribute to the understanding of the whole matter. All details are
presented in (Covo, 1992), where the lossless encoding is treated in details.

STEP 3: Optimization.
To conclude the proof, we take the infimum over the set of all matrices Q@ that

satisfy the expression for P, (50)—(56), and substitute that @ in the expression for
R (62). |

R (Hy+6- %)) - (62)

Now we may conclude the above result by the following “law”. The transition
matrix @ that simulates the scheme which minimizes the compression rate for a given
error probability, is chosen from the set of transition matrices that satisfy (40)—(42)
such that the expression H,(Q)+6—1q(é,1), is minimized. The loss of ¥g(§) amount
of information in the transmission results in the compression by gaining 1q(6) nats.
The term § is determined by the tolerable error probability. We obtain a “conser-
vation law”, where the amount of the lost information is equal to the gain in the
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compression, only in the lossless case. It is an interesting interpretation for the two
Cramer’s functions in context of lossy data compression.

6. Summary

Major contributions of this paper include:

i) Using the concept of an acceptable partition on a bipartite graph where the par-
tition is carried on the sourcewords space on one side of the graph towards the
codewords space on the other side. The encoding procedure is defined by covering
the partitioned sourcewords space by the codewords. The approach is different
than the usual source- compression coding theorems based on Shannon’s theory
and random coding arguments. A possible extension to the problem of finding a
good lattice vector quantizer is currently receiving much attention.

ii) The properties of the optimal codebook given a tolerable error probability P., a
distortion level D and a blocklength .

iii) The issue of transmission under tolerable uncertainty is addressed. That is, the
iterative algorithm for computation of the minimal compression rate given a
tolerable error probability. We are able by using exact numerical methods based
on linear programming, to give the minimal attainable rate given a tolerable error
probability.

iv) Interesting connections between Cramer’s functions ¢ (of output information),
¥ (of joint empirical distribution), and the Shannon theory are found. The
transition matrix @ that simulates the compression scheme is chosen from a
set of certain transition matrices defined by a simplex problem, such that the
expression Hy(Q) — %q(6,1) is minimized. The value § is determined by the
tolerable error probability. However, gaining ¢(6,!) natsin the compression is
caused by losing of Wg(6,!) amount of information in the transmission, all for
the appropriate optimizing Q.

Since Shannon’s work in 1948, the problem has been studied by many researchers:
Berger, Forney, Blahut, Gray, Ziv, Kieffer, Arimoto, Marton, Dueck, Korner and
many others. Our concept based on large deviations theory unifies many previously
known techniques within a common framework. This paper presents a consistent and
harmonious study of the issue where all the terms, quantities and parameters of the
problem conform to create one description of the real problem of finite block-length
blockcoding where an error probability is specified and taken into account. Future
research might prove successful in obtaining results for classes of sources for which
there is a well-developed body of large deviations results for the source output process.
In addition, a generalization of the results to multi-parameter sources (random fields)
for all D remains an open problem.
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APPENDIX
An Asymptotic Theory of Large Deviations Theory

Let {z,} be N-dimensional process defined by the stochastic difference equation
Xnt1 = Xn +anZy, (A1)

where {z,} is a N-dim jump process whose conditional jump density at time n is
stationary, independent of the values of zx,k < n and is given by

3N
mpr {Zn S z I Xn = x,Xn_l =Tp-1.-. ..X() = CUO} = 'U)(Z,ﬂ':) (AQ)

We assume that the conditional moments of Z,, exist for all k; ...k, and are given
by

+oo 400
My kn (T) :/ z{“ ---szNw(zl ...zn,z)dz1 - zn (A3)

o0 — 00

Let the sequences {a,} depend upon the time integer n such that

lim a, =0 (A.4)
oN
: = m—— n < m = .
p(y,n :z,m) o Oun Pr {X <ylX a:} (A.5)

for n > m. This is the solution, with respect to the ”forward” Kolmogorov Equation
(or Master Equation) (Gardiner, 1985). We are mostly interested in the case where

o = 1
ey

1
Xnt1=Xn+ - 1Zﬂ (A.6)
Particularly we consider the case with Z,, = —bX,, + £, where &, is a sequence of

zero mean, i.i.d. N-dim random variable, independent of X ...X, with a density
function w(z) defined by

w(z) =Pr {gn = ZIX,, =, Xp_1=2Cp-1...Xp = :1;0} (A’])

and conditional moments defined by

400 +oo
My . kn :/ / zfl ---szNw(zl...zN)dzl 2N (A.8)
-0 —00

The most important case related to Source Coding is when b= 1.
Iy = —Xn + fn (Ag)

We are interested at the evaluation of the probability density function:

_ oY
p(y;n) = mpr {Xn < y} (A.10)
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for n > 1. Next, the one dimensional theory of (Knessl et al., 1985) is generali-
zed to higher dimensions. The density function p(y,n;z,m) satisfies the forward
Kolmogorov equation (Master Equation) (Gardiner, 1985).

p(y,n+ 1,2, m) — p(y,n; z, m)

+oo +o0
:L;P[_ /_ (p(y—#l—,n;z,m)w(z,y—#l—) (A.11)

—p(y,n,z, m)w(z) y)) dzl - 'dZN

with the initial condition:

p(y, m;z,m) = 6(y — ) (A.12)

where 6(z) is the Dirac measure.

We assume the influences of the initial arguments (z,m) — are suppressed for
n > 1 and taking the case where Z, = —bX, + &, and (A.7) we have:

Pr {Z,, = 2| X, = .2:} = Pr {-—bX,,+£n = 2|X, = .2:} = w(z+bz)(A.13)

+o0 oo pyi~Hy
PI‘{XTH_IS:U}:/ / /
—o0 —00 J—-o00

(A.14)
yN—zn/(n+1)
/ P(Xn=m)P(Zn:Z|Xn:$)d$1d.‘ENdzleN
By differentiation:
_ N
Py n+1) = gty P {Xn+1 < y}
A.15)
+o00 +o0 (
2/ / [p(y—h—_—i—r,n)w(z+b(y—ﬁ—[))] dz; - - dzy
Changing variables: ¢; = z; + by; — bz;/(n+ 1) for ¢ =1...N and therefore:
((n +1)/(n+1-b)) dt; = dz
_ N
p(y,n+1) = o Oun Pr {Xn+1 < y}
(A.16)

~(=35)" [ [ bl )] an o
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Using WKB Method (Bender and Orszag, 1987) we construct an approximation so-
lution of (A.16) for n > 1.

ply,n) ~ V" exp(-n¥(y)) (Koly) + Kr(w)/n+ ) (A.17)

The leading term ¥(y) is determined by substituting (A.17) into (A.16), expanding
for large n and equating the coefficients of each power of n to zero. The leading
order equation is:

U(y) = byV¥(y) —log M (V\I’(y)) (A.18)
where M () is the moment generating function of ¢, defined by:
+oo +o0
M(9) = / . / [exp(Bz)w(z)] dz; --- dzn (A.19)

We substitute the results and have:

P(y,n‘l” 1)= %@'WPI{Xn+1 < y}
e [ [t

= ntl e +oo exp n\IJ y+ by w(t) (A.20)
(va

n+1—b

"(Ko(y)‘l”%yl—l--“)dh-“dt]v

s ol exp (—(n + l)\Il(y)) (Ko(y) + %ﬂ 4. )

Taking the approximation:

W)~ mb(y) + (by ~ ) V() (A.21)

n‘l’(y-l-l—_—l_—r

and comparing O(1) terms:

/_:o ) /:o [exp (¥(w) + (by — )V () |w(t) dt: - dty =1 (A.22)

Y(y) = byV¥(y) —log M (V‘I'(y)) (A.23)
We are interested in Cramer Problem where b = 1:

U(y) = yV(y) — log M (VE(y)) (A.24)
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Which is equivalent to:
¥(y) = sup (93/ —logM (9)) (A.25)
Since:

! B(M(VT))
» g

Yi

(A.26)

is a condition for maximum of: (Gy — log M(B)) To compute the function p(y,n)

we similarly compute Ko(y), K1(y), by comparing the next coefficient of powers of n
at (A.17). It is sufficient to compute Ko(y) for almost all practical applications. We
shall collect all O(1/n) terms in (A.17). Rewrite (A.15):

ply,n+1)= 3————3—Pr {Xn+1 < y}

oo +oo (A.27)
/+ / y -———1— ) (z+b(y—#[))] dzy - dzy
and
P(ﬂ - ;1—_2;—1-, n) ~ /a exp (——n (\Il(y) - n-zFTV\I’(y)T)
+2(n—1}— 02 [aﬁfay,] ) (A.28)
y (Ko'(y) n I(l(y - Zr{(n + 1)) - = i IVKo(y)T)
P(g - nil’n) ~ \/EN exp (—n\If(y) + 2V (y)T — n__}__l_quf(y)'r
R 2[8256\1@ ]2T> (A.29)
o (o) + Baly=0 2 1) e orcyr)
and
W(E +o(y—z/(n+ 1)) = w(z 4 by) — b/(n + 1)2Vw(Z + by) (A.30)

p(y,n+1)~+/n+ T exp (—(n + 1)\I!(y)) (I\’.’g(y) + % +-- ) (A.31)
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We use the approximation,
)" &
n+1 2(n+1)

By substituting (A.28)—(A.32) into (A.27) and equating the coefficients of O(1/n?)
to zero:

0= /_ :o - /_ :oexp (¥(5) + EVE)T ) w(z + b)Y Ko(y)dar - - dzw
T Ko(y) (N/2+ / j - jbzw(ﬂb@)
«exp(U(y) + 2VE(y)T) dz1 -+ daw (A.33)
of o (e bl )

X €Xp (\Il(y) + EV\IJ(y)T> w(Z+by)dz - - dzN)

(A.32)

Computing separately the first term:
+o0 +00

/ / exp (¥(y) + ZVU(3)T )w(z +b7)2V7 Ko(y) dzs -~ dzy
I

= (bg M(V\I’) VV\I;M(V‘I’))VTK ( ) (A34)

= (b—1)V¥(y) [%a‘%;] T Ko(y)

and we obtain N— dimensional “transport” equation for Ko(y):
% 1 torg oo e Z 1 bi
(1—b)V\Il(y)[m] VT Ko(y) — Ko(y) N/2+/_°o /_oo bZVw(Z + by)

x eXp (\Il(y) + ZV\II(y)T) dzy - dezy

+o0 +00 (A.35)
+/_°o /_w (EV‘I’(y)T+%Z[a§;B%;]ET) :
«exp(U(y) + 2VU(Y)T )w(z +bg) dzn - dzN) =0

We define the matrices C, D as:
;= ¥ v (A.36)

7 Piik= g
Ay Oy; I Byi0y; Oy
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and by tensor rules:

N

6‘1’ 1 oM ) A\
by — — ——v | —— A .37
( ;( YT M 99,%)) duidy; (4.57)
and second derivation:
%y . 3w 1 - 03w
(1- b)ay Oyk ~ bayiayj + bZ: (yj 3yi3yj3yk) - YWJ;(E)(O ) ) Oy:Oy; Oy
1
+W;;( 3(9; q/)) dy,ayJ (a(a,xl/j ) o (A.38)

1 ok A
YWZ 2(6(6 \11)6(61\11)) Oy 0y; OyiOys

=1 j=1
For convenience we denote:
83w

Ui = —o
%™ By 0y; Ok

(A.39)

and Z' as the i-th component of vector . The derivatives are all under summation
— unless specified.
K
diIn Ko = %21 /Ko (A.40)

Substituting (A.40), (A.37) and the following identities into (A.34):

);
+o0
/_ / exp(\If +zV\II(y)T)w(z+by)sz]\0( Ydzy - dzy

N ; (A.41)
_ 1 oM 3= \9 1
_;<M7_6 alel) byz)&[xo
(311{06}5\1/) Ci-l;l = %Ci_klffg (61\IIC]T,IE,-,-,C + (b — 1)0,"1’3);@) (A.42)
YTEEE 2w TN ow s 02w T 63w
;;;;(5%‘3% )Ba(ayjayl )3yi3ykaj
(A.43)

-1

NN N g -l g 52 53
:ZZZZ(——‘I’ )_\Ii(éyj;'yl )5.%'3;1:31'

OyiOyr 7/ Oyr

and we obtailn:

619\110{;;1 Oi(ang) — 1/2E,‘j1071 — 1/2(b — 1)6,’\1/ =0 (A.44)
7
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We define:

B = (ai(ln Ky) — l/2E,'j1Cj_Il —1/2(b - 1)3{‘1’) (A.45)
which satisfies for all 1

Hh¥CL'B =0 (A.46)
We require ¥(g) > 0 for all § # 0.

Rewrite ¥(y):

¥(7) = bgV¥(7) — log M (W(y)) (A.47)

derive it,

1 oM
M (vqr(g)) a(5; %)

Therefore V¥(y), C' are both non-zero for all § # 0. Rewrite (A.45):

8; ¥ (y) = bO; ¥ (y) + by; 04 %(7) —

%% () (A.48)

B = (a,-(ln Ko) - 1/2(8:C;1)C; - (—I’%) =0 (A.49)
Let Mj; denote the determinant of the j, I minor obtained from C.
N
det C =Y (-1)+C;M; (A.50)
j=1
Adj[C] (=)t M 65dC‘etC
-1 _ Ag{Cl;; (= il il
G = detC ~ detC = detC (A.51)
0Cj o ddetC 1 _ A
o Cij = 35 daC = 0;In(det C) (A.52)
Using (A.52), (A.49), (A.46) and we have:
(a,-(ln Ko) — %(a,- Indet C) — %(b - 1)3,-@) =0 (A.53)
Ko(y _
| —(b-1)/2
6( n (det C)l 2 ( )/ \I,(y))
£ =0 (A.54)

for i =1-.-N. Hence, we have:

Ko(§) = (27)~N?+/det C exp {(b ~1) /2\1:(;7)} (A.55)
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The higher order terms K;(y), j > 1 can be neglected for our purpose. However,
they can be calculated in a similar way. For our purpose b = 1. Therefore the
approximated density function is,

p(7,n) = (27/n)"N/2\/det Cexp {—n\I'(gj)} (A.56)
where:
¥(5) = sup (97— 108 M(3)) (A.57)
i = % (A.58)
+o0 +o0
M) = /_ . /_ [exp(0)w(z)| 21 - daw (A.59)
and
’w(E):Pr {f_n :EIXR :.’E,Xn_l :J_:n_l...Xo = ig} (AGO)
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