Appl. Math. and Comp. Sci., 1995, vol.5, No.1, 169-188

SPURIOUS GALOIS FIELDS'

Czestaw KOSCIELNY*

An algebraic system consisting of a finite set of ¢ elements (¢ — any integer > 2)
with two internal binary operations of addition and multiplication is studied.
For the described system, which satisfies all the axioms of the fields except for
the axiom of associativity of addition, which may, but need not, be assured, the
name spurious Galois field and the symbol SGF(g) are proposed. The spurious
Galois fields constitute a class of algebraic systems, containing all the Galois
fields as its small subclass; therefore, the presented problem can be considered
as a generalization of finite fields. The way of forming the spurious Galois
fields, the approach to computing in SGF(g) as well as some possibilities of
applications of this algebraic structure in cryptography are discussed.

1. Introduction

The task of the paper is to let the reader see the existence of algebraic systems very
similar to the finite fields and to show how to construct them. The systems have been
called spurious Galois fields, and the symbol SGF'(g) has been used to denote them.

This article is a considerably enlarged and modified version of the first commu-
nication on this subject (Koscielny, 1989). In comparison with this publication, the
definition of SGF(g) was essentially modified in the paper. Due to the this modifi-
cation such algebraic systems are being studied, which to a great degree resemble the
Galois fields.

SGF(q)'s seem to be useful for cryptography, Doppler radar, coding theory,
and algebraic theory of automata. The subject of spurious Galois fields may also
attract the attention of those engineers and mathematicians who are interested in
applications of latin squares, quasigroups, finite geometries and statistical designs.
However, the paper has been written taking mainly into account the applications of
spurious Galois fields in cryptography.

The paper is organized as follows: Section 2 contains the definition of a spurious
Galois field, Section 3 gives the rules of computing in SGF(g), Section 4 shows how to
solve the problem of implementation of operations in SGF(q) to obtain the powerful
tool for applications, Section 5 discusses the question of isomorphisms of spurious
Galois fields, Section 6 presents several practical remarks concerning problems of
computing Zech’s logarithms, while Section 7 should draw the reader’s attention to the

t This work has been supported by the KBN (Committee for Scientific Research in Poland),
grant No. PB 1230/P4/93/04.

* Technical University of Wroclaw, Institute of Engineering Cybernetics,
ul. Janiszewskiego 11-17, 50-372 Wroctaw, Poland

170 C. Koscielny

method of constructing SGF(q)-based stream- and block-ciphers. Some important
final remarks are presented in Conclusions.

The author follows strictly the notation commonly used in coding theory and
cryptography (MacWilliams and Sloane, 1977; Peterson and Weldon, 1972), therefore,
the paper is easy to read for specialists. Beginners, however, may have some difficulty
in understanding this work but fortunately there exist an excellent and extensive
algebraic introduction to finite fields (Lidl and Niederreiter, 1983) and a very good
and actual guide concerning their applications as well (Menezes et al., 1993).

2. Definition of a Spurious Galois Field

Consider an algebraic system
(SF, +,) (1)

consisting of a finite set of elements SF in which two internal binary operations,
called addition and multiplication, respectively, are defined. Let | SF |= ¢ and let
q denote an arbitrary integer > 2.

The spurious Galois field, denoted by SGF(q), is system (1), satisfying the
axioms

A.1 (SF, +) is an abelian loop ! with identity element denoted by 0.

A.2 (SF*, -) is an abelian cyclic group, where SF* = SF\ {0}. This implies that
SF =10, 1, w, w?,...,wi"2}; w is the generator of the multiplicative group, 1
denotes the identity element under multiplication, and wi~1 =1.

A33—-1€S8F [-1=11if g iseven | V [-1 =wl=D/2 if ¢ is odd].
A4 VaeSF 3 —a€SF [—a=—1a] A [a+ (—a) =0].

A5 Va,b ceSF [a(b+c)=ab+ac] A [(b+c)a = ba+ cal.

A6 VaeSF 0a=0.

The above formulated axioms make it possible to form the algebraic structures pre-
serving many properties of finite fields, even if ¢ is not a power of prime.

3. The Rules of Performing Operations in SGF(q)

In discussing this question, the evident fact that the multiplication is associative and
both operations are commutative will not be repeated.

Let
Q=1{0,1,...,q—2})
1 An algebraic system (S, +) is called a quasigroup if there is a binary operation (+) defined
in S and if, when any two elements a,b € S are given, equations a + z = b

and y + a = b, each, have exactly one solution. A loop (L, +) is a quasigroup with an
identity element: ‘that is, a quasigroup in which there exists an element e € L with the
property that e+ z =z + e = = for every = € L. A finite loop is commutative or abelian if,
and only if, for an abritrary pair of loop elements a,b, a + b = b+ a holds.

Spurious Galois fields 171

From the properties of system (SF*, -) the following rules of performing the
multiplicative operations result

Ve s€Q whwt = wrts (modg-1))
VreQ W = 1 = Wil (4)
VreQ ww" =wd = (5)
Vr keQ (W) = @k (mod g=1) (6)
Vr s€Q Wt = = (mod g-1) ™
Vre@ [0w™ =0] A [lw" = w"] (8)

The rules of addition in SGF(q) are determined by the system (SF, +). Additive
operations involving the identity element are as follows

Vre@ W H0=w" (9)
VreQ W +(-w")=0 (10)

Let us introduce, as in the case of any GF(g), the symbol —co to denote 0
as w~*. To perform addition in SGF(q), the well known discrete implicit function,
named Zech’s logarithm (Huber, 1990; Imamura, 1980), can be applied. It is a special
permutation, usually denoted by Z

Z :{-,0,1,2,...,¢4— 2} > {—00,0,1,2,...,¢ — 2}
and defined by the equation
w?@) = 1407 (11)

The properties of the system (SF, +) are fully described by the function Z(z).
It has been noted that the necessary conditions to satisfy axioms A.l1 and A.3-A.6
are

Z(z)#z for any ¢ (12)
Z(—o0) =0 for any ¢ (13)
Z(0) = —o0 for ¢ even (14)
Z((q - 1)/2) = - for ¢ odd (15)
Z(g)=Z(g—1—z)+z (mod q— 1) for any g (16)

where

z G{ Q@ \ {0} for ¢ even,
Q@ \ {0, (¢g—1)/2} for ¢ odd.

172 C. Koscielny

Formulae (12) and (13) follow from the fact that there is only one identity element
under addition and that it equals 0, while (14) and (15) result from A.3. Equa-
tion (16) is the most important condition, assuring the satisfaction of A.l1 axiom.
These equations also imply the following properties of Zech’s logarithms

2(0)= ((a-1)Bg—5))/8= ((a=)¢~ 11))/8 (mod 2) for ¢ odd (17)

(¢—-2)/2
2> 2)=((1-2)(Ge—49)/8 (modg—1) for q even (18)
=1

(4-3)/2
2 Y 2()=((g-D)Ga—11)) /8= 2(0) (modg—1)for g odd (19)

Formulae (17)~(19), which can be easily proved, are of great importance in construc-
ting effective algorithms for finding the values of function Z(z).

It has also been observed by the author that for any even ¢ there exists one
particular SGF(gq) with the following values of Zech’s logarithms
Z(~o0) =0, Z(0)=—oo
Z2k-1)=q/2+k—1, Z(2k)=k, k=1,2,...,(g—2)/2 (20)

Using Zech’s logarithms one can write down the general rule of performing addi-
tion in SGF(q)

wmin{r,s}+2Z([r—s|) (mod ¢—1)
ifr, s and Z(|r — s|) # —oo,
V?",SEQU{—OO} W+ wt = w" if s = —o0, (21)
ws if r = —o0,

0 ifZ(r—s|)=-c0 Vr=s5=—o00.
Although addition in SGF(g) may not be associative, the equation
at+z="% (22)

has always a unique solution for any pair of SGF(q) elements a, b. In order to solve
equation (22), the notion of subtraction in SGF(q) should be introduced. However,
for the most cases subtraction in SGF(g) cannot be performed as in GF(q). About
subtraction one can only say that if @ — b = ¢, this means that a = b+ ¢. Generally,
to perform subtraction in SGF(¢) the following Dv and Dh implicit functions can
be utilized

WD) 4 o7 — 1 | (23)

va(z) +1=0w® (24)

Spurious Galois fields 173

The formulae below follow immediately from (11), (23) and (24)

Z(Du(z)) = Du(4(s)) (25)
Z(Dv(:r)) =z (26)
Dh(Dv(a:)-}-q—l—:c (modq—l)):q-—l—x (27)

“allowing to calculate the values of Dv and Dh functions provided that the values of
Zech’s logarithms in SGF(q) are known. Using (23) and (24) one obtains

(3+Dv(r—s) (mod ¢-1)

ifr>s, r,s# —o0,
wrtDh(s=r) (mod ¢-1)

Vr, s € QU{—00} w —w® = ifr <s and if r, s # —o0, (28)
w' if s = —o0,
—w® if r = —o0,
0 ifr=s.

\

It should be noted that due to the presented approach, addition and subtraction
over SGF(q) may be applied in cryptograpy as mutually invertible transformations.

The numbers of all possible SGF(q)'s versus ¢ < 25 are given in Tab. 1. It
was worked out after about 200 hours of computations on IBM PC 386. In Tab. 1,
ni(q) denotes the number of all SGF(g)'s having various values of Zech’s logarithms.
As it can be seen later, some SGF(q)'s, having different Z(z), may be isomorphic.
Therefore, in Tab. 1, the value ns(q) denoting the number of all non-isomorphic
SGF(q)'s is given. Unfortunately, if ¢ > 24, the hardware and the algorithms, as
used in computations were too failable, viz. unfit for calculating ns(q) in a reasonable
period of time. ' : :

Tab. 1. The Number of SGF(q)’'s Versus q.

g | ni{g) |ns(g) | ¢ | ni(g) ns(g)
2 1 1| 3 1
4 1 1] 5 1
6 1 1] 7 4 2
8 3 2| 9 12 4
10 9 3|11 56 14
12 25 513 224 56
14 133 14 | 15 960 160
16 631 87 | 17 5760 724
18 3857 | 242 | 19 42816 7136
20 [25905 | 1453 |21 | 320512 | 40064
22 | 188181 | 15714 | 23 | 2366080 | 777777
24 | 1515283 | 77777 | 25 | 20857088 | 7777777

174 C. Koscielny

Among the SGF(g)’'s there is a subclass of spurious Galois fields satisfying
Va, b €SF a—b=a+(-1)b=a+(-b) (29)

which are the most similar to fields. This subclass contains all the isomorphic Galois
fields. The term all the isomorphic Galois fields means here all such finite fields with
various values of Z(z) function, whose elements are named in the same manner,
resulting from the A.2 axiom. It can be seen that if 2 < ¢ <5, then all SGF(q)'s
are the fields. The really spurious Galois fields can be constructed for ¢ > 6.

There are very few SGF(¢)'s in which subtraction is performed according
to (29). All such non-isomorphic SGF(q)’'s for ¢ < 19 are given in Tab. 2.

Tab. 2. Zech’s Logarithms for SGF(q)'s Satisfying (29)

z 0 1 2 3 4 5 6 7 8
*xZ(z) | —oo =2
*Z () 1 g=3
*Z(z) | —c0 2 g=4
*Z(z) 3 g=>5
«Zx) | 2 a4 1 g=71
*Z(z) | —o0 3 6 1 g=38
*Z(z) 4 2 7T 6 g=9
Ziz) | 1 3 8 7 9 g =11
*Z(z) 1 8 4 6 9 g =11
«Z(z) | 1 4 9 8 2 11 g=13
Zz | 1 9 5 7 2 1 q =13
Z(z) | —0 4 7 12 1 11 8 g=14
*Z(z) | —o0 4 8 14 1 10 13 9 qg =16
Z(z) |- 4 9 14 1 10 8 13 g =16
Z) | 2 5 3 12 11 15 14 13 g =17
«Z(z) | 2 5 15 12 11 6 14 10 g =17
Z(z) 2 6 11 10 1 4 14 q =17
Zz) | 2 11 7 9 1 4 14 q =17
Z(z) | 1 6 13 12 16 3 14 17| ¢=19
Z(z) | 1 6 16 13 12 7 3 11 17| ¢=19
Z(z) 1 13 4 8 10 16 3 14 17 | ¢ =19
«Z(z) | 1 18 16 8 10 7 3 11 17| ¢=19

In order to calculate all those values of Zech’s logarithms which are not listed in
Tab. 2, one ought to use (13)~(16). In Tab. 2, 12 Galois fields (marked by %) and 10
spurious Galois fields, are presented.

An SGF(q) becomes a GF(q) if, and only if, ¢ is a power of prime and if addi-
tion is an associative operation. Therefore, when ¢ = p™, p — prime, m — integer > 1,

Spurious Galois fields 175

Zech’s logarithm has additional properties given by the formulae

Z(Z(---Z(a))---)‘:a for any p and any a € SF (30)
S——)

Z((Z(m)+(q——1)/2> (mod q——l))s <z+(q—1)/2)) (mod g—1) forp > 2 (31)
Z((Z(z)) = Z(O)+Z(w+q—1—Z(0) (mod ¢ — 1))) (mod ¢ —1) for p > 2 (32)
Z(:vpi (mod ¢ — 1)) =p'Z(z) (modq-—1) (33)

Z((q—l—w)pi (mod q—l)) =p (Z(:c)—i—q——l——x (mod q—l)) (mod ¢—1) (34)
where

zG{Q\{O} if p=2,
Q\ {0, (a-1/2} ifp>2,

t=1,2...,y—1
and y is the least integer so that
zp¥ =z (mod ¢ —1)

Equations (33) and (34) can be derived as a generalization of formula (18) given
by Imamura (1980), an easy proof of (30), (31) and (32) is left to the reader.

The properties of Zech’s logarithms expressed by means of (30)—(34) should be
sufficient to distinguish a GF(q) from SGF(q).

4. Computing in SGF(q)

The easiest way to implement operations in SGF'(g) is to replace the abstract repre-
sentation of elements of the SGF(g) by the set of integers

F={0,1,...,q—1} (35)
and to apply the mapping
c:{0,,w, -, w2} = F (36)

defined by the function

o(w®) = z+1 ifze{0,1,...,q—2},
1o if z = —oo. :

(37)

176 C. Koscielny

Under the mapping ¢ any non-zero SGF(q) element w® has its image in the set F'
equal to the ordinary sum z + 1 while the image of the identity element for addition
equals 0. Assuming that the mapping o is an isomorphism, the relation

Va, b€ SGF(q) [a(ab) —o(a)® o(b)] A [a(a +b) = o(a) @ a(b)] (38)

holds, where the symbols @ and ® denote the operations on elements of the set F,
corresponding to addition and multiplication in SGF(q), respectively. Therefore, for
the mapping o there exists an inverse mapping defined as follows

oi(e) = { ey SN ()
w™>® =0 ifz=0.

The mapping o converts the operations in SGF(g) onto ordinary operations on
integers. For the needs of applications, it will be sufficient to define six functions,
returning the product, the multiplicative inverse, the k-th power, the additive inverse,
the sum and the difference of the images of SGF(q) elements under the mapping o.
Denoting these functions by P(z,y), Mi(z), Pwr(z, k), Ai(z), S(z,y) and D(z,y),
one can express them as follows

P(z,y) = o (¢ (@)o (1) (40)
Mi(@) = o((1/o7'(2)), @ #0 (41)
Pur(z, k) = (07 (2))") (42)
S(z,v) = o(07 (@) + o7 (v) (43)
4i(@) = o(= 7}(=)) (44)
D(z,y) = o (07 (@) - o~ (y) (45)

Taking into account (4)—(16), (21), (23)-(28) and (35)—(45) one obtains:

P(s,) = I+ [oty-2 (modg—1)] if 2 yer\{0))
’ 0 if 2=0Vy=0
Mz-(z)={91’““”” i zif\{o, 1})
Pwr(m,k):{ é-{‘[(ﬂ:——l)k (mod ¢ — 1)] j« zi—g'\{()} (48)

Spurious Galois fields 177

1+ [min{z,y} -1+ Z(|z —y|) (mod g—1)]
ifz, ye F\{0} andif Z(|Jz — y|) # —oo,

= 4
S(x,y)‘ z+y ifz=0Vy=0, (49)
0 if Z(|Jz - y|) = —o0,
14[z—1+(¢g—1)/2 (mod q—1)]
ifz € F\ {0} and if ¢ is odd,
Ai(z) = . \0) A (50)
z if z € F\ {0} and if q is even,
0 ifz=0,
(0 ifz =y,
z ify=0,
Ai(y) ifz=0,
D(z,y) = | 14 [(y—14 Dv(z —y)) (mod g-—1)] (51)

ifz>yandifz, ye F\ {0},

14 [(z—1+ Dh(y—=z)) (modg-—1)]
ifr<yandifz, ye F\ {0}

Formulae (46)—(51) can easily be written in any programming language. It is evident
that the operations in SGF(q) can also be implemented using the micro-programmed
devices or the appropriate hardware.

5. Isomorphisms of Spurious Galois Fields

Let the element w be a generator of the multiplicative group of SGF(q), and let
Z(z) for = —o0, 0,1,...,9 — 2 be a set of all values of Zech’s logarithms in
SGF(q). To find a complete set of values of this function in the isomorphic spurious
Galois field, whose elements are denoted according to A.2 axiom, the mapping:

Tiww (52)
where
gcd(i;q -1=1 (53)

ought to be applied.

Further, let ¢ = w?, i satisfying (53), and let Z'(z) denote now the values of
Zech’s logarithms in the spurious Galois field for which £ is the generator of the
multiplicative group of SGF(q). Therefore

L4 gm = 7@ (54)
Since

146 =1+ (wi)z = Zlz) = €Z'(z) = wiZ'(=) (55)

’

178 C. Koscielny

then

iZ'(z) = Z(i:z (mod ¢ — 1)) (mod ¢ — 1) (56)
and finally

Z'(z) = inv(7) Z(i:c (mod ¢ — 1)) (mod ¢ —1) (57)

where inuv(i) denotes the multiplicative inverse of ¢ modulo ¢ — 1. The congruence
equation (56) has the simplest solution if { = 1/w, viz. if i = ¢ — 2. It can be easily
found that in this case

Z'(z)=q—14+z—Z(z) (modg—1) (58)

If, applying mapping (52) for which (53) holds, the equation Z(z) = Z’(2) is
fulfilled, one can say that this mapping is an automorphism.

Let us consider an example. In Tab. 3 the values of Z(z) for all non-isomorphic
SGF(11)'s are given. The remaining 42 sets of values of Z(z) for isomorphic
SGF(11) can be found by means of (57) which ought to be applied for any of 14
outfits of values of this function for i = 3, 7 and 9. The reader can verify that when
applying the above method to outfits No 2 and No 9 one obtains Tab. 4, where Zech’s
logarithms for the special SGF(11)'s satisfying (29) are listed.

The four sets of values in Tab. 3, marked by *, are the values of Zech’s logarithms
in the isomorphic GF(11)'s while the remaining entries can be employed to construct
the same SGF(11) with an accuracy up to isomorphism.

Tab. 3. Zech’s Logarithms for SGF(11).

No T -0 0 1 2 3 4 5 6 7 8 9
1 Z(z)] 0 1 3 7 9 8 —oc0o 4 6 5 2
2 Z(z) 0 1 3 8 7 9 —o0o 5 4 6 2
3 Z(z) 0 1 4 7 9 2 —o0o 8 6 5 3
4 Z(z) c 1 4 9 8 6 —~o0o 2 5 T 3
5 Z(z) 0 1 5 8 2 7 —oc0o 3 9 6 4
6 Z(z) 0 1 5§ 9 6 2 —oco 8 3 T 4
7 Z(z) 0 1 7 4 8 3 —-o00o 9 5 2 6
8 Z(x) 0 1 7 5 2 8 —o0o 4 9 3 6
9 |*Z(z)| 0 1 8 4 6 9 -—o0o 5 3 2 7
10| Z(z)| 0 1 8 6 5 3 —oc0 9 2 4 7
1| Z=| 0 1 9 5 7 6 -0 2 4 3 8
12 Z(z) 0 1 9 6 5§ 7 —-o0o 3 2 4 8
13| Zz) | 0 5 2 8 7 3 —0o 9 4 6 1
4| Zz)| 0 5 4 8 2 1 -0 7 9 6 3

Spurious Galois fields 179

Tab. 4. Zech’s Logarithms for All Isomorphic SGF(11) satisfying (29).

No z —-c0 0 1 2 3 4 5 6 7 8 9

2 | Z@)| o 1 3 8 7 9 -o00o 5 4 6 2
2| Z@)| 0 3 2 7 9 8 -00o 4 6 5 1
2| Z(z)| 0o 7 9 5 4 6 -—c0o 2 1 3 8
2= | Z(@z)| 0 9 8 4 6 5 —oo 1 3 2 7T

9 |#Z(z)| 0 1 8 4 6 9 -oo 5 3 2 7
9> | *Z(z) | 0 3 9 7 4 6 —oo 2 1 5 8
9— *Z(:L‘) 0 7 2 5 9 8 —oc0o 4 6 3 1
9— *Z(:l:) 0 9 3 8 7T 5 —oc0o 1 4 6 2

6. Remarks Concerning Calculation of Zech’s Logarithms

The problem of constructing the spurious Galois fields resolves itself into calculating
Zech’s logarithms, satisfying (12)—(16). However, no successful method has yet been
discovered to determine directly Zech’s logarithms for all possible SGF(g)'s of pre-
assigned ¢, nor does one know in advance how many such spurious fields there exist.
Therefore, in order to estimate how quickly the number of SGF(q)'s increases versus
g, Tab. 1 was calculated using a systematic search. The algorithm as applied to this
purpose utilized two essential software tools: the generator of of r-combinations of
n distinct numbers from the set P,

CO(n,r)=¢,ch,...,c

»Er

i . n
¢ €P, |Pl=n, r<n/2, i=1,2,..., .

and the generator of all permutations of a chosen combination

70 . CO(n,r) » CO(n,r)=dl,dl, ..., al,

where
W(J)(c;c):ai;]: 1,2,-..,7’7’, T"I':T!—Arr

satisfying ai # k, where Arr, denotes the number of permutations, for which ai =k.

Taking the above into account and making good use of formulae (12)—(19), one
can immediately construct the following algorithm for computing all different sets of
Zech'’s logarithms for a given ¢

begin
if ¢ MOD 2 =0 then
begin
1:=0; n:=¢g—2; r:=(g—2)/2; P:={1,2,...,9—2};
repeat

1 :=1t+4 1; generate Cgi)(n, T);

180 C. Koscielny

t1:=2%"_ &) MOD (¢-1);

i2:= (4= 2)(5¢ - 4))/8 MOD (¢ 1)
if t1 =12 then

for j:=1 to rr do

begin o
generate () =al, al,...,ai;
for s:=1 to r do
begin
Z(j)(s) = al; Z(j)(q —1-s8)=(af—s4q~— 1) MOD (¢g-1)
end; .
iffor s:=1 to ¢—2 ZU(s) are all different then
begin
Z0(=00) :=0; ZD(0) := —oo;
for s :== —00 to ¢~ 2 do Write(Z(j)(s))
end
end
until § = (")
r
end
else begin

= =2 n:=q-3; r:=(qg—3)/2
Z)(0) == (¢ — 1)(5¢ — 11))/8 MOD 2;
if Z()(0) =0 then 11 :=0 else ii := -1; P:={1,2,...,9—2};
repeat
=142 ZO0):=i; P:=P\{ZO(0)}
repeat
1:= 1+ 1; generate Cfi)(n,r);
t1:=2%"_, &? MOD (g-1)
12:= (((¢ — 1)(5¢ — 11))/8 — 2)(0)) MOD (g-1);
if t1 = ¢2 then
for j:=1 to rr do
begin A
generate 707 = a{, aj,...,al;
for s:=1 to r do
begin
ZD(s):=al; ZU)(g—1- s):=(al—s+g—1) MOD (¢—-1)
end;
if for s:=1 to g-2 Z(j)(s) are all different then
begin
20 (—00) := 0; Z)(0) := 2 (0); Z((g~1)/2) := —o0;
, for s:= —co to g —2 do write(Z2)(s))
end

end
until ¢ = (");
r

P:=Pu{zM(0)}
until 72 > ¢ —3
end
end.

Spurious Galois fields 181

This algorithm may be the ancestor of many modified and much more effective
algorithms for calculating Zech’s logarithms. It should be underlined that for clarity,
the notation of the algorithm is purposely redundant.

The use of algorithm for ¢ > 20 has allowed the author to observe that in the
space of all permutations 7(/), those satisfying the conditions of Zech’s logarithms are
very irregularly distributed. There exist regions of conglomeration of permutations
being Zech’s logarithms and these regions are very far away from each other. This
phenomenon may be of some importance in constructing algorithms for calculating
Zech’s logarithms for greater ¢. However, the difficult problem of determining Zech’s
logaritms for ¢ > 256 is still waiting to be resolved.

Asto the algorithm applied by the author for sieving Zech’s logarithms for isomor-
phic SGF(q), one must say that it is very inefficient and does not deserve publication.

7. Examples of SGF(q)-Based Ciphers
In this Section, the ciphers over SGF(32) are considered. It is assumed that the

values of Zech’s logarithms, applied in the example, correspond to permutation
(o0, 0) (2, 24, 21, 10, 20, 26, 11, 6, 23, 5, 16, 18, 14, 15)
(1, 4, 29, 22, 30, 3, 12, 19, 7, 28, 9, 8, 13, 27, 25, 17)
which is represented as three disjont cycles. For the reader’s convenience, Tabs. 5, 6
and 7, presenting the rules of addition, subtraction and multiplication, respectively,
were computed by means of (13)—(16), (23)—(27), (35), (40)-(51) and by using the
permutation

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

« A B CDFEVF GH I J K L MN O

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P Q R S T UV WXY 2z . 1 ! # %

The Tables will be useful during the verification of enciphering and deciphering
procedures concerning the example ciphers.

Let the sequences of SGF(q) elements
M=m my -~ my ---,
K=k kg - ki -
C=cics ¢ -,

denote the stream of characters of the plain-text, the stream of characters of the key
and the stream of characters of the cryptogram, respectively. The stream-cipher is
constructed by means of an enciphering function f. as follows

i = feo(mi, ki)

182 C. Koscielny

Tab. 5. Addition Table in SGF(32).

*
=
td
(o]
o
=1
o]

GHIJKLMNOPQRSTUV

=
>
-
N
+#
=

+

[=]

D = HMT TGN R<

NP> OOHR VGO I H TG ~<QUN XN -
(=

R * T =< AQ
= =
L IR SRR - B - - A R)
Mo HY
Qdcda<t<owm4
HdR2N=2wa <<
< O NN X H
v m Ry Y- O

S QN RO
vt =Zrboam=e®N

==
o NX#0AQY
>4

RO T2 HYO -G d#* O NR VOO < -
B<OoOUOTMER NG = -

]
P -O@N €0 vRa <> unmawx
o2

HEf OO0+ 2 W0 HMH< -9 P>YWg =X
U R OONPE <y vEHRMNOHMD -—2Z2NOATdaoowm

DTN HO VM@ rOoO Q= -~-Wo RO

O - O ® x 1MW
T WM HNRRNAZ << -"WO

THoOwWwmwaQ Y vH QdHR«-XOoO#H 2 <H ¥ >
RunE QP vHY QR OO ~-dmn<ad g o <=2 NYTHHD
S NYv gmENRMTHEeDD X" BFO W0 <~
MMV ~—oOo<sTHE<oacdE NI NSZH

HOoO <M. - IO =2 9HA % QO < G -
QEOXR -0 HHXYWOOEG <332 N-V

23Ol -—woodbflodsssHEnRYRNNLEO-

~,Od<HOQ2 XTGP O -
TN HECONQX*®OMNM O IN <NRNOVNABHHG N =

mo#x"aodo=s vyt QX

N wmeTmaQ
OWXPOG= —~ QNN ~<XNNTDEHP &2 M

N~<ME<<dHnNnmoOWMo=2HXNoaHDODQTNEMUODOQLW> #*
N~<MEo<<dHoovYvo=2IrX"NuaHIDaamiHdoatw>#
—DUUHMmP YN~ H-

* HIHM QB OPNTTEQQ VR ~-XRNDOWWYWOHMWO©ILE:

O GNP ™<=
nH<StoD= oW -

O VHPOUOENGE =R <O ¥ o<t QM EFaQoHEIA
=2

~
<

NREHUEPRAOMIOAEOW << NZVNOQ - <O HQ*FH VOO
B

o=t .
NP mow=2ddmom-<H<OQNX-
BQXTQO0O<SHNGE O -
== 7> 3 = Bia - I RSN
=
O W - a<.
= -

>

]
QI I TN E < MO HOPQXRNAEANYVO<STZDEMRMOH -

HOWVN2 QN QON # < XY = -

HHOMX VP <T -~-"YUH o QONODgO= % 2> nodg.
Mmoot

NGO ONMFUuNUTE QAP MX<EDW 9 Q0 = H # I
2T OQNNOGOYH RIS H -
NHSNWOPIMDERM$fD XN -2 -<n O -

O U E D - % VU QWEXNOHMOSEINLDP -
<W#*P>PHOQEHOWMO: NI MMEMD#® 'Y

Q#WOQmHMUUYUAHO -—H~<TEROoO>Z2NTIMHNDOQLE -

* O H~<XOdM#$ o NQ=>» o Wo .

Mo <M -2 NQ O
[2]

0N =

. o~

QY H <O v % -
QW H X
= |

H G > #*

W

Lol
o

while during deciphering a function f; is used
m; = fa(ci, ki)

In the simplest case one can assume that

O = mi + ks, =~k
& =m — ks, P =ci+ki
&) =k —my, O =k — ¢

= omi—ki, [P =—ci—k
It is evident that taking the above into account and using the operations in an
arbitrary SGF(g) and the same sequences M and K, one can generate three

Spurious Galois fields 183
Tab. 6. Subtraction Table in SGF(32).

* ABCDEFGHIJKLMNOPQRSTUVWXYZ .7 ! #Y
)
* * ABCDEFGHIJKLMNOPQRSTUVWXYZ.7?!'#7
A A*XGKRZCJOHDVY#IUYE.WPLTBMFS!?NQ
B BR*YHLS .DKPIEWZ%ZJVAF?7XQMUCNGT®# !0
C CPS*ZIMT?ELQJFX.AKWBG!'YRNVDOHUY #
D D%QT=+* . IJNU!'!FMRKGY?BLXCH#ZSOWEPIVA
E EBARU*?7KOV#GNSLHZ'CMYDIY%.TPXFQIJIW
F FXCBSV*!LPW/ HOTMI.#DNZEJA?ZUQYGRK
G GLYDCTW+*#MQXAIPUNJI?”ZEO.FKB!VRZHS
H HTMZEDUX=* NRYBJIJQVOK'!AFP?7GLC#WS . I
I IJUN.FEVY*AOSZCKRWPL#BGQ'!'!HMDY%XT?
J J'KVO?GFWZ=*BPT.DLSXQMZCHR#INEAYU
K KV#LWP'!'HGX .*CQU?EMTYRNADISY%JOFBZ
L L. W/IMXQ#IHY?+«*DRV!FNUZSOBEJTAKPGC
M MD?7XANYRY%JIZ!*ESW#GO0OV . TPCFKUBLAQH
N NIE'!'YBOZSAKJ .#*FTX/JHPW?2ZUQDGLVCMR
0 0SJF#ZCP.TBLK?%*GUYAIQX!VREHMWDN
P POTKGY% .DQ?UCML ! A*HVZBIJRY#WSFINXE
Q QFPULHA?ER!VD.NM#B*IH.CKSZV.XTGJOY
R RZGQVMIB'!'FS#WEONYC*JX?DLT.AYUHKP
S SQ.HRWNJIJC#GTY%XFPOAD*KY'!'EMU?BZVIL
T TMR?ISXOKDY HUAYGQPBE*LZ#FNV!C.WIJ
U UKNS!JTYPLEAIVBZHRQCF*M.%GOW#D?7X
1 VYLOT#KUZQMFBJIWC.ISRDG*N7AHPXY%E!
W WH#ZMPUZLV.RNGCKXD?JITSEH*0'!'BIQYATF
X XG% . NQVAMW?SOHDLYE'!XUTFI=*P#CJRZB
Y YCHA?ORWBNX!TPIEMZF#LVUGJI=*Q¥%DKS.
Z Z?DIB'YPSXCOY#UQJIFN.G%MWVHK=*RAELT
. .U'EJC#QTYDPZ.ZVRKGO?HANXWIL*SBFM
7 ?NV#FKDY%YRUZEQ.AWSLHP!IBOYXJIM=*TCG
H ' HOW%AGLEASV.FR?BXTMIQ#JCPZYKN=*TUD
#EIPXAHMFBTW?GS!CYUNJRY%YKDQ.ZLO=*YV
% WFIQYBINGCUX'!'HT#DZVOKSALERT?.MP =*

different cryptograms if ¢ is even, and four various cryptograms if ¢ is odd. This

is a substantial progress in comparison with the stream-ciphers built over GF(q) of
characteristic 2.

The enciphering procedure using the stream-cipher over SGF(32) in Tab. 8 is
presented. It is left to the reader to verify that using the key K and the equations

m; = CEI) - k,’

m; = c,(-z) + k;

m,t:k,'—c

(3)

respectively, one can obtain the same plain-text from the cryptograms C(), C(2) and

c®.

184 C. Koscielny

Tab. 7. Multiplication Table in SGF(32).

* ABCDEFGHIJKLMNOPQRSTUVWXYZ.?!'#Y
(x)

* k %k %k ok k ok %k %k %k %k k ok ok %k k k ok *k %k ¥ %k k k *k k k *k 3k ¥k k¥ * ¥
A * ABCDEFGHIJKLMNOPQRSTUVWIXYZ R A
B * BCDEFGHIJKLMNOPQRSTUVWXYZ.7?!#9%A
C * CDEFGHIJKLMNOPQRSTUVWIXIXYZ.?!#9%AB
D * DEFGHIJKLMNOPQRSTUVVWIXYZ.?!'#%ABC
E * EFGHIJKLMNOPQRSTUVWXYZ.?!'#Y%ABCD
F * FGHIJKLMNOPQRSTUVWIXYZ.?!'!#%ABCDE
G *GHIJKLMNOPQRSTUVWXYZ.?'#%ABCDETF
H * HI JKLMNOPQRSTUVWXYZ.?!'#%ABCDETFG
I * I JKLMNOPQRSTUVWXYZ.?!'!#%ABCDEFGH
J * JELMNOPQRSTUVWXYZ.?”!'!#%ABCDEFGHTI
K * KLMNOPQRSTUVWXYZ.?!'#%ABCDEFGHTIIJ
L * LMNOPQRSTUVVWXYZ.?7!'"#%ABCDEFGHTIIJK
M * MNOPQRSTUVWXYZ.?7!'!#%ABCDEFGHIJXL
N * NOPQRSTUVWIXYZ.?'#%ABCDEFGHIJKLM
0 * 0PQRSTUVWXYZ.?7!'!'#%ABCDEFGHIJKLMN
P *PQRSTUVWXYZ . ?!'#%ABCDEFGHIJKLMNO
Q * QRSTUVWXYZ.7'#%4ABCDEFGHIJKLMNOP
R *RSTUVWIXYZ ?7t#%ABCDEFGHIJKLMNOPAQ
S * STUVWXYZ.?!'!#%ABCDEFGHIJKLMNOPQR
T * TUVWXYZ.?7'!'#%ABCDEFGHIJKLMNOPQRS
U *UVWXYZ .?27!'#%ABCDEFGHIJKLMNOPQRST
\'} * VWXYZ.7?7!'#%ABCDEFGHIJKLMNOPQRSTTU
w *WXYZ 7'4#%ABCDEFGHIJKLMNOPQRSTUYV
X * XY Z 7' #%ABCDEFGHIJKLMNOPQRSTUVW
Y *Y Z 7t'#%YABCDEFGHIJKLMNOPQRSTUVWX
Z * Z 7' # L ABCDEFGHIJKLMNOPQRSTUVWIXY
. * 7'#%YABCDEFGHIJKLMNOPQRSTUVWIXYZ
7 * 7 ' # Y ABCDEFGHIJKLMNOPQRSTUVWIXYZ.
! * ' #ABCDEFGHIJKLMNOPQRSTUVWIXIYZ. 7"
*# JABCDEFGHIJKLMNOPQRSTUVWIXYZ 7?1
% * WABCDEFGHIJKLMNOPQRSTUVWIXYZ KERLEE

Tab. 8. Enciphering Procedure Using SGF(32)-based Stream-Cipher.

step message key c) c® c®
i m; ki csl) =mi+k; CEQ) =m;—k; cga) =ki —m;
1 H % M I N
2 0] D J # Y
3 M D L A K
4 (0] ? K M W
5 * # # # #
6 S P ? 0 Z
7 U A . K P
8 M L P ! D

Spurious Galois fields 185

Now the way of constructing block-ciphers by means of linear invertible trans-
formations of 4-dimensional vector spaces over SGF(g) will be presented.

One can verify that over an arbitrary SGF(q) the matrix

0 0 a 0

b ¢ d 0
FE =

0 0 0 e

0 f 0O

where a,b,¢,d,e and f denote non-zero elements of SGF(g), has the following in-
verse

—(d/(axb)) 1/6 0 —(c/(b*f))

0

Do 0 0 1/f
1/a 0 0 0
0 0 1/e 0

Let
M= [m,, m2, M3, M4]

be a 4-character plain-text, thus multiplying it by the encrypting matrix one obtains
the cryptogram

0 0 a O
C’:ME':[ml, mg, mg3, m4] (I; (c) z 2 =[c1, ¢, €3, C4]
0 f 0O

Therefore
[cl, ¢z, C3, C4]=[b*M2, cxmo+ fxmy, axmy+dxmg, e*ma]

The decrypting process consists in calculating the product

=(d/(axb)) 1/b 0 —(c/(b+f))

0 0 0 1
M=CD= [€1, C2, €3, Ca] 1/a 0 0 (/)f
0 0 1/e 0

= | cafa=(cr*)f(axb)), e/, csfe, erff~((cxer)/(b+)

= [mi, M2, Mz, M4 }

giving finally the plain-text.

186 C. Koscielny

Adapting these general considerations to SGF(32) with the operation tables as
in Tabs. 57, and posing a = M, b=C, ¢c=F, d=Q, e=2Z and f = S the
following encrypting matrix can be obtained

Using the tables of addition, subtraction and multiplication in SGF(32) one can
easily verify that

* x M % C # ~ @ A x *x %
C F @Q « * x x N | | A x «*
* % % 7 T % % % | | % % A «
L xS x % | * x G x| | * * % A |
and that
-C#*Q [o« M %] (A % * x|
* * * N C F Q x| | A % %
T % * % * x x Z| | %x % A %
| x x G« L xS Kk k] | * * * A |

Let the plain-text be HOMO«xSU M. Splitting it into two 4-dimensional vectors
one can generate the two blocks of cryptogram as follows

« x M«
[HOMO]SZ?Z:QPZG
x5 % %

« x M«
[*SUM]ZI:?;:{UUDOJ
5 x %

Spurious Galois fields 187

Thus one will obtain the cryptogram QPZGUU DO, which can assist in verifying the
decrypting process

C # + Q
* * % N
[QPZG] -lx 0o M o
»T***
| * x G %
[¢ # * Q
* * % N
[UUDO =*SUM]
T * *x *
_**G*

It is obvious that there are many other methods of constructing SGF(q)-based
ciphers. Among them, the most interesting seem to be the methods which take
advantage of the fact that the addition in SGF(q) is not an associative operation.
However, this question is beyond the scope of the paper.

8. Conclusions

The spurious Galois fields are suitable for constructing strong and easily implemen-
ted cryptosystems. If one constructs, for example, a universal stream cipher for the
protection of messages written in the extended ASCII code using addition and sub-
traction over SGF(256) as mutually invertible transformations, one can obtain an
endomorphic cryptosystem of the order of at least 10'°° (very rough, but credible
extrapolation of data from Tab. 1), the degree of which is equal to 256", n denoting
the length of the message. For cryptographic purposes one also can formally con-
struct over SGF(q) similar algebraic objects as over GF(q), viz. linear recurrences,
vector spaces, rings of polynomials, etc. Such constructions, revealing many unusual
properties, may considerably extend the possibility of forming cryptosystems much
more resistant to cryptanalysis than the stream-cipher. The strength of cryptosystems
based on SGF(q)'s results from the facts that there is a huge number od spurious
Galois fields even for rather small order of ¢ (say, several hundreds) and that addition
over SGF(q) is not associative. This very fact proves the superiority of SGF(q) over
GF(q). It is well known that with an accuracy up to isomorphism, there exists only
one GF(q). That is why, in order to increase the strength of the cipher constructed
over GF(q), q should be equal to about 225°. Evidently, the greater is ¢, the more
difficult the cryptanalytics’ work is, but at the same time, enciphering and deciphe-
ring procedures become more complicated and more time-consuming. An immense
number of SGF(q)’s for ¢ > 100 eliminates the necessity of increasing the order of g,
and ensures sufficient security level. One can therefore expect that SGF(21°)-based
ciphers will be more secure than those using operations in GF(225°) with the former
requiring much more lower costs of enciphering and deciphering. Thus spurious Galois
fields are an advantageous alternative of the cryptographic tools exploited up to now,
all the more so as it is possible to construct SGF(q)-based public key cryptosystems.

188 C. Koscielny

It is also important for cryptology that the knowledge about the spurious Galois fields
is still very poor.

The applications of SGF(g)’s should not limit themselves to cryptography. The
author has noticed that there exists a new kind of PN-sequences over SGF(q). This
suggests the existence of (¢¥—1,k) ”linear” codes over SGF(q), which may be cyclic.
It is also to be hoped that SGF(g)’s may be applied in the design of jamming-resistant
Doppler radar systems (Schroeder, 1990 - p.267). To sum up, it seems that SGF(g)’s
are worthy noticing by engineers and researchers.

Acknowledgement

The author thanks J. Irach, M.Sc., for the assistance in implementing the programs
for computing Zech’s logarithms.

References

Huber K. (1990): Some comments on Zech’s logarithms. — IEEE Trans. Inform. Theory,
v.IT-36, pp.946-950.

Imamura K. (1980): A method for computing addition tables in GF(p™). — IEEE Trans.
Inform. Theory, v.IT-26, No.3, pp.367-369.

Koscielny C. (1989):Spurious Galois fields. — Proc. IEEE Pacific RIM Conf. Commun.,
Comput. and Signal Process., Victoria, Canada, pp.416-418.

Koscielny C. and Mochnacki W. (1991): Cryptographic keys for improving the reliability of
ciphers. — Computer Communications, v.14, No.9, pp.557-561.

Lidl R. and Niederreiter H. (1983): Finite Fields. — Addison, Massachusetts: Wesley
Publishing Company, Reading.

MacWilliams F.J. and Sloane N.J.A. (1977): The Theory of Error-Correcting Codes. —
Amsterdam: North Holland.

Menezes A.J. et al. (1993): Applications of Finite Fields. — Boston-Dordrecht-London:
Kluwer Academic Publishers.

Peterson W.W. and Weldon E.J. (1992): Error-Correcting Codes. — Cambridge: MIT
Press.

Schroeder M.R. (1990): Number Theory in Science and Communication With Applications

in Cryptography, Physics, Digital Information, Computing and Self-Similarity. —
Berlin: Springer-Verlag.

Received: October 1, 1994
Revised: January 20, 1995

