Appl. Math. and Comp. Sci., 1997, vol.7, No.1, 5-16

APPROXIMATE CONTROLLABILITY OF DELAYED
DYNAMICAL SYSTEMS

JERZY KLAMEKA*

In the paper linear abstract retarded dynamical systems with lumped and dis-
tributed delays defined in infinite-dimensional Hilbert spaces are considered.
Using frequency-domain methods, and spectral analysis for linear self-adjoint
operators, the necessary and sufficient conditions for approximate relative con-
trollability in finite time are formulated and proved. The method presented
in the paper allows us to verify approximate relative controllability in finite
time for abstract retarded dynamical systems by considering of approximate
controllability in finite time of simpler suitably defined linear abstract dynam-
ical systems without delays. Moreover, as an illustrative example approximate
relative controllability in finite time for linear retarded distributed parameter
dynamical systems with one constant delay is investigated. The results extend
some relative controllability theorems, which are known in the literature, to
more general classes of linear retarded dynamical systems.

1. Introduction

Retarded or hereditary dynamical systems are mathematical models of many process-
es in various areas of science and engineering. The main purpose of the present paper
is to consider the so-called controllability problem for a linear abstract retarded dy-
namical system. Controllability is one of the fundamental concepts in mathematical
control theory (Bensoussan et al., 1993; Klamka, 1991) Roughly speaking, control-
lability generally means that it is possible to control a dynamical system from an
arbitrary initial state to an arbitrary final state using the set of admissible controls.
In the literature there are many different definitions of controllability which depend
on the class of dynamical systems (Bensoussan et al., 1993; Klamka, 1991; 1993b;
Nakagiri, 1987, Nakagiri and Yamamoto, 1989; O’Brien, 1979; Park et al, 1990;
Triggiani, 1975a; 1976; 1978). For infinite-dimensional dynamical systems it is nec-
essary to distinguish between the notions of approximate and exact controllability
(Bensoussan et al., 1993; Klamka, 1982; 1991; 1992; 1993a; 1993b; O’Brien, 1979;
Triggiani, 1975a; 1976; 1978). This follows directly from the fact that in infinite-
dimensional spaces there exist linear subspaces which are not closed. Moreover, for
retarded dynamical systems there are two fundamental concepts of controllability,
namely relative controllability and absolute controllability (Bensoussan et al., 1993;
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Klamka, 1991; 1993b; Nakagiri, 1987; Nakagiri and Yamamoto, 1989). Therefore,
for retarded dynamical systems defined in infinite-dimensional spaces the follow-
ing four kinds of controllability are considered: approximate relative controllability,
exact relative controllability, approximate absolute controllability, and exact absolute
controllability. :

The present paper is devoted to a study of the approximate relative controlla-
bility for linear infinite-dimensional retarded dynamical systems. For such dynamical
systems, direct verification of approximate relative controllability is a rather difficult
and complicated task. Therefore, using frequency-domain methods (Bensoussan et al.,
1993; Kobayashi, 1992; Nakagiri and Yamamoto, 1989) it is shown that approximate
controllability of linear retarded dynamical system can be checked by the approximate
controllability condition for suitably defined and simpler infinite-dimensional dynami-
cal system without delays. General results are then applied for approximate relative
controllability investigations of a distributed-parameter dynamical system with one
constant delay in the state variable.

The results presented in the paper extend to a more general class of abstract
retarded dynamical systems controllability theorems given in (Bensoussan et al., 1993;
Klamka, 1982; 1991; Kobayashi, 1992; Nakagiri, 1987; Nakagiri and Yamamoto, 1989;
O’Brien, 1979; Triggiani, 1976; 1978).

2. System Description and Basic Definitions

First we shall introduce the basic notation and terminology used throughout present
paper. Let X be a separable Hilbert space. For a set E C X, CIE denotes its
closure. For a given real number h > 0, we denote by Lo([—h,0],X) the separable
Hilbert space of all strongly measurable and square integrable functions from [—h, 0]
into X. Moreover, let us introduce the space {Bensoussan et al., 1993; Klamka,
1991; Nakagiri, 1981; 1987; 1988; Nakagiri and Yamamoto, 1989) My([—h,0],X) =
X x La([—h,0],X) denoted shortly by M, which is a separable Hilbert space with a -
standard scalar product

0
(9 5ar, = (0% F) x + (9" 1), = (% FO)  + / <gl(5),f1(8)>xds
Zh

for f=(f° f') € My and g =(¢° ¢") € M.

Let Ag : X D D(A4p) — X be a linear, generally unbounded, self-adjoint and
positive-definite operator with a dense domain D(A4p) in X and a compact resolvent
R(s; Ag) for all s in the resolvent set p(A4p). Under these assumptions Ay has the
following properties (Chen and Russell, 1982; Tanabe, 1979; Triggiani, 1976; 1978):

1. Ap has only pure discrete point spectrum o,(A4p) consisting entirely of isolated
real positive eigenvalues

0<s1<s9<...<8, <., lim s; = 400

22— 00
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Each eigenvalue s; has finite multiplicity n; < oo, ¢ = 1,2,... equal to the
dimensionality of the corresponding eigenmanifold.

2. The eigenvectors z;; € D(Ap), for ¢ = 1,2,... and k = 1,2,...,n,, form a
complete orthonormal set in the separable Hilbert space X.

3. Ay has spectral representation

=00

Agzr = Z Si Z T, Tik) x ik for z € D(Ag)
k=1

=1

4. The fractional powers A§, 0 < a < 1, of the operator Ay can be defined as
follows:

=00

or = Zsz Z T,Tik) x Tik for z € D(AR)
k=1

i=1

=00
where D(A§) = {x €X: E 3 E Hz,zi) x| < oo}.
1=1 k=1
5. The operators A%, 0 < a < 1, are self-adjoint, positive-definite with dense
domains in X and —A§ generate analytic semigroups on X. Particularly,
—Ap generates an analytic semigroup 7'(¢) : X — X for t > 0.

We shall consider linear abstract retarded dynamical control systems described
by the following functional differential equation (Nakagiri, 1981; 1986; 1987; 1988;
Nakagiri and Yamamoto, 1989; O’Brien, 1979; Park et al., 1990; Tanabe, 1992):

k=p 0 j=m
£(t) = —Aoz(t) + > _ ck AT z(t — hi) +/ ALzt +7)dr + Y biui(t) (1)

k=1 —h 7=1

with initial conditions

2(0)=¢° € X and a(t) =g¢'(t) € Lz([—h, o],X) (2)
where 0 < h; < hg < ... < h, < ... < hp £ h are constant delays, ¢, € R for
r=1,2,...,p are given constants, co(-), defined on [—h,0], is a real-valued Holder-
continuous function, 0 < a, < 1 for r = 0,1,...,p are fractional powers of the

operator Ag”, bj € X for j=1,2,...,m
It is generally assumed that the admissible controls are such that wu;(-) €
L2([0,00),R) for j =1,2,...,m

It is well-known that the retarded system (1) with initial conditions (2), has for
t > 0 a unique mild solution z(-;g,u) taking values in X (Nakagiri, 1981; Tanabe,
1992; Travis and Webb, 1974; 1976; Webb, 1976).
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In the dynamical system (1) the space of control values is finite-dimensional and
the control operator B : R™ — X is given by

Bu= %nbjuj(t) (3)
j=1

Since X is a Hilbert space and X = X*, the adjoint operator B* : X — R™ is
defined as follows (Nakagiri and Yamamoto, 1989):

Bz = <(b1,z)X,(bg,x)x,...,(bj,a;)x,...,(bm,a:)x) (4)

To shorten the notation, let us introduce a self-adjoint operator 7(s) (Nakagiri,
1981; 1987; 1988; Nakagiri and Yamamoto, 1989; Tanabe, 1992):

r=p 0
n(s) = ZX(_OO, h,)(8)crAgT ‘/co('r)A(‘)"0 dr for s € [-h,0] (5)
—h

where x g is the characteristic function of the interval E.

In what follows, we shall give short comments on the spectral decomposition of
the retarded dynamlcal system (1). The detailed analysis of this problem can be
found e.g. in (Nakagiri, 1987; 1988; Webb, 1976).

First of all, for each z € C we introduce the densely-defined closed linear operator

r=p 0
A(z; Ag,m) = 2z + Ag — Zcr exp(—zhy)Ag" — /co('r) exp(z1)Ag° dr (6)
r=1 “h

where I denotes the identity operator on X. The retarded resolvent set p(Ag,n) is
defined to be the set of all values z € C for which the operator A(z;Ag,7) has a
bounded inverse with dense domain in X. In this case A(z; Ag,m)7! is the so-called
retarded resolvent and is denoted by R(z;Ao,7). The complement of p(Ag,7) in
the complex plane is called the retarded spectrum and denoted by o(Ao,n). Tt is
well-known that the retarded resolvent set p(Ag,n) is open in C and the retarded
resolvent R(z; Ag,n) is an analytic function for z € p(Ag, 7). Moreover, let us denote
by po(Ao,n) the connected component of the resolvent set p(Ag,7) which contains
a right half-plane of the complex plane.

Let z(t;g,0) for g € My([~h,0],X) be the mild solution of the homogeneous
dynamical system (1). Define a family of bounded linear operators S(t) : My — M,,
for t > 0 by

S(t)g = (a(t;9,0), zu(59,0)) for g€ M, (7)
where z:(s;9,0) = z(t + s;9,0) for s € [-h,0]. Then S(t) is a strongly continuous

semigroup of bounded linear operators on M. Let A be the infinitesimal generator of
a semigroup S(t). Since the operator 4, has compact resolvent, the spectrum o(A)
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is a pure discrete-point spectrum consisting entirely of a countable set of eigenvalues.
In fact, we have

o(4) = | o ®)
i=1
where
r=p
o; = {z €C:Ai(2) =z+si— »_ crexp(—zhy)si
r=1
0 .
B / co() exp(z7)si dr = 0 ®)
~h

o; being non-empty for 1 =1,2,....

Now, we shall introduce various concepts of controllability for the retarded dy-
namical system (1). It is well-known that for retarded dynamical systems there exist
two fundamental notions of controllability, namely relative controllability and abso-
lute controllability. In the present paper, we shall concentrate on relative controlla-
bility. Since the dynamical system (1) is defined in an infinite-dimensional space X,
it is necessary to distinguish between exact relative controllability and approximate
relative controllability. However, since the control operator is finite-dimensional and
therefore compact, the dynamical system (1) cannot be exactly relatively controllable
for an infinite-dimensional space X (Triggiani, 1975b; 1977). Thus, in the sequel,
we shall concentrate on approximate relative controllability. First of all, let R, and
R, t > 0 denote attainable sets respectively given by

R, = {x(t;O,u) €EX:ue Lz([O,t],]Rm)} and Reo=|JR,  (10)
>0

Definition 1. The dynamical system (1) is said to be approzimately relatively con-
trollable in time t > 0 if Cl(R,) = X.

Definition 2. The dynamical system (1) is said to be approzimately relatively con-
trollable in finite time if Cl(Ry) = X.

Several others definitions of controllability for retarded dynamical systems can
be found in the monographs (Bensoussan et al., 1993; Klamka, 1991).

3. Approximate Controllability

In this section, we shall formulate and prove criteria for approximate relative con-
trollability in finite time of the retarded dynamical system (1). First of all, we shall
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introduce the following notation (Bensoussan et al., 1993; Klamka, 1991; Triggiani,
1976):

(b1, iy (b2, Taa)y -+ (bj,Tir)y -+ (bm,Tit)y
(b, za2)y (b2, Tiz)y -+ (b, Tiz)y -+ (bm,Tiz)y
Bi=| ... for i=1,2,... (11)
(b1, Tik)y (b2, Tir)y - (b Tik)y - (bm,Tik)y
(b1, Tin ¢ (b2, Tini Jy +++ (b5, Ting Y+ (B Ting Yy

Now, let us recall a modified version of some necessary and sufficient conditions
for approximate relative controllability in finite time.

Lemma 1. (Nakagiri and Yamamoto, 1989) The dynamical system (1) is approzi-
mately relatively controllable in finite time if and only if

[ XKerB*R(z; Ao,n) = {0} (12)

2€po(Ao,m)
Theorem 1. The dynamical system (1) is approzimately relatively controllable in
finite time if and only if

rankB; =n; for 1=1,2,... (13)

Proof. (Necessity) To obtain a contradiction suppose that there exists at least one
index %9 > 1 such that

rank B;, < n;, (14)

Therefore, since the rows of B;, are linearly dependent, there exist real coefficients
kznio

Yo, k=1,2,...,ni5, Yopy Y2 >0 such that

k=n;, k:nio

D b Tigk) x = D (bjy NeTiok) x
k=1

k=1
k=ni0
= <bj, Z 'ka'igk> = <bj’z0>X =0 for ] = 1,2,. .., Mm (15)
k=1 X

where 10 = 2:2?" Tk Zigk is a non-zero element. Therefore, by formulae (4), (6), (9)
and (15) we deduce that there exist an eigenvalue z, € o;, and a non-zero element
z° € Ker A(zo; Ag,n) such that

B*s® = ((bl,zO)X,(bz,wo)x,...,(bj,xo)x,...,(bm,zo)x) =0 (16)

Let z € p(Ag,n). Since all the operators A§ for 0 < a < 1 are self-adjoint, by (6) the
operator A(z; Ap,n) is normal and, moreover, its inverse A(z;A4g,n)~! = R(z; Ao, n)
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is also normal for all z € p(Ap,n). Furthermore, by (6) and (9) for a given z €
p(Ag,n) the eigenvalues of the retarded resolvent R(z;Ag,7n) are equal to A;(2)7! €

C, for 1 =1,2,.... Therefore, for z € X we have
T=p 0 -1
R(z; Ag,m)z = | 21 + Ao — ZCT exp(—zh,) Ay — /co('r) exp(27)Ag° dr
r=1 Y
r=p 0 -1
= 2T+ 40— Y crexp(—2hy) A5 - / co(7) exp(27) AS° dr
r=1 ey
=00 k=n;
X Z (I,.’I}ik)x Tk
i=1 k=1
=00 r=p 0 -1
= Z Z+ 8 — ZCT exp(—zh,)si™ — /Co(T) exp(z7)si® dr
=1 r=1 Zh
k=n; 1=00 _1 k=n;
X Z (.’E,:L‘ik)X Tik = Z (AL(Z)) Z (-T7mik)x Tk (17)
k=1 i=1 k=1

Therefore, from (15)—(17), it follows directly that

B*R(z; Ao, n)a® = B* ((Aio (z)))_lxo

= ((Aio(z)))_lB*xo =0 foreach z € p(4g,n) (18)

This contradicts (12) and therefore, by Lemma 1, the dynamical system is not ap-
proximately relatively controllable in finite time. Hence the necessity follows.

(Sufficiency) Since the operator —A, generates an analytic semigroup T(t) for
t > 0, (12) is the necessary and sufficient condition for approximate controllability
in any time interval for the dynamical system without delays (Klamka, 1991; 1993b;
Triggiani, 1975a; 1976; 1978)

j=m

#(t) = —Aoz(t) + ) byu;(t) (19)

Jj=1

Since attainable sets for the dynamical systems (1) and (19) are the same for
t € [0,h1], Definitions 1 and 2 imply directly approximate relative controllability
in finite time for the dynamical system (1), and the proof is complete. |
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Corollary 1. Suppose that all the eigenvalues s;, 1 =1,2,... are simple, i.e. n; =1
for i =1,2,.... Then the dynamical system (1) is approzimately relatively control-
lable in finite time interval if and only if

j=m

ST (bj,a)% #0 for i=12,... (20)

Jj=1

Proof. From Theorem 1 it follows immediately that for the case when multiplicities
n; =1 for 1=1,2,... the dynamical system (1) is approximately relatively control-
lable in finite time if and only if the m-dimensional row vectors

B; = (blvxi)x (b2awiv)X (bj:zi)x (maxl) #0 (21)

for i =1,2,.... Since the relations (20) and (21) are equivalent, Corollary 1 follows -
immediately. [ |

Corollary 2. The dynamical system (1) is approzimately relatively controllable in
finite time if and only if the dynamical system without delays

() = — AP (t) +J§ bui(t), 0<fB<oo (22)

is approximately controllable in finite time for some (.

Proof. Comparing approximate controllability results given in (Bensoussan et al.,
1993; Klamka, 1991; Triggiani, 1976) with equalities (13) in Theorem 1, we conclude
that the retarded dynamical system (1) is approximately relatively controllable in
finite time if and only if the dynamical system without delays (22) is approximately
controllable for 8 = 1. On the other hand, according to (O’Brien, 1979), approximate
controllability of the dynamical system (22) for 8 = 1 is equivalent to its approximate
controllability for each g8 € (0,00). This complete the proof. [ ]

4. Example

Let us consider a retarded dynamical system with distributed parameters described
by the following partial differential equation:

0 j=m
wi(t,Y) = —0Wyyyy(t,y) + cwyy (t — h,y) +/ Wyy(t+7,y)d7 + Z bi(y)u;(t) (23)
Zn =1

defined for ¢ > 0, y € [0, L], with homogeneous boundary conditions
w(t,0) = w(t, L) = wyy(t,0) = wyy(t,L) =0 (24)
and initial conditions

w0,9) = ") € Lo([0,1L,R) = X and w(t,y) = ¢'(t,9) € Ly([-h, 01 X) (25)
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where b;(y) = b; € L2([0,L],R) = X, j = 1,2,...,m are given functions, u;(t) €
Ly([0,00),R), 7 =1,2,...,m are scalar control functions, h > 0 is a constant delay,
a is a given positive constant, ¢ is a given non-zero real constant.

The retarded linear partial differential equation (23) can be expressed in an
abstract form (1) by substituting w(¢,y) = z(¢t) € X and using the unbounded linear
differential operator Ap : X D D(Ap) — X defined as follows:

Aoz = Aguw(y) = awyyyy‘(y) (26)
D(4o) = {z=w(y) € H([0,L),R) : w(0) = w(L) = wyy (0) = wyy (L) = o} (27)

where H*([0,L],R) denotes the fourth-order Sobolev space.

The unbounded linear differential operator Ay has the following properties
(Bensoussan et al., 1993; Klamka, 1991; Triggiani, 1976):

1. Ap is self-adjoint and positive-definite with dense domain D(A4g) in X.

2. There exists a compact inverse Ay' and, consequently, the resolvent R(s; Ag)
of Ay is a compact operator for all s € p(A4y).

3. Ap has the spectral representation

Agz = Agw(y) = si(z,zi)y z; for z € D(Ap)
1

[
8

T

where s; > 0 and z;(y) € D(Ao), ¢ =1,2,... are simple (n; = 1) eigenvalues
and the corresponding eigenfunctions of Ay, respectively. Moreover

.\ 4 .
_ m N E . [ Ty
s,—a(L) , zi(y) = 7 sin <_L ) for y € [0, L]

and the set {z;(y), i =1,2,...} forms a complete orthonormal system in X.

4. Fractional powers AJ, 0 < a <1 can be defined by
=00 =00
Afz = A§w(y) = Z Si (T, Ti) y T = Z s / z;(y)dy | z:(v)
=1 =1

for © € D(A§), and each of them is also a self-adjoint and positive-definite
operator with a dense domain in X. Moreover, it should be noted that the fact
that Ap is a differential operator does not ensure that Ag is also a differential
operator. However, particularly for a = 1/2, we have

AP = AYPw(y) = —Vawy,(y)

D(A(llm) = {:v =w(y) € X : w(0) =w(l) = 0}
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Therefore, the unbounded linear differential operator defined by (26) and (27)
satisfies all the assumptions stated in Section 3 and hence eqn. (23) has the following
abstract representation:

0

B(t) = —Agz(t) — \/iaAg/%;(t —h) - ‘1\/5 At + 1) dr +J§ bi(v)u()  (29)
—h Jj=1

Thus, by using general results of Section 3 it is possible to formulate a necessary and
sufficient condition for approximate relative controllability in finite time of the linear
retarded distributed-parameter dynamical system (23).

Theorem 2. The linear retarded partial differential dynamical system (23) is ap-
prozimately relatively controllable in finite time if and only if '

2

j=m [ L -
> /\/gbj(y)sin(’%y) dy| #0 for i=12,... (30)
0

J=1

Proof. Let us observe that the dynamical system (23) satisfies all the assumptions of
Corollary 1. Therefore, taking into account the analytic formula for the eigenvectors
zi(y) € Lx([0, L], R), ¢ =1,2,... and the form of the inner product in the separable
Hilbert space L2([0, L], R), from (20) we obtain directly (30). u

5. Final Remarks

In the present paper relative controllability problems for linear abstract retarded dy-
namical systems with lumped and distributed delays have been considered. Using only
the resolvent methods and spectral analysis of unbounded linear operators the nec-
essary and sufficient conditions for approximate relative controllability in finite time
have been formulated and proved. These conditions allow us to investigate approxi-
mate relative controllability for abstract retarded dynamical systems by checking
approximate controllability of simplified linear abstract dynamical systems without
delays.

References

Bensoussan A., Da Prato G., Delfour M.C. and Mitter S.K. (1993): Representation and
Control of Infinite Dimensional Systems. — Vol.I and Vol.II, Boston: Birkhauser.

Chen G. and Russell D.L. (1982): A mathematical model for linear elastic systems
with structural damping. — Quarterly of Applied Mathematics, Vol. XXXIX, No.4,
pp.433-454.

Klamka J. (1982): Controllability of dynamical systems with delays. — Systems Science,
Vol.8, No.2-3, pp.205-212.

Klamka J. (1991): Controllability of Dynamical Systems. — Dordrecht: Kluwer Academic
Publishers.



Approximate controllability of delayed dynamical systems 15

Klamka J. (1992): Approzimate controllability of second order dynamical systems. — Appl.
Math. and Comp. Sci., Vol.2, No.1, pp.135-146.

Klamka J. (1993a): Constrained controllability of linear retarded dynamical systems. —
Appl. Math. and Comp. Sci., Vol.3, No.4, pp.647-672.

Klamka J. (1993b): Controllability of dynamical systems — a survey. — Archives of Control
Sciences, Vol.2, No.3/4, pp.281-307.

Kobayashi T. (1992): Frequency domain conditions of controllability and observability for
dustributed parameter systems with unbounded control and observation. — Int. J. Sys-

tems Sci., Vol.23, No.11, pp.2369-2376.

Nakagiri S. (1981): On the fundamental solution of delay-differential equations in Banach
spaces. — J. Diff. Equations, Vol.41, No.3, pp.349-368.

Nakagiri S. (1986): Optimal control of linear retarded systems in Banach spaces. — J.
Math. Analysis and Applications, Vol.120, No.1, pp.169-210.

Nakagiri S. (1987): Pointwise completeness and degeneracy of functional differential equa-
tions in Banach spaces. General time delays. — J. Math. Analysis and Applications,
Vol.127, No.2, pp.492-529. -

Nakagiri S. (1988): Structural properties of functional differential equations in Banach
spaces. — Osaka Journal of Mathematics, Vol.25, No.3, pp.353-398.

Nakagiri S. and Yamamoto M. (1989): Controllability and observability of linear retarded
systems in Banach spaces. — Int. J. Control, Vol.49, No.5, pp.1489-1504.

O’Brien R.E. (1979): Perturbation of controllable systems. — SIAM J. Control and Optim.,
Vol.17, No.2, pp.175-179.

Park J., Nakagiri S. and Yamamoto M. (1990): Maz-min controllability of delay- differential
games in Banach spaces. — Kobe Journal of Mathematics, Vol.7, No.1, pp.147-166.

Tanabe H. (1979): Equations of Evolution. — London: Pitman.

Tanabe H. (1992): Fundamental solutions for linear retarded functional differential equa-
tions in Banach space. — Funkcialaj Ekvacioj, Vol.35, No.1, pp.149-177.

Travis C.C. and Webb G.F. (1974): Ezistence and stability for partial functional differential
equations. — Trans. AMS, Vol.200, No.2, pp.395-418.

Travis C.C. and Webb G.F. (1976): Partial differential equations with deviating arguments
in the time variable. — J. Math. Analysis and Applications, Vol.56, No.2, pp.397-409.

Triggiani R. (1975a): Controllability and observability in Banach space with bounded opera-
tors. — SIAM J. Control and Optim., Vol.13, No.2, pp.462—-491.

Triggiani R. (1975b): On the lack of ezact controllability for mild solutions in Banach space.
— J. Math. Analysis and Applications, Vol.50, No.2, pp.438-446.

Triggiani R. (1976): Eztensions of rank conditions for controllability and observability in
Banach space and unbounded operators. — SIAM J. Control and Optim., Vol.14, No.2,
pp-313-338.

Triggiani R. (1977): A note on the lack of exact controllability for mild solutions in Banach
spaces. — SIAM J. Control and Optim., Vol.15, No.3, pp.407-11.

Triggiani R. (1978): On the relationship between first and second order controllable systems
in Banach spaces. — SIAM J. Control and Optim., Vol.16, No.6, pp.847-859.



16 J. Klamka

Webb G.F. (1976): Linear functional differential equations with L2 initial functions. —
Funkcialaj Ekvacioj, Vol.19, No.1, pp.65-T77.

Received: June 4, 1996
Revised: December 10, 1996



