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FAST-LEARNING NEURO-FUZZY PID-CONTROLLER
WITH MINIMAL NUMBER OF FUZZY REGIOINS

ANDRZEJ PIEGAT*, MARCIN PLUCINSKI*

Some problems connected with learning neuro-fuzzy controllers are presented
and then the concept of a neuro-fuzzy PID-controller with a minimal number
of fuzzy regions is discussed. The controller has soft performance, which distin-
guishes it from classical fuzzy controllers. It is characterized by short training
time and genetic search algorithms are not required. The advantages mentioned
above were achieved owing to the application of linear AND and OR operators.
Learning results of the controller in a system with reference model are presented
in the final part of the paper.

1. Introduction

A great advantage of fuzzy logic consists in a possibility of transforming the human
knowledge about the real system into mathematical form of a fuzzy model describing
inputs/output causalities of the system.

The first fuzzy models of technical systems were created based only on the system
expert’s knowledge (Abel, 1991). Then it became evident that the human knowledge
suffices only for modelling simplest systems with at most two inputs. Learning the
inputs/output causalities and real-time control of three-input plants by a man is
practically impossible, because of his limited perception and reaction speed.

It was also claimed that the knowledge of various experts about the same system
can be different, because it is burdened with subjectivity and observation errors of
a particular expert. Achieving the objective system knowledge would be possible by
learning with inputs/output measurement data. Since neural networks (NNs) have
this ability, a fusion of fuzzy logic with them was made, which resulted in creation
of neuro-fuzzy networks (NFNs), (Grant and De Bruijn, 1993; Horikawa et al., 1992;
Masuoka et al., 1990; Preuss and Tresp, 1994; Takagi, 1990). Great expectations were
connected with NFNs.

NFNs were expected to combine the advantages of fuzzy logic such as

e operating with qualitative structured knowledge in the form of inference rules
IF A THEN B,

¢ 3 possibility of understanding and interpreting the fuzzy model by a man,
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e a possibility of introducing the initial qualitative knowledge about the system
into a fuzzy model,

e a possibility of supplementing a fuzzy model with the use of knowledge acquired
during the system operation,

with the advantages of neural networks such as:
o the ability to learn on the basis of numerical inputs/output measurement data,

e objectivity of the learning process (independence from subjective errors of a
system expert).

However, investigations of NFNs brought about some disappointments (Preuss
and Ockel, 1995). It turns out that NFNs adopt not only the advantages of their
components but also their disadvantages, e.g. difficulties in the learning process which
are related to getting stuck in local minima. The learning process is usually very
long and it should be repeated for several starting points (genetic algorithms) and
nevertheless it often fails.

The NFNs were expected to allow for extraction of inference rules IF A THEN B,
i.e. qualitative knowledge about the system. However, it turns out, in practice, that
the learning results do not have integer (0 or 1) coefficients for particular rules but
only fractional ones (Pfeifer, 1995). This makes it impossible to evaluate which rule
is univocally true and forces one to round coefficients, which decreases the model
accuracy. Also, the application of RBF-networks for fuzzy systems modelling did not
produce expected results (Preuss and Ockel, 1995).

Fuzzy and neuro-fuzzy controllers are often characterized by a very violent action
which increases control costs and complicates set mechanisms of plants (Piegat and
Baccari, 1995). The above-mentioned disadvantages of NFNs made some scientists go
over the creation of fuzzy models with direct knowledge extraction from the system
measurement data (Babuska and Verbruggen, 1995; Baldwin and Martin, 1995; Preuss
and Ockel, 1995). What is the reason of all the said problems with NFNs?

2. Linear AND and OR Operators

Investigations carried out by the authors have shown that the main reason behind the
difficulties in learning NFNs is using classical nonlinear fuzzy-set intersection (AND)
and union (OR) operators (Piegat, 1996). For the intersection of two fuzzy sets A
and B the following operators of t-norm are used most often (Wang, 1994):

e MINIMUM:

Mmanp(z) = min [mA(ar), mB(z)] (1)
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¢ ALGEBRAIC PRODUCT:
mang(z) = ma(z)mp(z)

where m4(z) and mp(z) are the membership functions of the fuzzy sets A and B,
respectively. The following union operators of two fuzzy sets are widely used.

o MAXIMUM:
maup(T) = max [mA(m), mB(m)} (2)
¢ BOUNDED SUM:

maupg(z) = min [1, ma(z) +mB(z)]

Let us now investigate the system with two inputs and one output shown in
"Fig. 1.
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Fig. 1. Two-input-one-output system (d), membership functions
of the inputs z1 (a) and z2 (b), and the output y (c).
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Let the input-output causalities be described by the following inference rules:
R1: IF (zjisabouta;) AND (zsisaboutd;) THEN (yisaboutc;
R2: IF (z;isabouta;) AND (zsisaboutbs) THEN (yisaboutcs

(
(

R3: IF (z;isabouta;) AND (zgisaboutbs) THEN (yisaboutcs
(

(
R4: IF (zpisaboutay) AND (xzisaboutd;) THEN (yisaboutcy
(

R5: IF (z;isaboutas) AND (zgisaboutb,

R6: IF (z;isaboutas) AND (xsisaboutbs) THEN (yisabout cg

R8: IF (z;isaboutaz) AND (z;isabout by

)
)
)
)
THEN (yisaboutcs)  (3)
)
)
THEN (y is about cg)
)

)
)
)
R7: IF (ziisaboutaz) AND (zsisaboutd;) THEN (yisaboutcy
)
)

R9: IF (z;isaboutas) AND (zsisaboutbs) THEN (yisaboutcy

The membership functions from Fig. 1 and the rules (3) make a full fuzzy mo-
del of the system. It should be noted that the model has 15 degrees of freedom
which/must be appropriately tuned to get a high accuracy. . These are the coeffi-
cients ai, a2, as, b1, by, b3 determining the input membership functions (Fig. 1) and
c1,...,c9 for the output singleton positions.

Since the performance of a fuzzy system depends on the region in which the
actual inputs and output of the system remain, we introduce the following logical
functions:

1 ifas <z <az 1 if by < 2y < b3
wl(zl) — and 'LUQ(.’L‘Q) = : (4)

0 otherwise 0 otherwise

The membership functions of the linguistic values used in the rules (3) can be
expressed in the form

ay — T
mal(l‘l) = (az — ai)ml, maz(lvl) =1- ma1($1) _mQS(II)

T —a
Ma3(@1) = (a; - az)wl

by — py_ (5)
mp1 (22) = (b2 -y )’wz, mp2(Z2) = 1 — mp1(z2) — mp3(x2)

— b

mas(72) = (Z-—bj) 2

It can be proved by the output calculation for the network in Fig. 2 (Piegat,
1996) that with ALGEBRAIC PRODUCT as the union operator in rules (3) the
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fuzzy model performs the mapping of the inputs z; and zs into the output v of the
form

y = Ey + (By + Eyz1)W1 + (B3 + Eazi)wr + (EBs + Egxe )Wo
+ (E7 -+ Egza)ws + (Eg + FEioz1 + Er122 + Eio2122)W1 Wo
+ (E13 + E1421 + F15%2 + E162122)W1we
+ (Er7 + E1s71 + F19%2 + EgoZ122)w1 Wy
+ (Fa1 + Egx1 + Eyszy + Eaum122)wiwe (6)

In the mapping (6), E; are constant coefficients. Their values depend on parame-
ters a;, b;, ¢; of membership functions. From formula (6) it follows that the surface
of the mapping (z1, z2) — ¥ is nonlinear and its form and position depend on up
to 25 coeflicients E; which must be determined in the learning process of the model
with input/output data of the real system. However, in the fuzzy model (rules (3) and
membership functions in Fig. 1) we have only 15 degrees of freedom at our disposal
(the parameters a;, b;, ¢;). In this situation (a shortage of degrees of freedom), can
the fuzzy model surface be adapted to the real system surface? The answer is: No or
with great difficulties.

The adaptation can usually be performed only after multiple starts from various
initial points (genetic algorithms) and the accuracy of the model achieved is not high.
If instead of ALGEBRAIC PRODUCT other operators of t-norm (Wang, 1994), e.g.
the MINIMUM operator, are used, the complexity of the mapping (z;, z2) — ¥ and
the number of coefficients increase. This explains the difficulties in learning NFNs
reported in the literature and experienced also by the authors.

The question arises: How could the learning effectivity of NFNs be increased?
Theoretical and experimental investigation have shown (Piegat, 1995; 1996) that the
adaptation (learning) effectivity increases substantially when linear intersection and
union operators are used which are defined as follows:

e The linear intersection operator of fuzzy sets A1 N...NA,, i.e. ARITHMETIC
MEAN (MEAN):

(7)

1 n
Vz:iman..na,(z) = n ; ma,(z)
MEAN: [0,00)" — [0,0), z€ X

e The linear union operator of fuzzy sets A; U...UA,, i.e. ARITHMETIC SUM
(SUM):

VT :ma,u.ua,(z) = ZmA-i ()
i=1
SUM: [0,00)" — [0,0), z€X

where X is the universe of discourse.
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The application of these operators induces a transformation of fuzzy sets being
the basis of fuzzy modelling into fuzzy-bag sets (Driankov et al., 1993; Piegat, 1996;
Zimmerman, 1996). To explain the notion of the “fuzzy-bag set”, the notions “bag”
and “fuzzy bag” have to be clarified.

A bag A is any collection of elements drawn from the universe of discourse X.
Multiple copies of the same element are allowed. A fuzzy bag B is the bag of pairs:
(element z, membership degree of z to the bag B). Multiple copies of the same
element z; in the pairs are allowed and membership degrees of the copies z; in
different pairs may be different. Such a situation occurs in defuzzification in learning
neuro-fuzzy networks when two or more simple rules activate the same singleton with
different membership degrees. When classical nonlinear operators, e.g. MAX, are
used, some information is lost and the neuro-fuzzy model accuracy is worse. A fuzzy
bag B can be characterized as follows:

B:{(w,ug(w))lzéX} with pp: X —[0,1]

A fuzzy-bag set C(B) is a set achieved by transformation of the original fuzzy
bag B containing multiple elements z; in its pairs (z, pp(z)) into a fuzzy set C(B)
without multiple elements. The membership degree of the elements z to a fuzzy-bag
set C(B) can be defined by the membership function uc:

pe(zk) =Y psji(z), po: X —[0,00]

=1

where m is the multiplicity of the element zj in pairs (z, pp(z)) of the original fuzzy
bag B. To calculate the membership to a fuzzy-bag set, an operator with additivity
feature must be used. But the classical operators do not allow for additivity.

The main advantage of the linear operators MEAN and SUM is that they give a
linear interpolation surface connecting the points of the input-output space defined by
the rules of a fuzzy model, whereas the interpolation achieved with classical operators
is nonlinear. As will be shown, it is of great importance. A fuzzy-bag set is a more
general notion than a fuzzy set.

With the linear operators AND and OR in the model (3)-(5), a segment-linear
surface of the fuzzy model was achieved by successively calculating the elements’
outputs in the network of Fig. 2:

y = FEy+ (E1 + Ezwl)ﬁl + (Eg + E4z1)w1 + (Es + Esa?z)wz + (E7 -+ Eg$2)w2 (9)

For complete definition of this surface, only nine E; coefficients should be de-
termined. And the fuzzy model (3) has 15 degrees of freedom at its disposal. So we
have here an excess of degrees of freedom, which accelerates considerably learning the
NFN and increases the final accuracy. This was confirmed by experiments made by
the authors and their collaborators (Piegat et al., 1996). In what follows, a nonlinear
fuzzy PID controller working with linear AND/OR operators will be presented.
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3. Structure of the Neuro-Fuzzy PID Controller with Minimal
Number of Fuzzy Regions

The controller gets the actual value of the control error e and calculates the values
of the numerical integral ey and of the numerical derivative ep of the error (Fig. 2).
The signals ep, ey and ep are the inputs of the fuzzy part of the controller.

The controller realizes the following rule base:

Rl: IF [(e,, = p) AND (e; = p) AND (eq = p)] THEN [MT = M, max(k1p OR — kln)]

R2: IF [(ep = p) AND (e; = p) AND (eq = n)] THEN [Mr = M, max(kap OR — 1%)]
R3: IF [(ep = p) AND (e; = n) AND (e = p>] THEN [MT = M, max (kap OR — kgn)]
R4: IF [(ep — p) AND (e; = n) AND (eq = n)] THEN [MT = M, max(ksp OR — k4n)]
R5: TF [(e,, = n) AND (e; = p) AND (eg = p)] THEN [Mr = My max (ksp OR — kfm)] (10)
R6: IF [(ep = n) AND (e; = p) AND (eq = n)] THEN [M, = M, max (kop OR — kﬁn)]
RT: IF [(e,, = n) AND (e; = n) AND (eq = p)] THEN [M, = M, max(krp OR — k7n)]

Il

R8: IF [(ep = n) AND (e; = n) AND (e, = n)] THEN [Mr = M, max(ksp OR — kgn)]

The symbols ‘p” and ‘n’ mean ‘positive’ and ‘negative’, respectively. The coeffi-
cients k;p and k;n, tuned in the learning process, determine how much the conclusion
of the rule R; should activate the positive or negative output singleton (M, max Or
— M, max). The values of these coefficients can vary within the interval [0,1]. M, max
means the maximal output value of the controller. The proposed controller works in
the space with a minimal number of fuzzy regions (Fig. 3).

— ,

A 4

€

Fig. 3. Fuzzy regions of the neuro-fuzzy PID controller.
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Such a number of regions can be achieved only when fuzzification of individual
controller inputs ep, e; and ep is realized merely with two linguistic values: positive
and negative (Fig. 4).

Defuzzification is carried out with singletons, according to

M, (k) = (H)Mm (11)

where f, and f, denote the activation degrees of the positive and negative output
singletons resulting from the rule conclusions (10), respectively.

A m my (€ m, (&) = 1

negative (n) 1 positive (p)

L a
2k

2%
Fig. 4. Inputs fuzzification in the neuro-fuzzy PID controller.

The controller has 11 degrees of freedom (Kp, K1, Kp, k1p, - . ., ksp) undergoing
the learning process. However, because of the following specific symmetry condition
of the controller:

kip =1— k‘(g_i)p, kin=1—kip, kip=1, kgp=0 (12)

the number of tuned parameters could be reduced to 6 (Kp, K1, Kp, kap, ksp, kap)-

4. Experiment

The process of learning the NF-PID controller was realized in the so-called direct
structure (Korbicz et al., 1994), see Fig. 5.

Learning of this type, rarely found in the literature, was performed with the
assumption of the plant-model knowledge (the motion model of an underwater vehi-
cle). In the learning process with control system reference model no human knowledge
(a system expert’s knowledge) is needed. The plant model, described more accurately
in (Piegat and Plucifski, 1995), is shown in Fig. 6.
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Fig. 5. Structure of the learning system of the neuro-fuzzy PID controller.

Fig. 6. Neural model of the plant (an underwater vehicle).

The integration neuron appearing in this model, realized numerically, is rare in
neural networks and was not found by the authors in the literature. It was proved
that the error € can be also backpropagated through the integration neuron.

As the reference model for the whole control system, the following model was
applied:

(13)

Figure 7 shows a triangle reference signal 1y and the resulting reference model
output 9,,. These signals were used in learning the NF-PID controller with back-
propagation method with momentum, (Korbicz et al., 1994; Tadeusiewicz, 1993).
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Fig. 7. Signals used in learning the neuro-fuzzy PID controller.

Figure 8 shows the convergence of the learning error € = %, —%. It can be seen
that stable convergence of the learning process was not achieved. But the process
came to a repeated oscillation cycle with minimum ¢ = 0.077 (the initial error was
€ = 0.36). The minimal error value was achieved after 21696 learning cycles without

application of genetic algorithms search. The learning time was about two hours (PC
486 DX2, 66 MHz).
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Fig. 8. Variations of the learning error for the NF-PID controller.

Figure 9 shows the response of the reference model 4., and of the control system
to the unit step as the reference signal ) before learning (the initial parameters of
the controller: kp = 1, ky = 0.5, kp = 2, kop = kzp = kap = 1), and after learning
(the determined parameters: kp = 0.596612, k; = 1.76949, kp = 2,24621, ko, =
0.52887, k3, = 0.655561, kap = 0.679226, other coefficients according to (12)). Such
results were achieved in the second learning experiment. The authors also investigated
other set intersection and union operators (nonlinear: MINIMUM and MAXIMUM).
In this case, the learning process was longer and, in spite of using various starting
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points (the initial parameters of the controller), the foregoing good results were not
achieved.
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Fig. 9 Step response 1 of the control system with the NF-PID
controller and of the reference model ..

Figure 10 shows the responses of the reference model 1,, and of the control
system with learned controller to sinusoidal and triangle signals with double frequency
(in relation to the learning input signal).

As can be concluded from Figs. 9 and 10, the control system with the trained
NF-PID controller imitates the reference model with good accuracy also in tests with
signals different from those used in learning.
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Fig. 10 Comparison of responses of the reference model v,, and of
the control system with the learned NF-PID controller on
the sinusoidal (a) and triangle (b) signals.
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In this section, only the results of one experiment are shown. The authors carried
out many other experiments which confirmed the results described here. Therefore,
the authors now in their investigations use only linear operators in learning neuro-
fuzzy networks.

5. Conclusions

The structure of the neuro-fuzzy PID-controller presented in the paper is effective and
capable of fast and accurate learning. This effectiveness was achieved owing to the
application of linear fuzzy-set intersection and union operators (MEAN and SUM).
Using these operators considerably reduces the complexity level of the control surface
realized by a neuro-fuzzy controller (the number of coefficients to be tuned) and
enables the controller to learn without genetic search algorithms. Using traditional,
nonlinear AND/OR operators produces negative results, which makes learning the
controller more difficult.

The theoretical analysis of the problem was confirmed by the experimental results
of learning the controller in the system with a reference model and a known plant
model.

The proposed neuro-fuzzy PID controller is a system with three inputs and one
output. But linear operators can be applied also in systems with a larger number of
inputs and outputs (a system with n outputs can be composed of n systems with one
output). The higher complexity of the neuro-fuzzy system, the more advantageous
the application of linear operators, because they diminish rapidly the number of coef-
ficients describing the fuzzy model (controller) surface which must be determined by
the neuro-fuzzy network in the learning process, whereas nonlinear operators strongly
increase this number.
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