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AND/OR/NOT CAUSAL GRAPHS — A MODEL FOR
DIAGNOSTIC REASONING

ANTONI LIGEZA*, PILAR FUSTER PARRA**

The paper addresses the issues of diagnostic reasoning based on abductive analy-
sis of causal structures. It is based on ideas emerging from an engineering ap-
proach to diagnosis of complex systems. A diagnostic process is considered
as a multistage backward search procedure supported by sequential testing and
ordering strategies. A basic, core, and uniform model for representing causal be-
haviour of diagnosed systems is proposed; it has the form of an AND/OR/NOT
causal graph allowing for the specification of causality types reflecting the basic
logical operations. A multistage approach to diagnostic reasoning is outlined.
The discussion covers initial failure detection (with the use of an expected-
behaviour approach rather than the complete model of the system), diagnostic
reasoning based on search of the graph, and a final validation stage of generated
possible diagnoses. Finally, possibilities of further extensions and related work
are pointed out.

1. Introduction

Automated diagnosis constitutes an important area of both applied Artificial Intel-
ligence (AI) and modern control theory. The main aim is to support the human
operator by means of a symbolic representation of knowledge and reasoning about
faulty behaviour of technical systems. The goal of diagnostic reasoning is to detect
(detection of abnormal behaviour) and to determine (isolate) faults being the initial
causes of abnormal behaviour.

There are a number of approaches to the formal statement and implementation of
diagnostic procedures. The most popular ones include approaches based on analytical
models for fault detection (Isermann, 1993; 1994; Frank and Koppen-Seliger, 1995),
methods based on pattern recognition and neural networks (Korbicz et al, 1994),
AT and expert systems (shallow-knowledge-based) methods, and (deep) model-based
Al approaches (Davis and Hamscher, 1992; Struss, 1992); for some examples and
classifications see also (Korbicz, 1995; Korbicz and Cempel, 1993; Ligeza and Fuster
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Parra, 1994; Ligeza et al., 1996; Saucier et al., 1989; Torasso and Console, 1989;
Tzafestas, 1989).

A diagnosis is usually regarded as fault detection and localization (Frank and
Koppen-Seliger, 1995; Isermann, 1994; Korbicz et ol., 1994). However, some ap-
proaches consist in detection and recognition of fault type only. This is typical for
analytical model-based procedures, and neural network and pattern-recognition-based
methods; the main idea of such methods consists in determining and mapping the cur-
rent state into its qualitative classification (e.g. normal or faulty). Such methods are
usually based on an implicit assumption of numerical character of data, measurabil-
ity of signals, functional dependencies between signals and accessibility of complete
information; in consequence, they can be applied for a limited class of systems and, in
fact, they perform only the detection and classification stage of a diagnostic process.

A complete diagnostic procedure must employ means for fault localization,
and thus some form of inference should be performed. AI offers several solutions,
but present-day supervision, diagnostic and control systems are implemented main-
ly as rule-based expert systems using shallow diagnostic knowledge of the experts
(Isermann, 1994; Tzafestas, 1989). The implementation and debugging of such sys-
tems is a time-consuming and very tedious task. The knowledge acquisition problem
is still a bottleneck for many potential applications. Furthermore, the performance of
such systems is limited to the class of problems described by the rules acquired from
an expert.

In order to overcome the above-mentioned difficulties of the first-generation diag-
nostic expert systems, another approach is put forward by AI (Davis and Hamscher,
1992; Saucier et al., 1989; Struss, 1992). The very basic idea of modern approaches
consists in representing the internal structure and behaviour of systems rather than
the shallow diagnostic knowledge. Determination of faults is assumed to be done
with an appropriate reasoning mechanism applied to this deep knowledge and causal
dependencies specified. This kind of approach is also referred to as the model-based
diagnosis or diagnosis from first principles (Reiter, 1987), and it seems to constitute an
emerging Al technology for dealing with failures of complex systems. Some exemplary
approaches of this kind are presented in (Console and Torasso, 1988; 1992; Console
et al., 1989; Davis, 1984; 1993; DeKleer and Williams, 1987; Genesereth, 1984; Reiter,
1987; Torasso and Console, 1989).

There is no unique and well-defined methodology for knowledge-based diagnosis.
The basic approaches under consideration split into two main categories, i.e.:

e consistency-based approaches,
e approaches based on abductive reasoning.

The basic idea of approaches based on consistency verification consists in an
analysis of a complete model of system behaviour with respect to keeping its logi-
cal consistency (Reiter, 1987). The model must be ‘parameterized’ with respect to
possible faults of elements. If a failure occurs, the observed abnormal behaviour is
inconsistent with the knowledge about the system and the assumption that all its
components are correct. Then, to regain consistency, some of the components must



And/or/not causal graphs — A model for diagnostic reasoning 187

be assumed to be faulty; such an assumption leads to generation of possible diagnoses.
This explains the notion of consistency-based approaches.

On the other hand, abductive reasoning consists in finding an explanation for
given observations with the use of inference rules based on causal dependencies. In
the case of abduction, the rules are interpreted backwards. Abduction constitutes an
inference mode opposite (inverse) to deduction. In contrast to deduction, abduction
is not a valid logical inference rule. However, it seems to be the closest to human
diagnostic reasoning. Supported with the possibility of testing and verification and
guided by expert knowledge, it may constitute a powerful tool for diagnostic reasoning.

In this paper, a more complex understanding of diagnostic processes is accepted.
It is oriented towards integrating monitoring, failure detection, fault diagnosis and
diagnoses verification. A diagnostic process is considered here as a complex, multi-
stage and multiple-approach based activity aimed at failure detection, localization of
faulty components and repair. Thus a diagnostic process is assumed to comprise at
least the following three main stages:

o detection and classification of a failure,

e search for faulty components responsible for the abnormal behaviour observed;
during the search further complex auxiliary activities can take place, such as
hypothesis formation and focusing attention, heuristic search ordering, testing, .
hypotheses rejection and search restriction, etc.,

e final verification of potential diagnoses found and repair.

The main goal of the paper is to propose a model of diagnostic reasoning based on -
the assumption that search and abductive reasoning are the key tools for diagnosing
more complex systems. In the case of lack of domain diagnostic experience, but when
some knowledge about the system elements, their behaviour, and mutual interactions
between them is accessible, a causal model seems to constitute the most appropriate
tool for diagnosis. In contrast to logic-based approaches, it is not assumed that a
complete model of the diagnosed system is accessible.

As the main contribution, a proposal for a general, core model to represent the
causal knowledge used in diagnostic inference in the form of an appropriate graph
(called an AND/OR/NOT causal graph) is put forward. Such a graph can serve as a
basic tool for diagnostic inference, as it defines the search space for fault localization.
At the same time, it provides a possibility of implementing several auxiliary mecha-
nisms for enhancing the efficiency of diagnostic reasoning. Moreover, it seems to be
close to the engineering way of diagnostic analysis, and thus provides an intuitive and
easily understandable tool for domain experts.

Three main ideas are prevailing in the present paper. Firstly, it is pointed out
that the failure detection can be and usually is performed without a great deal of
knowledge about the system structure and components. In practical cases, this can
be done with reference to the knowledge about the expected behaviour or expected
output to be observed. This detection of abnormal behaviour constitutes the first
step of a diagnostic process.
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Secondly, it is claimed that diagnostic reasoning is a process based on search
rather then any other kind of inference (e.g. simple input-output mapping of classifi-
cation type). The search, however, is supported by a number of tools and techniques
making it a sophisticated intellectual activity (provided it is not a routine diagno-
sis performed by a predefined technical diagnostic procedure) rather than a pure
systematic or ordered graph-search procedure.

Thirdly, it is assumed that any diagnostic process is, in fact, a multistage and
multiple-approach based process. The most important stages are failure detection (see
above), search for possible explanations, and finally validation of obtained diagnoses.
During the second and third stage various auxiliary tools for testing, ordering and
pruning of working hypotheses can be applied.

To summarize, the main objective is to put forward elements of a basic, uniform,
generic approach to a multistage diagnosis of complex technological systems based on
deep (but usually incomplete) knowledge about the causal structure and behaviour.
Moreover, several extensions and enhancements providing a possibility to improve the
efficiency of realistic diagnostic procedures are pointed out. The paper is based on the
authors’ research presented more completely in (Fuster Pata and Ligeza, 1996; Ligeza
and Fuster Parra, 1994; Ligeza ef al, 1996). Some further ideas are also presented
in (Fuster Parra and Ligeza, 1995a; 1995b; Ligeza and Fuster Parra, 1995a) and a
recent complete work (Fuster Parra, 1996).

2. An Approach to Failure Detection Based on Expected
Behaviour

The basic idea is that the diagnosis of a system is usually performed on-line in con-
nection with process monitoring. The diagnostic procedure itself is regarded as a
multistage search process of nonmonotonic reasoning. The following surrounding ac-
tivities are assumed to constitute the complete procedure:

e monitoring, including signal-to-symbol transformation in order to arrive at a
qualitative-logical description of the current state of the system,

o fault detection: determining the current qualitative situation and detecting in-
correct behaviour,

o fault diagnosis: determining potential faulty components, control actions and
operational conditions responsible for observed failures with the use of some
causal dependency structure,

o efficiency improvement: application of hypotheses formation, tests, ordering of
the search and constraints so as to improve the efficiency of the search,

o diagnoses verification: elimination of some potential diagnoses by tests and
simulation of behaviour of certain components, and comparison of the results
with observation.
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The main stage of the diagnostic process consists in a search for potential diag-
noses explaining the observed abnormal behaviour. Let D = {d;,ds,...,ds} denote
a set of elementary faults, i.e. initial reasons for possible failures, and let M =
{mi,ma,...,mm} be the set of manifestations, i.e. the outermost symptoms of a
failure. It is assumed that there is some causal dependency mapping the set 2P into
the set 2M: however, the mapping is not given explicitly, not all the information
concerning the mapping is provided and the mapping is not a one-to-one function.
Thus one cannot expect a simple reconstruction of the inverse mapping which would
constitute a solution to diagnostic problem.

In order to provide some example, one can think about a diagnosis of serially
connected bulbs (as used for illuminating the Christmas Tree). The failure detection
and classification stage consists in observing that the system does not produce light,
even when switched on. The core of a diagnostic process consists in a search for
bulbs and connections which do not work properly. Verification and repair consist in
exchanging the faulty ones and finally observing the correct behaviour, i.e. the light
on.

In the case of complex, realistic systems it is likely that a complete logical model
of the system will not be achievable any more. Further, majority of human supervisors
of dynamic processes seem not to concentrate on the model of the process, but rather
on the expected output taken alone. This suggests the idea that it may be reasonable
to describe in some way what the process is expected to do (i.e. what the expected
output behaviour should be) and, on the other hand, what should not happen.

Let us consider a watch as an example. Even if one does not know the principles
of working of this complicated device, one is able to say if it works normally or not.
~Typically, four qualitative situations referring to the output can be distinguished, i.e.:

e the watch is O.K,,
e the watch is not working,
e the watch is fast,

¢ the watch is slow.

Thus, the first step of a diagnostic procedure can be performed having only some
" idea about the expected behaviour of the system and comparing it with most superficial
observations. The same applies to many other, even very complex systems, like TV,
a car, a washing machine, an airplane, etc. or even a human organism.

The general idea for failure detection is based on the notion of ezpected behaviour
(Ligeza and Fuster Parra, 1994; 1995a). It is assumed that the user is able to recognize
various types of abnormal behaviour and classify the observed one into a specific cate-
gory. This can be done with pattern recognition methods, neural network approaches,
or logical reasoning. The notion of expected behaviour includes both expected normal
behaviour and various sorts of expected abnormal behaviour.! '

1 In several approaches the notion of ezpected behaviour is used as a reference point for detection
of abnormal behaviour, but ezpected is used only with the underlying meaning of a normal
one; on the contrary, the notion ezpected here means mostly ezpected misbehaviour, i.e. know-
ledge useful for recognizing the outermost types of failures.
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The expected behaviour of the system is assumed to be specified with the use of
the manifestations M. The current qualitative situation is represented by a selection
of two subsets of M, namely those detected to be true Mt and those observed
to be false M—, Mt C M, M~ C M. The methods of detecting the current
values of symptoms from M may consist in observation, monitoring and comparison
with predefined reference values, performing diagnostic tests (Koscielny, 1995a; 1995b;
Koscielny and Pieniazek, 1994), or logical reasoning (Fuster Parra, 1996; Ligeza, 1995;
Ligeza and Fuster Parra, 1995a).

The final detection of a failure is performed by comparing of the current sets
of detected manifestations M* and M~ with predefined, user-specified qualitative
descriptions of the expected abnormal behaviour. In the simplest case, let Q;,
Q; denote a pattern of manifestations specifying the i-th possible failure, i €
{1,2,...,4}, where ¢ is the number of potential failures. In order to check that
the current state of manifestations satisfies the specification of the i-th failure, we
have to test if

QFC Mt and Q7 CM~™

If the above conditions are satisfied, the ¢-th failure takes place, and the diagnos-
tic procedure should be run. Some more detailed description concerning a language
for describing qualitative situations and formulae-matching mechanism for detecting
failures is presented in (Fuster Parra, 1996; Ligeza, 1995).

3. Representation of Causal Behaviour
3.1. Symptoms

In technical terms a symptom is usually used to denote a characteristic of a system
occurring at a time instant. The key issue for explaining faulty behaviour in technical
systems is the knowledge of causal relationships among symptoms occurring in the
system.

The current status of a symptom can be one of the following three possibilities:
true (known to occur), false (known not to occur), or unknown. In this work symp-
toms are considered rather as a useful linguistic category than as a precisely-defined
logical term. However, from a logical point of view, one can often regard them as
described by logical formulae.

Several categories of symptoms may be considered. First, there are external
manifestations, usually denoting failure symptoms and indicating abnormal or faulty
behaviour of the system under consideration. They constitute the principal observable
output of the system under diagnosis. The set of manifestations to be considered will
be denoted by M = {m1,ma,...,mm}.

Second, a set of initial cause symptoms is distinguished. An initial cause is a
symptom without any visible reason or for which one does not search for any fur-
ther cause or explanation. Initial causes can be divided into several subcategories,



And/or/not causal graphs — A model for diagnostic reasoning 191

e.g. component faults, control actions, external conditions, etc. All of them are con-

sidered as elementary diagnoses. The set of elementary diagnoses is denoted by
D = {dy,ds,...,dg}.

The third category of symptoms consists of intermediate (other) symptoms.
These are just any symptoms, observable directly or not, which are neither mani-
festations (M) nor elementary diagnoses (D). The set of such symptoms will be
denoted by V = {v1,vs,...,v,}.

The set of all symptoms will be denoted by N, where N = DUV U M.
Finally, for clarity of the discussion it is assumed that DNV =0, DN M = @, and
VoM =90

Taking into account practical diagnostic problems, any element of IV can be
regarded as a symptom, event, binary variable, or propositional formula. Thus several
ways of notation are possible: a symptom n € N being observed can be denoted by
n being ¢rue, n =1 or simply n, while its absence can be denoted by n being false,
n =0, or 7.

3.2. Causal Relations

For the sake of graphical representation, it is assumed that causal relations among
symptoms are specified with the use of graph representation. Any node of the graph
represents a specific symptom n € IN. Whenever there is a causal relation between
nodes n and n', there is a directed arc pointing from n to n'. The meaning of
the arc is that n causes n'. When using logical notation, the semantics of a single
connection between two nodes is defined by n | n/, i.e. if n becomes true, then
also n' necessarily becomes true. A more detailed definition and some extensions are
considered in (Fuster Parra, 1996; Ligeza and Fuster Parra, 1994; Ligeza et al., 1996).

Now, let E? C N denote all such simple dependencies, i.e. E? is a binary
relation representing causal dependencies among pairs of symptoms. In case symp-
toms np,ng,...,n; cause n only when occurring simultaneously, one says that the
conjunction of m1,ns,...,n; causes n. Let E'*! denote the set (i.e. an (i + 1)-ary
relation) of all such dependencies, where i > 2. To simplify the notation, let us write
E* = E*UFE*U...UE"™, where [ is the maximal number of symptoms (in the
system considered) causing simultaneously some symptom to occur. Further, let E~
denote the set of binary negative influences, i.e. (n,n') € E™ iff the lack of n (i.e.
its negative truth value) causes n' to occur.

3.3. AND/OR/NOT Causal Graphs

Let N denote a set of symptoms, N = DUV UM, where M is a set of manifestations
(usually, fault symptoms), D is a set of elementary diagnoses, and V is a set of
intermediate symptoms to be considered. Further, let E* denote a set of relations
defining causal dependencies, and E~ a set of relations defining binary negative
dependencies. A definition of the causal graph defining relationships between the
symptoms is presented below.
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Definition 1. An AND/OR/NOT causal graph G = (N,E*,E™) is the graph
having nodes specified with N and arcs defined by E* and E~ and satisfying the
following conditions:

o there is no arc pointing from the nodes specified with M, i.e. the manifestations
are final nodes,

o there is no arc pointing to the nodes of D, i.e. the elementary diagnoses are
initial nodes,

e there are no loops in the graph.

Further, to make the graph connected, it may be assumed that every node has
at least one arc pointing to or starting from this node, etc. Further considerations
and extensions are discussed in (Fuster Parra, 1996; Ligeza et al., 1996).

The interpretation of the above definition is straightforward. There is a directed
arc from node n to node n’' whenever n causes m'. It is also possible that there
are independent arcs starting from several nodes and pointing to n’. In this case,
the occurrence of any of the symptoms represented by these nodes is satisfactory
for n' becoming true. In such a case, node n' is referred to as an OR-node. If
symptoms n3,ng,...,n; cause n only when they occur together, then all the arcs
from n1,ns,...,n; to m are joined by a special “horizontal” arc and form an AND
connection. Node n is then referred to as an AND-node. Further, there is an arc
labelled NOT from n to n' whenever the absence of the symptom defined by n (its
negation) causes n’ to occur.

An example of an AND/OR/NOT causal graph is shown in Fig. 1.

Fig. 1. An example of an AND/OR/NOT graph.
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The AND/OR/NOT causal graph defined above is similar in structure to clas-
sical AND/OR graphs used in problem solving (Nilsson, 1971). The main difference
consists in the direction and interpretation of arcs (here different extensions of the
basic causal interpretation are possible; see e.g. the MAY links in (Console and Toras-
so, 1988; 1992; Console et al., 1989; Torasso and Console, 1989); see also (Ligeza and
Fuster Parra, 1994) and nodes—an initial node means here only a possibility of so-
lution. The application of the graph is also different. A visible extension consists in
admitting the NOT links. Further, a “solution graph” in classical problem solving
constitutes only a “possible justification” (to be further validated) for the observed
failure. The AND/OR/NOT causal graphs constitute also a refinement of fault trees
(Barlow and Lambert, 1975) and causal graphs used in the model-based diagnosis
(Chang et al., 1991; Lunze and Schiller, 1992) oriented towards a direct search for
diagnoses.

4. A Diagnostic Problem Statement

A diagnostic problem exists if at least one fault is observed. The faults to be diagnosed
are assumed to be specified with some manifestations. Let G = (N, E*, E™) be an
AND/OR/NOT causal graph. The definition of a diagnostic problem takes also into
account possible observations providing further information to the diagnostic system.

Definition 2. A diagnostic problem is a quintuple (G,M*,M~,NT N~), where
M7T and M~ are the failure manifestations to be diagnosed, which are respectively
true and false, and where N1 and N~ are the auxiliary observations specifying
which further symptoms are true and false. We have M+ C M, M~ C M, and
NtTCN, NTCN.

The sets of manifestations of true and false provide the fault definition and must
be explained by all the diagnoses found, while the auxiliary observations provide
information which can be used for guiding, ordering and refining the search. Further,
any diagnosis must be consistent with the observations.

4.1. Search for Diagnoses and State of the Search

In order to solve a diagnostic problem, we have to search for a set of possible initial
cause symptoms explaining (justifying) the failures specified by the current mani-
festation values. Basically, the search for possible diagnoses (not necessarily the mini-
mal ones) can be any systematic graph search procedure (Nilsson, 1971) taking into
account the specific character of the defined graph (the interpretation of nodes as
symptoms; some of them can be known a priori as true/false) and its elements (i.e.
the AND, OR and NOT connections). Thus, informally speaking, the problem of
finding possible (potential) diagnoses is equivalent to finding a (minimal) set of initial
symptoms defining faulty components, control actions and external signals, such that
a combination of initial causes implies the observed abnormality. In fact, a diagnosis
may be any consistent combination of values of symptoms from D, justifying the
observed abnormal behaviour with respect to the graph structure and consistent with
observations.
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The search for potential diagnoses is performed in a backward manner. For a
given set of manifestations one has to hypothesize and explore a possible status of
former nodes implying the observed status of manifestations. Let us recall that any
node can take one of the following states: be known (or assumed) to be true, be
known (or assumed) to be false or be of unknown status. The current assignment of
truth-values to symptoms in the graph (possibly not to all of them) determines the
current state of the search.

Formally, in order to define the state of the search, we introduce a mapping of
the form

N — {true, false,unknown}

assigning to any symptom its current status. In practice, the initial state of the search
is defined by a specification of the manifestations true and false (M and M ™) and
the observations of true and false symptoms ( Nt and N~). During the search some
new nodes are supposed to be true or false. Thus, at any stage of the search, the set
of nodes true is of the form S* = MT UN* U N'T and the set of nodes false is of
the form ST =M UN-UN'".

Symptoms of the value unknown are not represented explicitly in the state set.
Further on, it is assumed that any state defined by St and S~ is consistent, i.e.
ST N 8§~ = —the intersection of true and false symptoms is empty. Moreover, we
shall also assume that any state set is maximal with respect to the possibility of
information propagation. Whenever some new node is evaluated or assumed to be
true/false, this information influences the state of the search. The rules of propagation
are defined below.

Definition 3. The following points define propagation of information in
AND/OR/NOT causal graphs:
Forward propagation: (causality, a simple logical interpretation assumed)

o OR node true: if at least one of the predecessors of an OR node is true, then
the value of the OR node is set to true,

o AND node false: if at least one of the predecessors of an AND node is false
then the value of the AND node is set to false.

e NOT node true: if a predecessor of a NOT node is false, then the value of the
NOT node is set to true,

e NOT node false: if a predecessor of a NOT node is frue, then the value of the
NOT node is set to false.

Forward propagation: (causality, a simple logical interpretation assumed; further-
more, the predecessors of a node are assumed to be all the direct causes for it)

o OR node false: if all the predecessors of an OR node are false, then the value
of this OR node is set to false,

o AND node true: if all the predecessors of an AND node are true, then the value
of this AND node is set to true.
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Backward propagation: (causality, a simple logical interpretation assumed)

e OR node false: if an OR node is false, then the values of all its predecessors are
set to false,

e AND node true: if an AND node is true, then the values of all its predecessors
are set to true,

e NOT node true: if a NOT node is true, then the value of its predecessor is set
to false,

e NOT node false: if a NOT node is false, then the value of its predecessor is set
to true.

Backward propagation: (causality, a simple logical interpretation assumed; fur-
thermore, the predecessors of a node are assumed to be all the direct causes for it)

e OR node true: if an OR node is true, then at least one of its predecessors
must be assumed to be true; since in case of more than one predecessor the
node selection is indeterministic, this rule is used only in the backward search
procedure,

e AND node false: if an AND node is false, then at least one of its predecessors
must be assumed to be false; again, since the node selection is indeterministic,
this rule is used only in the search procedure.

The above rules define the principles of state propagation. Whenever a rule is
applicable, a new symptom value is generated. It is next placed in the set representing
the current state. In case some symptom turns out to take two inconsistent values,
the initial state for propagation is considered to be inconsistent and it is not taken
into account any more. In practice, this has the effect of failure and backtracking in
Proroa.

Now, let D be any set of symptoms together with their values, i.e. D = D+ U
D~, where D% specifies which symptoms are true, and D~ gives false symptoms.
Furthermore, let S = St U S~ denote a state of the graph providing the set of
symptoms true and false, respectively. The state specified by S is said to follow
from (or be implied by) D iff it can be generated from D with respect to the above
propagation rules. This will be denoted by D F S.

An initial change in a node status is a result of failure detection. The appropriate
nodes belonging to M change their status from unknown to true or false. Further
changes of the current state of the graph can be performed as a result of the following
operations:

e assumption, i.e. a hypothesis formation concerning some node performed by
graph-search procedure; this change is always from unknown to true/false,

e performing a test, i.e. probing (or just observation); the test assigns values
true/false to one or more nodes,
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e finally, after any such change, the propagation rules are applied so that all
possible changes are performed,

e last but not least, if after that the new state is inconsistent, some assumption
about symptom status must be withdrawn (backtracking) so that consistency
be regained.

With respect to the definition of an AND/OR/NOT causal graph and the diag-
nostic problem, a solution to the problem is any consistent combination of the values
of initial causes, such that it implies the observed malfunctions. The maximal state
implied by the diagnosis must be internally consistent, and it must be consistent with
observations. The precise definition of a diagnosis is as follows:

Definition 4. Let (G,M*,M~,Nt N~) denote a diagnostic problem. A possible

diagnosis constituting a solution to the diagnostic problem is any (minimal) set D
of all the initial nodes true D and false D~ (D = DT U D™) such that:

e DTUD™ F Mt UM, ie. the diagnosis implies the observed manifestations,

e if S =57US~ describe the maximal state implied by D, then ST NS~ = §,
i.e. the maximal state following from the diagnosis must be consistent,

e NTNS~ =0 and N~ NSt =0, ie. the implied state is consistent with the
observations.

According to the above definition, a diagnosis is assumed to be minimal, i.e. no
proper subset of it is a diagnosis. One can also consider non-minimal diagnoses, or
diagnoses minimal with respect to an induced subgraph of G (Fuster Parra, 1996;
Ligeza et al., 1996).

An illustration of example solutions for the problem specified with the graph of
Fig. 1 are shown (together with the induced graphs) in Fig. 2; the three graphs con-
stitute some possible solutions for failure m;. The bottom nodes constitute possible
minimal diagnoses.

The search for a solution is performed by a backward search procedure selecting
and hypothesizing the state of predecessor nodes so that the state of the problem
defining nodes is explained. The following points specify the rules of backward search
in the case of AND, OR and NOT connections used:

e OR node true: explained by selecting one of its predecessors and setting it to
true,

o AND node true: explained only by setting all of its predecessors to true,
o OR node false: explained only by setting all of its predecessors to false,
o AND node false: explained by setting one of its predecessors to false,

o NOT node true: explained by its predecessor being false,

e NOT node false: explained by its predecessor being true,

o :nitial nodes: initial nodes are set to true or false when necessary; arriving at
an initial node completes the search on the selected path.
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1

@ @
Fig. 2. Example solutions to a diagnostic problem.

The operations are performed only if they do not lead to inconsistency. The
node selection procedure may be systematic, indeterministic, or heuristic. Since the
algorithm always selects a single node in the case of OR node true and AND node
false, the generated solutions are, in general, minimal.

Note that with respect to the definition, a solution to the diagnostic problem,
i.e. a diagnosis, constitutes in fact a possible explanation of the observed failures. In
order to verify it in practice, one should test all its elements. Validation of generated
diagnoses is the next step of the diagnostic procedure.

5. Validation of Diagnoses

With respect to the model of diagnostic knowledge representation in the form of an
AND/OR/NOT causal graph, any of the generated diagnoses constitutes a sufficient
explanation of the observed faulty behaviour. However, usually only one of the diag-
noses is the valid one, i.e. the one defining real troubles in the diagnosed system. In
fact, validation of the obtained candidate diagnoses to identify the correct one should
be performed. Validation can potentially be done by simulation of the influence of
the hypothesized elementary faults on the observable behaviour of the system. How-
ever, this would require a more complete model of the system, covering abnormal
behaviour, so that all but one of the potential diagnoses can be eliminated. This,
however, is hardly possible in real cases. Thus the principle method consists mostly
in testing the potential elementary causes in a direct or indirect manner.
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For obvious reasons, minimal diagnoses are preferred. This point of view reflects
the most natural tendency to find as simple explanations as possible (principle of
parsimony, see (Reiter, 1987)). The problem of efficient validation of the final set of
possible diagnoses is briefly considered below.

Let us assume that after a systematic search of the causal graph a set of possible
diagnoses Dy, Ds,...,D; is obtained. Any of these diagnoses is of the form D} U
Dy ={d},d?,... ,d{,d_iﬁl,d_,;ﬁz, . .,d_ik}. Each D; is assumed to be minimal and
consistent, 2 = 1,2,...,1. In case consideration of minimal diagnosis is not sufficient,

all superset diagnoses should be further considered.

A strategy for validation of diagnoses can be built on a number of assumptions
and additional knowledge (e.g. the use of probabilities and minimization of entropy).
Here a strategy based on a heuristic approach is proposed. The main idea is to
separate the set of currently considered diagnoses into two almost equal, disjoint sets
as a result of a test of one symptom, being a common element of the diagnoses.

In the sequel, the test is assumed to be an algorithmic procedure providing the
truth value of a single symptom being an element of some diagnoses. The test can
confirm a diagnosis if the tested symptom included in a diagnosis is found to have the
status identical to its status in this diagnosis; otherwise, the test rejects the current
diagnosis.

A diagnosis D is contradictory to the diagnosis D’ if there exists an element d
such that d € D and d € D' or vice versa. Such an element will be referred to as a
conflicting element with respect to diagnoses D and D’. Since the result of testing
is unknown a priori, it is heuristically justified to test first conflicting elements—no
matter what the result of the test is, at least one of the diagnoses is rejected. The
“most useful” test is the one rejecting the maximal number of diagnoses at a time.
The number of rejected diagnoses is, however, unknown a priori. Thus, the following
heuristic approach based on “almost equal partitions” is put forward.

Let n*(d) denote the number of occurrences of d in the analyzed set of diagnoses
Dy, Ds, ..., D;. Moreover, let n~(d) denote the number of occurrences of d in the
diagnoses. Thus, the least number of diagnoses rejected after a test of element d,
denoted by 7(d), can be determined as

r(d) = min (n+(d), n"(d))

and the proposed selection of element(s) d to be tested should maximize r(d).
Let d* denote the symptom selected to be tested first. There should be

r(d*) = max (r d )
( ) d€D1,Da,...Dq ( )

In case the selection of d* is not unique, another heuristic of cost criteria can be
taken into account. Again, having sufficient knowledge about underlying probabilities,
the above test can be generalized so as to select a test rejecting the maximal expected
or average number of diagnoses.
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6. Concluding Remarks

Let us briefly summarize the most important concepts presented in this paper. First,
a generic and general model for the diagnostic procedure has been proposed and its
initial stage of failure detection and classification based on the expected behaviour has
been pointed out. The main idea concerning the diagnostic process is to consider it
to be a multistage, multiple-approach sequential search procedure performed through
hypothesis-test-ordering steps. Final validation of possible diagnoses obtained during
the search has been discussed. The diagnoses themselves are not limited to faults
of components. “Wrong” combinations of control actions and operational signals are
also taken into account. A basic, core, and uniform causal structure in the form of an
AND/OR/NOT causal graph, which incorporates basic logical concepts, is defined as
a model of the search space for the diagnostic process.

A computer program, consisting mostly of a meta-interpreter of the rules given
in this paper was implemented in PROLOG. The program was run on several test
problems, including a simple tank system, a heating system of a house, the full-adder
example (Reiter, 1987) and some other abstract problems. The detailed problem
specification can be found in (Fuster Parra, 1996; Ligeza et al, 1996). The results
confirmed that a backward search on the causal graph structure can constitute an
efficient tool for automatic generation of possible diagnoses. The main problem for
practical applications consists in knowledge acquisition, i.e. building the appropriate
graph. However, for certain systems (e.g. the ones composed of logical gates) this
stage can be performed in a customary way (Ligeza et al., 1996).

Further extensions: A number of relatively new ideas aimed at extensions of the
basic model and enhancement of reasoning and search efficiency can be proposed
and discussed in a more formal framework. Among other things, the ideas of the
state of the search and test have been introduced and their use has been outlined
in (Ligeza and Fuster Parra, 1994; 1995b). Some ideas concerning ordering of the
search based on qualitative probabilities of faults have been proposed in (Fuster Parra
and Ligeza, 1995b) and an extension of the notion of fault towards a “degree of
faultiness” or “fuzzy faults” has been presented in (Fuster Parra and Ligeza, 1995a).
Several further extensions concerning finite multiple-state models, constructive use of
constraints for information propagation and validation strategy for possible diagnoses
have been discussed in (Fuster Parra, 1996; Ligeza and Fuster Parra, 1994; Ligeza
et al., 1996).

Related work: All the presented ideas make direct use of the man-applied heuristic
approach and remain in close relation with the engineering practice. The incorpora-
tion of them in more sophisticated diagnostic support systems is aimed at improving
the efficiency of search for a final diagnosis and extending the basic model over more
complex phenomena.

The present approach can be regarded as an extension and new application of
fault trees used in the engineering practice for fault analysis and safety assignment
(Barlow and Lambert, 1975). It extends the notion to graphs incorporating the basic
logical connectives and their use as search space defining structures. Of course, the
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graphs do not need to be defined explicitly. A multiple use of prespecified component
descriptions and recursive definitions are possible.

In AI, the work is mostly related to the abductive approaches (Poole, 1989)
based on causal reasoning. A most comprehensive approach to the diagnosis based
on causal graphs seems to be the one represented by Console ef al. (Console and
Torasso, 1988; 1992; Console et al., 1989; Torasso and Console, 1989) which inspired
the present research in many points. The main differences consist in a different
definition and use of a causal graph. The graph defined here, refined and uniform in
structure, serves as a direct tool for a search (backwards) for diagnoses while in the
above-mentioned approach a causal graph is mostly used for construction of a logical
model for consistency-based reasoning. Furthermore, the present approach is aimed
at extending the area of applications and improving the efficiency with a proper use
of tests and qualitative ordering of the search.

When taking the work on set covering (Reggia et al., 1983; 1985), the proposed
model can be regarded as a significant extension, consisting in introducing a logical
structure lying between the sets of manifestations M and elementary diagnoses D
(diseases in (Reggia et al.,1983)). Although the present approach was developed
independently from that work, an attempt to keepi a similar notation was made in
order to underline the common points.

In the area of automatic control, the present approach can be related to that of
(Koscielny, 1995a; 1995b; Koécielny and Pieniazek, 1994). The main extensions are
similar to (Reggia et al., 1983; 1985) and they consist in introducing an extended struc-
ture of the causal graph versus the diagnostic relation used in the above-mentioned
works.

A recent work on the diagnosis using explicit means-end models (Larsson, 1996)
seems to support the points advocated in this work. The most principal common idea,
although quite general, is that certain models can be used directly for the diagnosis
understood as a search for the causes of faults. In the case of certain well-defined
components, such as logical gates, there exists a simple methodology for almost direct
encoding of the structure of an AND/OR/NOT causal graph based on the functional
structure of the analyzed system (Ligeza et al., 1996).

Several other works weakly related to the proposed approach may also be found,
e.g. (Lunze and Schiller, 1992; Togueni et al, 1993), which served as sources for
auxiliary inspiration.
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