Appl. Math. and Comp. Sci., 1997, vol.7, No.1, 205-216

ON-THE-FLY DETECTION OF A CLASS OF
WORD-BASED PATTERNS IN LABELLED DAGs'

MicHEL HURFIN* MicHEL RAYNAL*

The problem tackled in this paper originates from the debugging of distributed
applications. Execution of such an application can be modelled as a partially-
ordered set of process states. The debugging of control flows (sequences of pro-
cess states) of these executions is based on satisffying the predicates by process
states. A process state that satisfies a predicate inherits its label. In this con-
text, it follows that a distributed execution is a labelled directed acyclic graph
(DAG for brevity). To debug or to determine if control flows of a distributed
execution satisfy some property amounts to testing if the labelled DAG includes
some pattern defined on predicate labels.

This paper first introduces a general pattern (called the diamond necklace)
which includes classical patterns encountered in distributed debugging. Then an
efficient polynomial-time algorithm detecting such patterns in a labelled DAG
is presented. To be easily adapted to an on-the-fly detection of the pattern in
distributed executions, the algorithm visits the nodes of the graph according to
a topological sort strategy.

1. Introduction

This paper presents an algorithm to detect a sophisticated pattern (called the
diamond necklace) in a labelled directed acyclic graph. The problem solved by this
algorithm originated from the detection of properties of distributed computations
in our current efforts to design and implement a facility for debugging distributed
programs (Hurfin et al, 1993a). These programs are composed of a finite set of se-
quential processes cooperating only by means of message passing. The concurrent
execution of all the processes on a network of processors is called a distributed com-
putation. The computation is asynchronous: each process evolves at its own speed
and messages are exchanged through communication channels whose transmission de-
lays are finite but arbitrary. During a computation, each process executes a sequence
of actions. At a given time-moment, the local state of a process is defined by the
values of the local variables managed by this process. From an initial state, a process
produces a sequence of process states according to its program text. In the context

T A first version of this paper, entitled “Detecting diamond necklaces in labelled DAGs
(A problem from distributed debugging)”, appeared in Proc. 22nd Int. Workshop
Graph-Theoretic Concepts in Computer Science published in the LNCS series of Springer-Verlag
(June 12-14, 1996, Como, Italy).

* IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France, e-mail: {hurfin,raynal}@irisa.fr.

206 M. Hurfin and M. Raymnal

of debugging distributed programs, a distributed execution is usually modelled by a
partially-ordered set of process states (Garg and Waldecker, 1992). Due to the asyn-
chronous nature of a distributed computation, programmers refer to a classical causal
precedence relation between states rather than to a non-available global clock. Infor-
mally, a process state s; precedes s, if they have both been produced by the same
process with sy first, or if s; has been produced by some process before it sent a
message to another process and the receiver process produced so after receiving this
message; this causal precedence relation is nothing else than Lamport’s “happened
before” relation expressed in terms of process states (Lamport, 1978). A directed
path of process states starting from an initial process state is usually called a control
flow.

We designed and implemented several distributed algorithms that detect on-the-
fly some properties of control flows in distributed computations (Fromentin et al.,
1994; 1995; Hurfin et al,, 1993b). Basically, a property is defined as a language on an
alphabet of predicates (a predicate being a Boolean expression in which variables of
a single process appear); a pattern is a word of this language. If a local state satisfies
a given predicate, it inherits its label, so words can be associated with each control
flow. Finally, a control flow satisfies a property if one of its words belongs to the
language defining the property, i.e. if it matches some pattern. Such an approach
has been formalized in (Babaoglu et al., 1996). These properties are fundamentally
sequential in the sense that they consider each control flow separately.

Sequential properties are not powerful enough to express patterns which are on
several control flows. An example of such a property is as follows: “there is a process
state s; satisfying a predicate P, causally preceding a process state s, satisfying a
predicate P, and all paths of process states starting at s; and ending at sy satisfy
some sequential property”. A logic able to express such non-sequential properties has
been introduced in (Garg et al., 1995).

Here we abstract from distributed executions and consider labelled directed
acyclic graphs (DAGs), in which vertices represent local states and edges represent
dependent relation over states. We first define (Section 2) a general type of patterns
(diamond necklace) for labelled DAGs, which includes as particular cases sequential
and non-sequential patterns useful in distributed debugging, and then (Section 3) we
present an algorithm to detect these patterns. In order to be adaptable to on-the-fly
distributed detection in the context of distributed debugging, it is required that the
algorithm visit the nodes of the DAG according to a topological sort strategy.

In this way, the paper solves a new problem (to our knowledge), i.e. deciding if
a labelled DAG includes some specific pattern that we met in designing and imple-
menting a distributed debugging facility.

2. Diamond Necklaces
2.1. Labeled DAGSs

Let G = (V,E) be a finite DAG with n vertices. We will use the symbols
v, v, v;, and v* to denote elements of V. Let w; and v; be two vertices of V.

On-the-fly detection of a class of word-based patterns in labelled DAGs 207

Then P(v;,v;) is the set of all the paths in G from v; to v;:
Plos,u;) = {0107, 0) | (0 =) A (0" =) A (Vi1 i <, (0,07 € B))

To facilitate the explanation of the algorithm, we suppose that G has a source
vertex and a sink vertex denoted by v; and v,, respectively. By definition,

Plu,v) =0 A

Pvn,v;) =0 A

v; £ v <= Plo,v) #0 A
V; # Vn <= Plog,vn) #0

Yo, €V,

Let ¥ be a finite set of [labels: ¥ = {aj,as,...,a;}. The set of all strings
over the alphabet ¥ is denoted by ¥*. Moreover, A is a labelling function that
maps edges of G to sets of labels. If (v;,v;) € E, then A(v;,v;) denotes the set
of labels associated with the edge (v;,v;). We assume that the “empty” label ¢ is
implicitly associated with every edge for which the labelling function defines no label.
G* denotes the DAG G with labelling X.!

For each pair of vertices (v;,v;) of the graph, £(v;,v;) represents the set of
words defined by considering all possible labellings of all paths starting at v; and
ending at v;. More formally,

ﬁ(vi,vj) - {(hflz T = o* ! 3(’1)1,1)2,' .. ,’Uu”l}“’+1)

€ P(vs,v;),Vi,1 <i<wu,a; € ,\(vi,viﬂ)}

Let R* be the name of a property defined as a set of words (language L(R*))
on the alphabet .

2.2. Primitive Pattern SOME
Let v; and v; be two vertices of G and RF be a property. The pair (v;,v;) satisfies

the pattern SOME (RF*) if there is a path from v; to v; such that at least one of the
labellings of the path is a word of £(R¥). More formally,

((vi,vj) = SOME (R")) = L(v;,v;) N L(RF) # 0

1 We assign labels to each arc of the graph rather than to each vertex. When the goal is to detect
properties of distributed computations, each vertex represents a local state and, in that case,
the labels of all the predicates satisfied by a local state v are assigned to all incorming arcs
of vertex wv.

208 M. Hurfin and M. Raynal

2.3. Primitive Pattern ALL

The pair (v;,v;) satisfies the pattern ALL (R*) if all labellings of all paths from ;
to v; belong to L(R*). More formally,?

((vi,uj) = ALL (Rk)) = (’P(vi,vj)] w) A (c(vi,vj) c L(R’“))

2.4. General Pattern

This pattern is an alternating sequence of primitive patterns SOME and ALL. An
ALL pattern resembles of a diamond and two consecutive diamonds are connected by
a link, i.e. a pattern SOME, the whole pattern forming a necklace of diamonds. The
alternating sequence is denoted by R' R®> R® ... R™.

A sequence of m + 1 vertices (v!,v?,v%,v%,...,v™,v™) is a solution of the
q ,

general pattern (i.e. (vl,vz,v3,v4,...,v m+1) }: Rl R? R® ... R™), if these
vertices satisfy the following constraints:

o (VP =v)A (™ =w,)
o Vk, 1<2k+1<m, (v¥*+! y2%+2) & SOME (R?+1)
o Yk, 2<2k<m, (v v?*F1) = ALL (R2?F)

vl v v Un

v?k—l 2kt2

ALL (R?) ALL (R?*) ALL (R™1)

SOME (R?!) SOME (R3) SOME (R?*7') SOME (R?*#) SOME (R™2) SOME (R™)

Fig. 1. A diamond necklace pattern.

Figure 1 gives a pictorial representation of the diamond necklace. A line from
v2¥~1 to v?* represents a path satisfying a pattern SOME, and a diamond-shaped
plane figure represents a diamond starting at »?* and terminating at v2*+!.

The following prefix notation will be used in what follows. Let us consider the
subgraph of G whose v; and v* are respectively the source and sink vertices (ie. all

? This condition can also be expressed as follows: (P(v;,v;) # 0)A(L(vi,v;)N(S* — L(RF)) = 0).

On-the-fly detection of a class of word-based patterns in labelled DAGs 209

maximal paths of this subgraph start at v; and terminate at v*). If (v},0?%,...,0%)
R' R? ... R*1, then we say that the sequence (v',v?,...,v*) is a solution of the
prefix R' R? ... R*~! of the pattern.

3. Detection Algorithm
3.1. Regular Properties

For the sake of simplicity, in what follows, we consider only properties R*¥ whose cor-
responding languages L(RF) are regular (Harrison, 1978). Moreover, these properties
are sufficient to solve practical problems encountered in distributed debugging.

Let A* (1 < k < m) be the finite automaton recognizing £(R*). Formally,
an automaton is a quintuple A* = (Q*, %, 8%, ¢k, F*), where Q* is a finite set of
states (¢* is one of these states), % is a finite alphabet (equal to the set of [labels
associated with edges of the graph), ¢g& stands for the initial state, F* is the set of
final states, and 6* denotes its transition function mapping Q* x & to 20"

We extend § tomap QF x X* to 2" by reflecting sequences of inputs as follows:
Let w be a sequence of inputs, a, be a basic predicate, and ¢ be a state. Then

(1) 5(g,¢) = {g} and
() $gw-as) = {a: | g € 8(gj,an) where g5 € 8(g,w)}

All automata A%* (2 < 2k < m) are supposed to be deterministic and complete;
automata AZ**1 (1 < 2k + 1 < m) can be non-deterministic.

3.2. Visiting the Graph

The algorithm proposed in this paper visits the vertices of G, starting from v»;. When
it visits a new vertex v, it computes information necessary to detect the property (i.e.
the diamond necklace). The traversal is done in the following manner: a vertex v is
visited after all its predecessors (all vertices v; such that P(v;,v) # 0); i.e. the visit
is done according to a topological sort strategy.?

Without such a visit requirement, we could envisage to detect occurrences of
the general pattern with the whole labelled DAG at our disposal. In such a case, a
naive solution would consists in examining all possible sequences of m — 1 vertices
{v?,...,v™}, which are candidates to be a solution. In the case considered, there
are (:1:21) candidate sets. For each automaton RF, the intersection of the language
L(v*,v**1) with the language L£(R*) (resp. the language ©* — L(RF)) must be
non-empty (resp. empty). Classical techniques (a product of automata (Hopcroft
and Ullman, 1979)) can be applied to realize these tests. The time complexity of

3 This visit strategy is particularly interesting in the context of on-the-fly detection of properties
of distributed executions. Actually, in that case, the partially-ordered set of local states is gene-
rated on-the-fly by the execution itself: due to this visit strategy of the vertices (local states) of
the graph, the detection algorithm can be easily superimposed (Bougé and Francez, 1988)
on such an execution.

210 M. Hurfin and M. Raynal

this approach O(n™) will be compared with the time complexity of the algorithm
presented in this paper which is also polynomial.*

3.3. Detecting (vi,v) = SOME (RF)

To facilitate the understanding of the general algorithm (Section 3.5), we first present
simpler algorithms which constitute building blocks of the general one.

A variable states(v, k) is associated with each vertex v; its definition is as follows:
states(v, k) = {q’; | 3w € L(vy,v) such that ¢* € 6k(q§,w)}

By visiting the vertices of G, starting from v; and using the traversal strategy
explained above, the value of states(v,k) is computed as indicated in Fig. 2 (initially,
states(vi, k) = {qt}).

It follows that answering the question “(vy,v) = SOME(R*)” is equivalent to
testing the following predicate:

3¢k € states(v,k) : ¢* € F*

begin
states(v, k) := 0;
foreach v, such that ((vp,v) € E) :
foreach ¢F € states(up, k) :
foreach a € A(vp,v) :
states(v, k) := states(v, k) U {6* (¢, a)};
endfor
endfor
endfor

end

Fig. 2. Visit of a vertex v # v1.

3.4. Detecting (vy,v) = ALL (R¥)

The previous discussion of the computation of states(v,k) is still valid. Only the
predicate to decide “(v1,v) |= ALL (R*)” has to be defined. As indicated, we con-
straint all the automata recognizing a language whose property appears in an ALL
pattern to be deterministic. With such a constraint, the decision test becomes:

Vq* ¢ states(v, k) : ¢f € F*

4 Therefore, this algorithm can also be used to detect efficiently diamond necklaces in DAGs such
as the lattice of global states of distributed computations which may be constructed at
a designated process (Cooper and Marzullo, 1991).

On-the-fly detection of a class of word-based patterns in labelled DAGs 211

3.5. Detecting Diamond Necklace Patterns

To determine the set of solutions (v!,v?,...,v™,v™*t!) requires an analysis of all the
words associated with all possible labellings of all the paths. This demands keeping
information related to word analyses and launching the next automaton each time a
prefix of the pattern has been recognized. As indicated previously, it is supposed that
vertices of G are visited according to the strategy explained in Section 3.2, v; being
the first vertex visited.

Launching Automata

When v is visited, if (v*,92,...,v%* v) is a solution of the prefix R*R?--- R?* then
a copy of the automaton A?**! has to be launched in order to start the search for a
vertex v such that (v,v) = SOME (R2¢+1),

Similarly, if (v?,v?,...,v%**! v) is a solution of the prefix R'R?--- R?**+! then

a copy of A%**2 has to be launched to search for a vertex v such that (v,v") =
ALL (R?++2),

Data Structure to Record Past Word Analyses

As an automaton A* can be launched from any vertex, the data structure states(v, k)
has to be enriched to record the vertices at which copies of A* have been started. An
array of m variables start_states is associated with each vertex v; start_states(v, k)
is a set of pairs (v;,¢¥) whose first component is a vertex of G and the second
component is a state of QF. Its semantics is as follows:

. a copy of AF has been started in v; A
(vi, g,) € start_states(v, k) <

Jw € L(v;,v) such that ¢ € §*(¢f,w)

These data structures keep a record of all the word analyses made in the past of
the vertex v that is currently visited.

Algorithm

The procedure described in Fig. 3 specifies the set of actions executed when a vertex
v is visited. Two tasks have to be done:

1. All the copies of all the automata previously launched, in the past of v, have
to progress in word recognition (lines 1-5).

If (vp,v) € E and start_states(vp, k) # @, then copies of A* have been pre-
viously launched. From (v;,¢¥) € start_states(v,, k), we conclude first that a
copy of A* has been launched in v; and, second, that there is at least one word
w € L(v;,vp) such that ¢& € 6*(¢f,w). So the algorithm makes this copy of
AF progress according to labellings of the edge (vp,v).

It is important to note that all the copies of the automata previously launched
continue their analysis till the vertex v, is visited. This is necessary as we do
not know in advance if a partial solution will give rise to a solution.

212 M. Hurfin and M. Raynal

Procedure Visit (v : vertex);
begin
/* Recognition */
if (v = v1) then
start.states(vi, 1) := {(v1,95)};
for k :=2to m :
start_states(vi, k) := 0;
endfor
else
/* v is not the least vertex of G */
/* All predecessors of v have already been visited */
for £k :=1to m :

(1) start_states(v, k) := 0;
(2) foreach v, such that ((vp,v) € E) :
(3) foreach (vi,q¥) € start_states(vy, k) :
(4) foreach a € A(vp,v) :
(5) start_states(v, k) := start_states(v, k) U {(vi, 6 (¢¥,a))};
endfor
endfor
endfor
endfor
endif

/* Launching a copy of the automaton A*+ */
fork :=1tom-1:
if (k mod 2 = 0) then

(6) if (3v; such that: (V (v;,qf) € start_states(v,k) : ¢® € F*)) then
/* A pattern ALL has been recognized: (v:,v) = ALL (RF) */
(7 start_states(v, k + 1) := start_states(v, k + 1) U {(v, ¢ *")};
endif
else
(8) if (3 (vi,qk) € start.states(v,k) such that: ¢& € F*) then
/* A pattern SOME has been recognized: (v;,v) = SOME (RF) */
9) start_states(v, k + 1) := start_states(v, k + 1) U {(v, g5 ") };
endif
endif
endfor

if (v =v,) then
output_solutions(m + 1, v,);
endif
(10) /* If interested only by one solution, call the procedure reduction
(See Section 3.6) */

end

Fig. 3. General algorithm.

On-the-fly detection of a class of word-based patterns in labelled DAGs 213

2. When a prefix of the general pattern has been recognized, a new copy of the
next automaton has to be launched (lines 6-9).

If there is an automaton A* such that a copy of .A* has been launched in some
v; and (v;,v) = ALL(RF) (when k is even), or (v;,v) | SOME (R*) (when
k is odd), then a copy of the automaton .A**! has to be launched from wv.

The set of all the solutions is obtained with the procedure described in Fig. 4 by
calling output_solutions(m + 1,v,). If the whole pattern has not been recognized at
the end of the computation, it is also possible to find out the longest prefix of the
diamond necklace for which a partial solution exists.

It is important to note that actions executed when visiting a vertex v depend
only on values of variables start-states of v’s immediate predecessors (this allows
us to adapt the algorithm to on-the-fly detection when used in debugging distributed
applications®).

It is also important to note that if we are only interested in the simpler problem
which consists in deciding if an a priori given set of m + 1 vertices is a solution, then
the data structures and the algorithm can be greatly simplified.

3.6. Deciding if There Exists a Solution

The previous algorithm finds all the solutions, i.e. all sets of m + 1 vertices
(v',v?,...,v™, v™F1) satisfying the pattern in G*. If we are only interested in know-
ing if there is a solution, the contents of variables start_states{v,k) can be reduced
in the following way. The procedure reduction (line 10) decreases the size of variables
start_states. This procedure performs the following actions. At the end of the visit
of vertex v, a pair (v;,q*) belonging to the set start_states(v, k) is suppressed if one

of the two following predicates is true:

1. Predicate P1: k is an odd number and there exists another pair (v;,¢*) in
start_states(v, k).

From (vs,q*) € start_states(v, k), we deduce that there exists at least one word
wl such that wl € L(v;,v) and ¢* € §*(¢f,w1). Similarly, we conclude that
there also exists a word w2 such that w2 € L(v;,v) and ¢* € 6%(¢&, w2).
Thus, if a word w3 is such that F* n *(¢f, w3) # 0, we can conclude that
both words wl.w3 and w2.w3 belong to L(R*). So, if we are not interested
in computing all solutions, it is sufficient to indicate that ¢¥ is a state in which
a copy of automaton A* arrived after the vertex v has been visited.

5 The paper (Fromentin et al., 1994) presents such an algorithm. It detects on-the-fly the simple
primitive pattern: (vi,un) = SOME(R1). In that case, there is only one pair of vertices
that can be a solution. Moreover, this pair is defined a priori. For this very simple pattern,
variables needed for the detection reduce to a Boolean array whose size is equal to the number of
states of the corresponding automaton. Each process of the distributed application which is
debugged manages a copy of this array and each application message piggybacks the value of the
sender process array. In the general case, every process has to manage an array
start_states[1l..m] and messages have to carry the value of this array.

214 M. Hurfin and M. Raynal

Solution: array[l..m + 1] of vertex;

Procedure output_solutions (k : integer; v : vertex);
begin
Solution[k] := w;
if (k = 1) then
print(Solution);
else
if (k mod 2 = 0) then
/* Continue with all v; such that (vi,v) E ALL (RF) */
foreach v; such that: (¥ (vi,q¥) € start_states(v,k) : g € F*))
output_solutions(k — 1, v;);
endfor
else
/* Continue with all v; such that (vi,v) | SOME (R*) */
foreach v; such that: (3 (vi,q") € start_states(v, k) : q¥ € F*))
output_solutions(k — 1, v;);
endfor
endif
endif
end

Fig. 4. Enumerating the set of solutions.

2. Predicate P2: k is even, £(R*) is a suffix language and there exists another
pair (vj,g¥) such that there is a path from v; to v; (i.e. P(vi,v;) #0).

For each word w3 € L(vj,v), there exists at least one word wl € L(v;,v)
such that wl = w2w3. I L(R*) is a suffix language, Yw € T*,wlw €
L(R*) = w3.w € L(R*). Therefore, if v' is a vertex such that P(v,v") # @
then (v;,v) = ALL(R*) = (v;,v') = ALL(R). It follows that only (vj,¢%)
has to be memorized if we are not interested in computing all solutions.®

3.7. Complexity

During an on-the-fly detection and when one tries to find all solutions, the storage
complexity of this algorithm is O(m -n?-r), where m is the number of automata (i.e.
the length of the diamond necklace), n is the number of vertices in the graph and
denotes the maximal number of states of an automaton (i.e. r = max{r* | 1 <k <m}
with 7F = |Q*]). Note that the automaton .A! is launched only once, when vertex

8 In (Hurfin et al., 1993b), a particularly simple kind of diamond necklaces called atomic sequences
is defined. The language associated with each diamond contains all the words built of all
the symbols of an alphabet except those containing a particular forbidden symbol. Such
a language is a suffix language. Consequently, the second reduction rule explained above can
by applied in this particular case.

On-the-fly detection of a class of word-based patterns in labelled DAGs 215

vy is visited. Therefore, the size of the structure start_states(v,1) is bounded by
" 71, whereas the size of start_states(v,k) is bounded by (p,-7* +1) if 2 <k <m
(where p, is the number of immediate predecessors of vertex v).

Let tf(a) = |6%(g*,a)| and let t* = max{max{tt(a) | a € T} | ¢* € Q*}. Note
that t* = 1 if the automaton AF is deterministic. Let ¢ = max{t*|1 < k < m}.
Assume that elements (v;,q*) of start_states(v,k) are sorted with respect to the first
component. The time complexity of the general algorithm is O(m -n3 -7 -t - 1), where
! is the number of labels in 2. If k > 2, computation of the set start_states(v,k)
requires less than p? - 7% . t¥ .| insertions of elements.

The time complexity of this algorithm is cubic, whereas the complexity of the
naive approach described in Section 3.2 is O(n™). Note that, when m = 1, the naive
approach consists in determining the product of two automata.

When the two reduction rules (described in Section 3.6) are applied, the size
of the structure start-states(v,k) is bounded by s-r*, where s is the width of the
partial order (i.e. the size of the largest antichain). In the DAG corresponding to the
execution of a distributed application, the value of s is bounded by the number of
processes observed during the debugging activity. In this case, the storage and time
complexities of the algorithm also decrease.

4. Conclusion

The problem tackled in this paper originated from the debugging of distributed ap-
plications. Execution of such an application can be modelled as a partially-ordered
set of process states. The debugging of control flows (sequences of process states) of
these executions is based on satisfying the predicates by process states. A process
state that satisfies a predicate inherits its label. It follows that, in this context, a
distributed execution is a labelled directed acyclic graph. To debug or to determine
if control flows of a distributed execution satisfy some property amounts to testing if
the labelled acyclic graph includes some pattern defined on predicate labels.

This paper first introduced a general pattern (called the diamond necklace) which
includes classical patterns encountered in distributed debugging. Then an algorithm
detecting such patterns in a labelled acyclic graph has been presented. To be easily
adapted to an on-the-fly detection of the pattern in distributed executions, the algo-
rithm is based on a visit of the nodes of the graph according to a topological sort. Its
time complexity is polynomial.

Acknowledgments

The authors would like to thank Didier Caucal and Jean-Xavier Rampon whose com-
ments greatly improved both the content and presentation of the paper.

216 M. Hurfin and M. Raynal

References

Babaoglu O, Fromentin E. and Raynal M. (1996): A unified framework for the specification
and run-time detection of dynamic properties in distributed computations. — Systems
and Software, Vol.33, No.3, pp.287-298.

Bougé L. and Francez N. (1988): A compositional approach to superimposition. —
Proc. 15th ACM SIGACT-SIGPLAN Symp. Principle of Programming Languages,
San Diego, California, pp.240-249.

Cooper R. and Marzullo K. (1991): Consistent detection of global predicates. — Proc.
ACM/ONR Workshop Parallel and Distributed Debugging, Santa Cruz, California,
pp.163-173.

Fromentin E., Jard C., Jourdan G. and Raynal M. (1995): On-the-fly analysis of distributed
computations. — Information Processing Letters, Vol.54, No.2, pp.267-274.

Fromentin E., Raynal M., Garg V.K. and Tomlinson A.L (1994): On-the-fly testing of requ-
lar patterns in distributed computations. — Proc. 23rd Int. Conf. Parallel Processing,
St. Charles, IL, pp.73-76.

Garg V.K., Tomlinson A.I, Fromentin E. and Raynal M. (1995): Ezpressing and detecting
general control flow properties of distributed computations. — Proc. Tth IEEE Symp.
Parallel and Distributed Processing, San-Antonio, USA, pp.432-438.

Garg V.K. and Waldecker B. (1992): Detection of unstable predicates in distributed pro-
grams. — Proc. 12th Int. Conf. Foundations of Software Technology and Theoretical
Computer Science, New Delhi, India, Springer Verlag, LNCS 652, pp.253-264.

Harrison M.A. (1978): Introduction to Formal Language Theory. — New York: Addison-
Wesley.

Hurfin M., Plouzeau N. and Raynal M. (1993a): A debugging tool for estelle distributed
programs. — Comp. Communications, Vol.28, No.5, pp.328-333.

Hurfin M., Plouzeau N. and Raynal M. (1993b): Detecting atomic sequences of predicates
in distributed computations. — Proc. ACM Workshop Parallel and Distributed De-
bugging, San Diego, pp.32—42.

Hopcroft J.E. and Ullman J.D. (1979): Introduction to Automata Theory, Languages, and
Computation. — New York: Addison-Wesley.

Lamport L. (1978): Time, clocks and the ordering of events in a distributed system. —
Communications of the ACM, Vol.21, No.7, pp.558-565.

Received: March 12, 1996

