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AN INFINITESIMAL OBSERVABILITY TEST
FOR INVARIANT SYSTEMS ON LIE GROUPS

NikoLAaos APOSTOLOU*, DEMOSTHENES KAZAKOS*

This paper deals with infinitesimal observability for invariant control systems
on Lie groups having an invariant output function. For this class of systems an
infinitesimal observability criterion is stated and proved. It is also shown how
this criterion can be applied in order to conclude more general observability
results for such systems.

1. Introduction

Observability is one of the essential topics of control theory and in the past years
much attention has been paid to its various aspects (see e.g. Celle et al., 1989; Cheng
et al., 1990; Ciccarella et al., 1993; Gauthier and Bornard, 1981). In a very inter-
esting recent paper (Gauthier and Kupka, 1994) the authors characterized general
nonlinear systems that are observable independently of the inputs by introducing a
new concept of observability which they termed infinitesimal observability and which
is different from the standard observability. In the same paper they proved some of
the properties of the new concept and showed how infinitesimal observability can lead
to the characterization of systems that are observable independently of the inputs.
The importance of this new notion motivated the present work. This paper deals
with infinitesimal observability for invariant control systems evolving on Lie groups
and having a suitable output function. For such systems an infinitesimal observability
criterion will be proved.

This work is organized as follows. In the present section, some fundamental
definitions and facts concerning infinitesimal observability for general systems are
given. In the next section, invariant control systems on Lie groups are considered
and basic assumptions are made. Finally, in Section 3 the main result is stated and
proved.

Consider now the following general system X:
& = P(z,u)
y = f(z)

where z € M, an analytic connected manifold, y € R and « belongs to the input
space U, an analytic connected manifold. It is assumed that % is analytic in both
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z and wu, and that f is analytic in z. The admissible inputs are measurable and 7
bounded functions up : [0,T] — U. Assume that for every initial state zy and for
any control law wr the Cauchy problem:

T = ¢($1UT), 3’](0) =Xp

has a solution defined on the interval [0,T]. For t € [0,T] we denote by z(t,ur)
the points on the orbit generated by wr and starting at z € M. Now the following
classical definition can be stated:

Definition 1. X is observable if for every z,, zo € M with z; # zo there exists a
control law w7 such that:

f(:l:l(t,uT)) # f(.’Ez(t,'LLT))

for every t in a subset of [0,7] with positive measure, that is if ¥ distinguishes
between any two distinct initial states.

Let us consider next infinitesimal observability of X. In order to define infinite-
simal observability, the notion of “lifting” T of ¥ to the tangent bundle T'M
of M is necessary. The map ¢ : M xU — TM gives a parametrized vector field
on M. Thus the tangent map (with respect to z) Ty : TM xU — T(TM) (T(TM)
denotes the tangent bundle of T M) determines a parametrized vector field on TM.
Furthermore, the differential of the function f is the map df : TM — R. The
definition of the lifting TS of ¥ is the following (see also Gauthier and Kupka,
1994):

Definition 2. The lifting TY of ¥ is the system:

€ =Ty, v)
z=df(¢)
where £ € TM.

The orbits of ¥ and T'Y are related in the following way. Let 7 : TM — M be
the canonical projection. Also let, for a control law ur and for t € [0,T], o(t,ur) :
M — M be a map such that o(¢,ur)(z) = z(t,ur). I £(t,ur) is an orbit of TS
for some initial £ € TM, then w(£(¢,ur)) is the orbit of ¥ starting at #({) and
generated by the same input function ur, i.e.

m(§)(t,ur) = 7 (¢(t,ur)) (1)

Conversely, if z(t,ur) is an orbit of & for some z € M, then To(t,ur)(€) is the
orbit of TY starting at £ € T, M and generated by the same input function ur, i.e.

§(t,ur) = To(t,ur)(§) )
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Now the following definition of infinitesimal observability can be stated:

Definition 3. Let z € M and ur be a control law. X is called infinitesimally
observable at (z,ur) if for every &1,&2 € T M with & # &o:

df (&a(t,ur)) # df (a(t,ur))

for every t in a subset of [0,7] with positive measure, i.e. if TS with uy distin-
guishes between any two distinct initial states &;,£2 € T, M.

For further details, as well as for the relation between infinitesimal observability
and the characterization of systems that are observable independently of the inputs,
the reader is referred to (Gauthier and Kupka, 1994). Here only the following property
is mentioned: If ¥ is infinitesimally observable at (z,ur), then there exists an open
neighborhood W of z such that ¥ with wr distinguishes between any two distinct
initial states z;,zs € W. In the next sections, an infinitesimal observability criterion
for a particular class of systems, namely for invariant control systems on Lie groups,
is stated and proved. In view of the foregoing property of infinitesimal observability,
this criterion can also be regarded as a local observability result for such systems.

2. Invariant Systems on Lie Groups ——

In this section invariant control systems on Lie groups are considered. Here basic
assumptions are made and some mathematical preliminaries are given. These can
also be found in (Helgason, 1978; Varadarajan, 1984). Let G be a real, analytic,
and connected Lie group with identity element e. G will be the state space of
every system Y occuring in the sequel. Also let L = Lie(G) be the Lie algebra
of left invariant vector fields on G and L* be the dual of L, i.e. the space of all
left invariant one forms on G. We write exptX, t € R for the integral curve of
X € L passing through e at t = 0. The integral curve through ¢ € G is then
g-exptX. We denote by L(-), R(-), TL(:), TR(-) the left and right translation and
the corresponding tangent maps, respectively. Let I(g) : G — G where g € G be a
map such that I(g)(r) =g-r-g7 %, ie. I(g) = L(g)oR(g™") = R(g~*) o L(g). I(-) is
obviously a diffeomorphism. The tangent map at e TI(g). : L — L is also denoted
by Ad(g) and is an automorphism of L. The map Ad : G — Aut(G) is the well-
known adjoint representation of G. If VjandV, are linear spaces, V|*and V3 are
respectively their duals and A : V3 — V5 is any linear map, then a linear map
A* V¥ — V{* is induced in the following way: A*(w)v = w(Av) for every v €
Vi, w € V5. In particular, TL(-), TR(-), TI(-) induce such maps denoted by
T*L(-), T*R(:), T*I(-), respectively.
Consider now a control system on G of the following form:

g=4,+) u'B;
i=1

where g € G, A, B' € L, v* € R for i = 1,...,v. Throughout this paper, such
a system will be called invariant. An invariant system can be characterized by the



22 N. Apostolou and D. Kazakos

Since Ad(g)is an automorphism of L for every ¢ € G, it is immediate that
ker (Ad(g)) = 0. Thus eqn. (3) shows that ¥ is infinitesimally observable at (g, ur)
if and only if ({ker(¢(g(t)) :t € [0,T]} =0 and this is equivalent to

span {qﬁ(g(t)) tte [O,T]} =L*

Remark 1. An analog of Theorem 1 can be stated in the case of several invariant
output functions fi,..., f,m. In this case, a linear map F(g) : L — R™ with F(g) =
(61(9),-..,%m(g)) is induced for every g € G. Then infinitesimal observability at
(g9,ur) is equivalent to '

ﬂ {kerF(g(t, uT)) tt€ [O,T]} =0

Next the case of piecewise constant inputs is treated. Such an input ur can
be identified with a family of pairs {(X1,t1),...,(Xk,tx)} withX; € L, ¢t; > 0 for
1=1,...,k and ¥t; = T. This means that from time 0 to ¢; the vector field X, is
applied, from time ¢; to ¢; +¢2 the vector field X5 is applied and so forth.

In the following proposition it is proved that if the vector fields incorporated
by a piecewise constant control law ur are fixed points of Ad(g), then infinitesimal
observability at (g,ur) can be possibly achieved only when ¢ belongs to the centre
of G. If, in addition, ur incorporates a vector field which commutes with every
other vector field incorporated by ur, then infinitesimal observability at (g,ur) can
be possibly achieved only when this specific vector field belongs to the centre of L.

Proposition 1. Let ¥ be an invariant system on G with an invariant output func-
tion f, ur = {(X1,t1),...,(Xk,tx)} be a piecewise constant control law for ¥ and
9 € G. Assume that Ad(9)X; = X; for i =1,...,k. If & is infinitesimally obser-
vable at (g,ur), then g € centre(G). If in addition, there exists some 1 < m < k
such that [X;, X =0 for every i =1,...,k, then X,, € centre(L).

Proof. As in the proof of Theorem 1, setting g(t,ur) = g(t) and e(t,ur) = e(t), we
have g(t) = g-e(t). By definition of ur it follows that e(t) = exp(t1X1) - - - exp(Ag X,)
for some 1 < ¢ <k, Ay € (0,t] with ¢; +---+ A; = t. Taking into account the
formula (cf. Varadarajan, 1984, p.104)

r-exp(tZ)-r7! = exp(tAd(r)Z) forevery r€ G, Ze L, te R
it is clear that g-e(t) = g-exp(t1X1) - -exp(AgXq) = exp(t1.X1) - - - exp(A;Xq) - g =

e(t) - g for every t € {0,T], since Ad(g)X; = X; for every i = 1,...,k. By virtue of
Lemma 1 we have

Ad(e() ¢ (9() = () g+ et)- e()) = (g e(t)) = 6(9(1))

for every t € [0,T]. Furthermore, it is obvious that Ad(g(t))*¢(g(t)) = ¢(g(t)) for
every t € [0,T]. Hence

¢(g(t)) (Ad(g(t))z - Ad(e(t))Z) =0 forevery t€[0,T], Z€L
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Since infinitesimal observability is equivalent to span{¢(g(t)) : ¢t € [0,T]} = L*, it
follows that

ﬂ {range(Ad(g(t)) — Ad (e(t))) :te [O,T]} =0 (4)
But for every t € [0,7] we have

Ad(g(t)) - Ad(e(t)) - Ad(g)Ad(e(t)) - Ad(e(t))
_ (Ad(g) _ IL) Ad (e(t))

where Ij is the identity map from L onto itself. From the relation above it is
concluded that range(Ad(g(t)) — Ad(e(t))) = range(Ad(g) — I) because Ad(e(t)) is
an automorphism of L, which means that range(Ad(e(t))) = L. Thus, from eqn. (4)
it follows that Ad(g) = I, which implies the first assertion (cf. Varadarajan, 1984).

We now turn to the second assertion. Since [X;,X,] = 0, one has
exp(X;) exp(Xm) = exp(X; + Xm) = exp(X;,) exp(X;) for every i =1,...,k. Then
one can write for 7 € R, ¢t € [0, T

9(9(t)) = (g~ exp(t1 X1) - exp(A,X,))
= gb(g -exp(t.X1) - - -exp(Ag X,) - exp(—TXpm) - exp(TXm))
= ¢ (exp(—mXm) - g exp(ti X1) -+ exp(Ag X,) - exp(r X))
= Ad(exp7Xm)*$(9(1))

Since span{¢(g(t)) : t € [0,T]} = L*, it is immediate that Ad(exprX,,) = I,
- for every 7 € R This implies that X, € centre(L) and the proof is complete. |

Corollary 1. Let G be nonabelian and X, f, ur, g be as in Proposition 1. As-
sume that Ad(g)X; = X;, [X;, X;] = 0 for 4,5 = 1,...,k. Then ¥ cannot be
infinitesimally observable at g,ur).

Proof. Suppose that ¥ is infinitesimally observable at (g,ur). The subset of G
consisting of the points r such that ¥ is infinitesimally observable at (r,ur) is
.open (cf. Gauthier and Kupka, 1994, Theorem 2.0). Thus there exists an open
neighborhood W of g such that ¥ is infinitesimally observable at (g1,ur) for every
g1 € W. There also exist an open neighborhood V of g (assume without loss of
generality that V' C W) and an open neighborhood B of 0 in L such that the map
Z — g-expZ is a diffeomorphism of B onto V' (cf. Varadarajan, 1984, p. 86). This
means that every point g; € V' has a unique expression of the form g, = g-expZ
for some Z € B Hence:

Ad(g1) = Ad(g)Ad(exp Z)
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Let adZ(X) = {Z, X] for every X € L. According to Proposition 1 X; € centre(L)
for every 1 =1,...,k. Then for i =1,...,% it follows that

Ad(exp Z)X; = e*%(X;) = X;

This implies that Ad(g1)X; = Ad(g)X; = X;. Applying again Proposition 1 it is
immediate that g; € centre(G) for every g; € V' which contradicts the hypothesis of
nonabelian G. ]

Corollary 2. Let G be nonabelian and X, f, ur be as in Proposition 1. If
X1,..., X € centre(L), then ¥ with ur cannot distinguish between any two dis-
tinct initial states.

Proof. If ¥ with ur distinguishes between any two distinct initial states, then the
set of points g such that X is infinitesimally observable at (g, ur) is dense in. G (cf.
Gauthier and Kupka, 1994, Theorem 2.0). As in the proof of Corollary 1, write every
g € V with V an open neighborhood of e, as ¢ = expZ with Z € B, where B is
an open neighborhood of 0 in L. Then for g€V, i=1,...,k,

Ad(9)X; = Ad(exp Z)X; = e*¥ (X)) = X

Thus, from Corollary 1 it follows that ¥ cannot be infinitesimally observable at
(g,ur) for every g € V which finishes the proof. [ ]

-Example. Let G be the connected component of GL(2,R), the group of 2x2
invertible real matrices, which contains the identity element. Then L = Lie(G)
consists of all 2x2 real matrices. Let also ¥ be an invariant system on G and

le X2, X3 € L with
0 1
, X3=
-1 0

Assume that uz = {(X1,1), (X2,1), (X3,1)} is a control law for £. Con-
sider also the invariant output function f: G — R with f(g) = trace(g). G is
equipped with the natural topology of R* and has a global coordinate system. Write

Ty = _L | of
g [z 'w} Then df, = ( 3z ay|, %,
it can easily be shown that ¢(g) = (z z y w). Furthermore,
#(e(0 (1oon1)
(1

ol e(

5835 ) After a simple calculation
g

029)-
( u3) IOOexp))
¢(e(2,ua)) =
(<(3.u2))

(
(1 exp(1) 0 exp(l))
(

odle(3,u3)) = (cos(1) exp 1)(cos(1)—sin(1)) sin(1) exp(l)(cos(1)+sin(1)))
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Thus ¥ is infinitesimally observable at {e,us), since span{¢(e(t,u3)) : t € [0,3]} =
2 -1
1 2
diate that ¥ is not infinitesimally observable at (e,us3) since [X72, X3] = 0.

L*. Replace now X;,X,; with X0 = [ } Applying Corollary 1 it is imme-

4. Conclusion

In this paper infinitesimal observability of systems on Lie groups was studied. The
structure of these systems was incorporated in order to obtain an infinitesimal observ-
ability criterion. In the special case of piecewise constant inputs, the aforementioned
criterion leads to simpler tests which also relate infinitesimal observability to local
observability. Finally, an example was given to illustrate the results.
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