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A NEW APPROACH TO CONVERGENCE ANALYSIS OF
RLS-BASED SELF-TUNING STOCHASTIC CONTROL

ANTONI NIEDERLINSKI*

It is demonstrated that a recently derived bound on the error convergence rate
in (open-loop) RLS estimation is applicable to RLS-based stochastic self-tuning
control as well. This leads to a generalized upper bound for the estimation error
convergence rate in stochastic self-tuning control. The bound is shown to con-
verge to zero under some assumptions regarding the model structure. The result
is used to formulate two principles of self-tuning stating sufficient conditions un-
der which self-tuning to stability and self-tuning to parameter consistency may
occur.

1. Introduction

The development of stochastic self-tuning control started with the RLS-based
minimum-variance self-tuning regulator, presented by Astrém and Wittenmark
(1973). It enjoys an uncountable number of descendants, differing more or less from
their ancestor but having as a rule one thing in common with this ancestor, namely
a stubborn resistance to theories trying to provide some down-to-earth but sound
and complete explanation of why the self-tuner self-tunes at all. There are two is-
sues involved in this problem: (1) When and why does the self-tuner self-tune to
a stable control system? (2) If stability is achieved, when and why does the self-
tuner self-tune to consistent parameter estimates of the target controller? By the
target control system (target controller) we mean a constant-parameter control sys-
tem (constant-parameter controller), towards which the self-tuning control system
(self-tuning controller) is designed to tune.

Existing attempts to solve this problem may be roughly classified into the fol-
lowing broad categories:

1. Assume closed-loop stability of the self-tuning control system and calculate
the properties of local convergence points. This approach uses various theore-
tical tools, the most popular being the ODE-Approach (Ordinary Differential
Equation), which replaces the analysis of a time-discrete stochastic system by
an averaged non-stochastic time-continuous system using a compressed time
scale, see (Ljung, 1987). A critical appraisal of the ODE approach has been
presented by Wellstead and Zarrop (1991).
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2. Modify the self-tuning controller so that the self-tuning control system becomes
amenable to some kind of theory, usually based on martingales, which proves
stability and parameter consistency at the same time. Examples of this ap-
proach are given e.g. by swapping the RLS algorithm for the stochastic gradient
algorithm or some modified RLS algorithm in the Astrém-Wittenmark self-tuner
(see e.g. Goodwin et al., 1981; Goodwin and Sin, 1984).

3. Use the technique of Bayesian embedding and assume the white noise to be
Gaussian (Kumar, 1990) to arrive at a convergence condition which holds pro-
vided the true parameter vector is contained in some exceptional set.

4. Use limit martingale theory to provide upper bounds on the rate of changé of
the norm of parameter estimate errors and show that these bounds converge to
zero. Technically the approach is based on various martingale extensions of the
law of iterated logarithm. Pioneering work done in this area is attributed to Lai
and Wei (1982; 1986), as well as to Chen and Guo (1991; 1995).

The present paper is in tune with the last approach. It aims at demonstrating that
a recently developed upper bound for the estimation error convergence rate in RLS
estimation for SISO ARX open-loop plants (Niederliriski, 1995) is also applicable to
RLS-based self-tuning stochastic control without any prior assumptions regarding its
stability or parameter convergence. The paper is organized as followss: (1) The upper
bound and its underlying assumptions are summarized. (2) To demonstrate that this

- bound is applicable to RLS-based self-tuning stochastic control, two technical lem-
mas are presented: they establish asymptotic properties of the bound numerator and
denominator for the case of a plant driven by nonstationary output feedback for the
case of stochastically disturbed output. (3) As a result, a new, more general version
of the upper bound from (Niederliriski, 1995) has been derived. It holds for any RIS
estimation for stochastically disturbed plants excited via linear nonstationary output
feedback. From this new upper bound it follows that any unbounded increase in con-
trol system signals is accelerating the bound convergence to zero. (4) This property
is used to formulate two principles of self-tuning giving sufficient conditions for sta-
bility and estimate consistency in RLS-based stochastic self-tuning control systems,
for which the estimation error is described by the upper bound. The applicability of
the upper bound to such self-tuning control systems is illustrated by an example of
direct RLS-based self-tuning minimum-variance control.

2. A Bound for RLS Convergence Rate
Consider RLS parameter estimation for the open-loop stable plant
A(z"Ny(i) = B(z"Hu(i — 1) + e(d) (1)

with A(z7) =14a127 '+ - +agaz"% and B(z7) =bg+byz7  +---+bgpz™ 98,
2z~ denoting the unit delay operator and A(z~!) being Hurwitz stable. The plant
equation may also be put into a linear form

y(5) = T (i — 1)0 +e(i) (2)
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with the data vector
G- 1)=[-y(-1) —y(i=2)...—y(i—dA) u(i=1) u(i—2)...u(i-1 —-dB)] 3)
and unknown pareameter vector
67 = [a az ... auado by ... bas] (4)

It is assumed that e(?) is a martingale difference sequence with respect to a properly
defined o-field F;, which might be considered to be the Borel field generated by the
sequence ,...,e(1—2),e(t—1),e(¢). Technically it is assumed that E {e(¢)|Fi—1} =0
and E{e(i)} = o?. It is further assumed that the model is given by :

9(1) = ¢ (i - D) (5)
with the same data vector as the plaht and the model parameter vector
67(i) = [a1() 8200). - @aa(d) Bo(3) B(i)r ... ban(i)] (6)

The RLS estimates (i) are com.puted by
(i) = 8 - 1) + Pi)eli - 1) [y(5) - " (6 - 1)8(i - 1)] W

Pl =P 16 —1)+p@i—-1)p" (i -1)
=30l = DT = 1) + 16 Amin(0) (8)
Jj=1

The initial conditions are given by (0) and P(0) = 1/Amin(0), 0 < Amin(0) < 1.
The estimation error is denoted by 6(¢) = 6(¢) — @ and the minimum eigenvalue of
P7(i) by Amin(3). The number of estimated parameters is s = dA + dB + 1.

With the above assumptions and notations, the following result has been proven
recently, see (Niederlifiski, 1995):

Theorem 1. The upper bound for the Euclidean norm of the RLS estimation error
is given by

1B = (”S“phﬂ*‘”“’(”‘””“/w) ws. ©)

)\min (7')

The mechanism of getting estimate consistency can thus be interpreted (Nieder-
linski, 1995) in terms of a race between the accumulated disturbance (which increases
with the rate /7 log log 7) and the accumulated ezcitation (which increases with the
" rate given by Amin(¢)): for consistency Amin(?) must increase at a rate faster than

v/t log log 4. This is achieved in open-loop identification e.g. when driving the plant
input with white noise.
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In what follows it will be shown that the bound (9) may be used to derive sufficient
conditions for stability and parameter consistency for RLS-based self-tuning control
systems for stochastically disturbed plants. To justify that without presupposing
control system stability, it must be demonstrated first that the bound (9) is also
applicable when sup; [[¢(h —1)||2 is not assumed to be bounded, as it may happen
when u(i) is generated by output feedback. This follows from two additional lemmas.
They exploit the following general idea: because the plant input during self-tuning
may be considered to be a (not necessarily stable) nonstationary ARMA (or MA (o))
time series, asymptotic expressions for Amin(i) and sup,«; |l¢(h — 1)||2 for this type
of excitation may be derived. They demonstrate that the rate of increase for Amin (%)
is always greater than that for sup, ., [l(h—1)||2; those rates together with the law of
iterated logarithm rate given by the term /7 log log 7, result in a bounding function
(see Theorem 2, (30)), which always converges to zero. The result explains e.g. the
well-known phenomena of RLS-based stochastic self-tuning control systems regaining
stability after outbursts caused by a wrong choice of initial controller parameters. To
emphasize the intuitive insight provided by the rather technical result, it has been
put into the form of two principles of self-tuning.

3. Amin(2) for Self-Tuning Stochastic Control

Asymptotic expressions for the minimum eigenvalue may be.cornputed for plants
excited by nonstationary ARMA series (nonstationary MA(oo) series), which corre-
sponds exactly to what is happening during self-tuning for minimum-variance control.

Lemma 1. Assume that the plant input u(i) is given by a nonstationary ARMA
(nonstationary MA(c0)) time series generated by plant white noise e(i). Let the n-th
Markov parameter at time i for the nonstationary channel between e(i) (considered
to be input) and u(i) (considered to be output) be given by hin and let h, be an
upper bound for this Markov parameter for all 0 <1 < oo, i.e. hip < hn for all i.
Then for some d >0 and 1 — oo:

-1
Amin(i) = do®i SR (10)
n=0

Proof. Lemma 1 is based on Lemma 3 in (Niederliriski, 1995), which assures that
Amin(?) is tracking asymptotically Ay min(¢), which is the minimum eigenvalue of the
matrix 3% pu(j — 1)L (j — 1), where

Wl(i—1) = [u(z‘ “Dul—2) ... uli—1- dB)] (11)

Consider

k
u(k) =) hinelk—n), k- oo
n=0
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Z hk_l,ne(k —-1- 'I’L)
n=0
k—2
ﬂpu(k“‘ 1) — th_z,ne(k—-2—n)
n=0
k—s '
Z hg—sne(k—s—n)
L n=0 J
with Y oo |hoo,n| 1Ot necessarily finite. It follows that
S eulk - DIk - 1)
k=1 k=1 M k-1 1T
Y b1 ne(k—1—n) > hi-ine(k—1-n)
n=0 n=0
; k—2 k—2
;L Y hk-zme(k—2-n) | | Y heane(k—2-n) | (12
1 n=0 . n=0
k=1 . .

k—s ’
Z hi—sne(k —s—n)
n=0

k—s )
Z hi—sne(k —s—mn)
n=0

There exist real numbers h, bounding from above all hy , for any k, hn > hin,
k=1,2,...,7 and such that

n=0
; k—2
Z Z hg—2ne(k—2—n)
=1 n=0
k—s ’
Z hi—sne(k —s—n)
L n=0
[ k-1
(Z hne(k—1—
n=0
: 0
<
k=1
0

k—1
> hi_1ne(k—1-n)

n))

k—1

Z hk—1,ne(k —1—n)
n=0

k-2

Z hx—one(k —2 —n)
n=0

k—s ’
Z hi—sne(k —s —n)
n=0 )

k=2 2
(Z Ene(k—2—n)) .

T
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where A< B means that B— A is positive-definite. Since
2
z—Z( (k—1- n) —i0?
we have
Aumin() < 203 T, (14)

Therefore for some d > 0

Amin(d) = do? i Z Ry,

Obviously, linear nonstationary filtering of white noise preserves the excitation
properties of white noise as reflected in the rate of change of Amin(7) (Niederlifiski,
1995) and in the case of unstable linear nonstationary filters even enhancing them.

4. supp<;l/¢(h — 1)||2 for Self-Tuning Stochastic Control

Asymptotic expressions for sup,; |l¢(h — 1)|l2 may also be computed for plants
excited by nonstationary ARMA series (nonstationary MA(co) series).

Lemma 2. Assume that the plant input u(i) is given by a nonstationary ARMA
(nonstationary MA(cc)) time series generated by plant white noise e(i). Let the n-th
Markov parameter at time i for the nonstationary channel between e(i) (considered
to be input) and u(i) (considered to be output) be given by h;, and let h, be an
upper bound for this Markov parameter for all 0 < i < oo, i.e. hin < hn for all i,
as in Lemma 1. Then

sup le(j - 1)ll2 = O (o sup[f;1]) (15)
Y <1t

for some real M >0 and N > 0.
Proof. From (1) it follows that

2

B(z™1) + lpuan(G — 1|

oG - DI = }[ e Puaali = D+ i = 1

2 2

-1

+“A( )cpe(J 1)

+2HB< 7 aal ”H Lyeli- >H+nsou,w(j—1)||2 (16)
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where

i—1
z hi_l,me(_i —-1- m)

m=0
i—2

Pu,aa(i —1) = miz:o hicame(i =2 —m) (17)

i—dA
> hicaame(i — dA —m)

L m=0 i

- Ii: hi_l,me(i —-1- 'm) -‘

m=0

1—2
puanli—1)=| 2 Mi-ame(i=2-m) (18)

m=0

i~dB
Z hi—4B,me(i — dB —m)

L m=0 p

and

e(t—1)
pe(i—1) = ol “ ? (19)

e(i — dA)

Obviously, there exists an M, 0 < M < oo, such that

i1 2 i—2 2
llpuaa(i—1)|? = (E h,-_l,me(i—l—m)) + (E hi_z,me(i—2—m)> 4+
m=0

m=0

i—dA 2 i—1 2
+ (Z hi_dA,me(z'—dA—m)> __<_ M (Z hi—l,me(i_l"m)> (20)

m=0 m=0
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Further

i1 2
M (Z hi_l,me(i—‘l —m))
m=0

=M

[ /k-1
Z(th 1,me(k—1- m)
k=1

m=0

li
lz (th 1me(k—1— m)

m=0

< Mli

:(thek 1- m))

0
=0 (02 75?_1)

r
sll—l

Je

i—1

>

k=1

th 1,me(k—1—m) 2
(Eretrron)]

i

i(z hk_l,me(k—1—m)j]

k=1 \m=0

(Erel]

(21)

i—1

1IZ

k=1

where the bounds h; may obviously be exactly like in Lemma 1. It follows that

sup lpu.aa(i = Dllz = O sup B ) (22)
i< : j<i
Similarly
lpuas(-1I* = 0 (o2 B, (23)
sp [luan(j = Dlls = O(o sup ;1) (24)
Jj<i §<i
Also
lpe(i—1)I* = O (d4 o?) (25)
Write
B(z™! . = .
ﬁ:l—;(pu,d}l(l -1)= Z InPu,da(i —1—n)
n=0
1 i—1
m(pg(l 1):ancpe(i——1—n)
n=0
Then
B(z! ,
”Z(%_—l%%,am(l - 1)“ < Sup lpu,aa(m)|| Z gnl (26)
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with Yo7 |gn| being finite. Therefore

H %wu,m(i - 1)“ = 0(0 sup Iﬁj—lo (27)
Also

| amgerti- 0] < s ot go ol (28)
with 5 oo |kn| being finite. Therefore

| uanti- D) = 0(c sup -] (29)

From (27) and (29) we deduce (15), which completes the proof. |

5. The Main Result

Now we are in a position to show that if (9) holds for the estimation error in an RLS-
based self-tuning control system and 6(co) = O corresponds to parameter estimates
guaranteeing stable performance of the target control system, then any signal outburst
due to loss of stability is transient, because it accelerates estimate convergence and
restores stability of the self-tuning control system at the same time.

The above-mentioned upper-bound property is formulated as a separate theorem:

Theorem 2. Assume that the plant input is generated by linear nonstationary output
feedback in an RLS-based self-tuning arrangement, for which the bound (9) holds.
Then the bound may be expressed as

8 sup;; [hj—1| [loglogi

R e N (30
Proof. From Lemmas 1 and 2 we have
50 sup;; lle(s — 1?||z Vi log log L $SUPci 2= loglog i (31)
Amin (%) oY i Ef_l ?
This, together with (9), gives (30). |

It follows that any outburst of h; (which is in fact modelling an outburst

of control system variables) accelerates the convergence of the bounding function
s sup;<; [hj-1|

S (/s i"gi to zero by making its denominator grow at a faster rate than
j=1 11—

its numerator.
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This result may be used to formulate two self-tuning principles, being as a matter
of fact sufficient conditions of self-tuning stabilization and parameter consistency:

Theorem 3. Assume a self-tuning control system with RLS parameter estimation
for which the upper bound (9) holds and for which the asymptotic estimation error
é(oo) = 0 ezists and corresponds to parameter estimates guaranteeing some kind of
stability of the target control system. Then the following two self-tuning principles
hold:

1. The principle of self-tuning stabilization:
Any outburst of control system variables, typical for loss of stability and caused
e.g. by improper initial controller parameters, results in additional ezcitation
which accelerates the convergence to zero of the upper bound for the estimation
error, in the process of computing RLS estimates that converge towards values
assuring for the self-tuning control system the kind of stability retained by the
target control system. As a result, stability is self-restored.

2. The principle of self-tuning consistency:
For a self-tuning control system stabilized by the mechanism described in the
principle of self-tuning stabilization holds:

8 SUp;¢; lﬁj_1| loglog :
—— ;0
o ijl h; y

which is sufficient for the a.s. convergence of parameter estimates to their true
values.

The proof of both principles is immediate.
Discussion:

1. For self-tuning to occur two things are sufficient:

o The estimation error is limited by the upper bound (9).

e The true values of estimated parameters correspond to a stable target
control system.

2. The essence of self-tuning stabilization is a mechanism, by which any loss of sta-
bility or serious control deterioration, as bad as to improve considerably the per-
sistency of excitation measured by the accumulated excitation Ay, (¢), results in
restoring stability by bringing the parameter estimates to such a neighborhood
of the true values, that assures stability. The term accumulated ezcitation refers
to the fact that Ayin(¢) values form a non-decreasing series, see (Niederlifiski,
1995).

3. The essence of self-tuning consistency is a mechanism, by which eventual dis-
turbances or specially introduced excitation increase further the accumulated
excitation Amin(z) of the already stabilized control system, thereby bringing
the parameter estimates to such a neighborhood of the true values, that assures
consistency.
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4. Both properties of interest: stability (coming first) and estimate consistency
(coming next) are explained by the same simple mechanism of accumulated
excitation as given by Amin(¢) and its role in bounding the estimation error.

5. The explanation is done using a rather small set of simple concepts, (remember
Occam’s Entia non sunt multiplicanda praeter necgssitatem!), the main one
being asymptotic properties of Amin(7) and sup;<;|hj1l-

6. Both principles highlight the strong connection between self-tuning for stabili-
ty/consistency and persistence of excitation in its accumulated form.

The self-tuning principle will be illustrated by means of an example.

Example. (The Astrém-Wittenmark minimum variance self-tuner, known by, a
minimum-phase system.) Consider the minimum-phase plant given by

y(3) = bou(i — 1) + T (s — 1)6 + (i) (32)
with by known,
gaT(z'~1)=[—y(i—1) —y(i—2)...—y(i—dA) u(i—2) u(i—3)...u(i—1—dB)](33)
and

67 = [a az ... aun by bo ... bz | (34)

The minimum-variance target controller for this plant is obviously given by
1 )
u(i — 1) = —b—wT(z -1)6 (35)
0

and the resulting minimum-variance target control system is stochastically stable in

the sense that the variance of the controlled variable is finite and given by the white-

noise variance 2.

Consider the plant model given by
9(5) = bou(i — 1) + T (i — 1)§(i — 1) (36)

with usual RLS estimation:

6()=0(i — 1) + P(i)p(i—1) [y(6) - bou(i~1) — " (i-1)AG-1)]  (37)
P (i) =P (i - 1) +p( - 1" -1) (38)
and certainty-equivalence minimum-variance controller
wi—1) = ——b1—<pT(i— 16 — 1) (39)
0
From (37), (32), (38) and the definition of §(i) we have
(i) = PG)P (s — 1)0(i — 1) + P(8)p(i — 1)e(3) (40)
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Iterating (40) results in

1

6(i) = P()P7H(0)8(0) + P(i) Y _ o(j — 1)e() (41)

i=1

Normalizing variables f(j — 1) = ¢(j — 1)/sup llo(h —1)|l2 and w(j) =e(j)/o and

applying basic norm definitions results in

o sup flp(h —1ll2

| > £ - e, (2)

)‘min ('L) j=1

)\min(o)

o 1B +

16(3)lz <

Obviously, for any element fr(j—1) of the vector f(j—1) (measurable with respect
to F;_1) we have

B{felj = V()| Fi-1 } = fulj = VE{w(i)| Fi1 } =0 (43)
B{f2( - DwP()| Fra ) = G- <1 (44)
B{sii - 0w} = B{ G - 1)} <1 (45)

It follows that (fix(j — 1)w(j),F;-1) is a uniformly bounded martingale difference
sequence for which, on the set s; — oo, where

3

si= Y B{ 20 - ()| Fra } = fo]-l - (46)
j=1

the following generalization of the law of iterated logarithm holds (see e.g. Hall and
Heyde, 1980):

ifk(j ~1uw(j) =0 (\/si log log si) -0 («/i log log 1) (47)
j=1

From (47) and (42) we deduce (9). Therefore the bound (9) holds for the direct
Astrom-Wittenmark minimum-variance self-tuning control system for known by and
the minimum-phase plant. Because while self-tuning the plant is excited by a nonsta-
tionary ARMA (nonstationary MA(oo)) series, Lemma 1 and Lemma 2 hold as well.
We see that for this control system the bound (30) holds and that the parameter
estimate vector 6(i) converges a.s. to the true target controller parameter vector..
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6. Conclusions

It has been shown that a recently published upper bound for open-loop RLS estima-
tion error convergence rate may be safely and profitably used to analyze stability and
parameter consistency for some RLS-based stochastic self-tuning control systems as
well. This has been done by deriving some more detailed results on the asymptotic
behavior of this bound in a self-tuning environment.

The results clearly demonstrate an acceleration of the estimation error conver-
gence rate due to the presence of signal outbursts, e.g. those occurring in control
systems loosing stability. This property is used to provide a unified explanation of
the mechanism of achieving stability and consistency in all those self-tuning control
systems, for which the bound holds and for which the asymptotic values of estimates
correspond to stable target controller settings. This insight into self-tuning provided
by the upper bound has been summarized by two sufficient conditions in the form of
self-tuning principles and illustrated by an example.
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