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ADAPTIVE DISCRETE-TIME IDENTIFICATION
OF CONTINUOUS-TIME SYSTEMS
USING ADJUSTED INTEGRATION

ZpzistaAw KOWALCZUK*

A new approach to the design of on-line discrete-time systems of identification
of continuous-time systems is presented. The problem concerns digital signal
processing suitable for generation of the regression vector in discrete-time re-
cursive estimation of continuous-time process parameters based on a mixed,
discrete-continuous regression model. The approach is related to discrete ap-
proximation of continuous-time systems, where a kind of matching to the input
and output signals is taken into account. In particular, the normal integrating
operator technique is utilised. Two methods of “tempering” the characteristics
of discrete-time integrators are proposed. One method consists in the transfor-
mation of an original system of matched IIR filters into an equivalent system of
FIR filters. The purpose of the other method is simplification of calculations by
applying stabilised closed IIR forms of the integrating operators. Such matched-
and-tempered normal integrating operators are referred to as the adjusted in-
tegrators. Experimental results, obtained in an analogue and digital simulation
environment, of the application of the two methods to discrete-time parame-
ter estimation of nonstationary continuous-time systems corrupted by different
noise processes illustrate the usefulness of the approach.

1. Introduction

Adaptive mechanisms introduced into control systems generally rely on identified
data. Therefore, in various applications of adaptive schemes, routines used for esti-
mating the process dynamics take a cardinal role. Such routines are most essential
in continuously adaptive control systems. Many ideas proposed for the purpose of
identification of discrete-time models have been proposed—see the bibliography in
(Ljung and Stderstrém, 1983; Kowalczuk, 1992a; Kowalczuk, 1992c).

There are, however, essential drawbacks connected with the discrete-time ap-
proach to the design. The loss of information on the value of the relative order of
the system transfer function, the residual delay, the problem of choosing the sam-
pling time, the non-minimum phase property, the effect of roots clustering and the
resulting system parameter sensitivity, are some of them. These issues justify the
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recently observed return to the continuous-time approach and to the design of dig-
ital control systems (Sagara and Zhao, 1990; Unbehauen and Rao, 1990; Pintelon
and Kolldr, 1991; Kowalczuk, 1993a; 1993b; 1994a; 1994b; 1994c; 1995; Kowalczuk
and Marcificzyk, 1995a; 1995b), where the fundamental design (Kowalczuk, 1992c) is
carried out in the continuous-time domain prior to digital mechanisation.!

This paper presents a new continuous-time approach to the design of on-line sys-
tems appropriate for the identification of continuous-time nonstationary systems and
processes that can be used in adaptive control applications. Our attention is focused
on linear dynamic operations suitable for generating the elements of the regression
vector in discrete-time recursive estimation of continuous-time system parameters
based on a mixed, discrete-continuous regression model.

The proposed methodology, being representative of the continuous-time design, is
related to discrete approximation of continuous-time systems, where a kind of match-
ing to the input and output signals is taken into account (Kowalczuk, 1983a; 1983b;
1991; 1993a; 1993b). In particular, the normal integrating operator technique is ap-
plied. Two methods of “tempering” the characteristics of discrete-time integrators
for on-line applications are proposed. One method consists in the transformation of
an original system of matched IIR filters (with an infinite impulse response) into an
equivalent system of FIR filters (of a finite impulse response). Another method al-
lows for a simplification of calculations by applying stabilised closed IIR forms of the
integrating operators.

Such “matched-and-tempered” normal integrating operators are referred to as
the adjusted integrators. Experimental results of the application of the two meth-
ods to discrete-time parameter estimation of nonstationary continuous-time systems
corrupted by different noise processes illustrate the usefulness of the approach. The
numerical results have been obtained in a hybrid, analogue and digital simulation
environment.

2. Identification Problem

Consider a lumped linear continuous-time system described by the n-th order stnctly
proper rational transfer function

G(s) = ﬁ% (1)

where A(s) = s + a1s" "1 +--- +a, and B(s) = bps™ + bys™ ! + .-+ + by, for
0<m<mn.

The input u(t) and output y(¢) of the system are related through the following
linear integral equation:

(JU Fa gl a,,J")y(t) = (bOJ"“"‘ by grmt g bmJ")u(t) 2)

1 As opposed to the discrete-time approach, where the fundamental design follows a model
discretisation procedure (Brogan, 1991; Isermann, 1989; Kowalczuk, 1992a; Kowalczuk and
Suchomski, 1995a; 1995b).



Adaptive discrete-time identification of continuous-time systems ... 43

where J?, or Ji(s) = 1/s¢, is the operator of the i-th order integration within the
limits (0, ¢).

Note that the above realisable eqn. (2) can be obtained by introducing the
n-th order integration J™(s) that can be interpreted as a type of low pass filter-
ing H(s) = J™(s) of the system input and output signals X € {U,Y}:

S"TUH(8) X (8) = "I (8) X (s) = JH(s) X (s)

On the other hand, for the purpose of identification and control it is usual to
centre the parameter estimation process around a lower-frequencies band by applying
a low-pass filter F(s) to both the system’s input and output. In the continuous-time
domain the system can therefore be represented by the following model:

Joyf + allef + -4+ anJ"yf = boJ"-m’Uf + bljn—m+1Uf + -+ by J"uf (3)

where us = us(t) and ys = ys(t) are the filtered-by-F(s), low-pass versions of the
input and output signals, respectively. Note that the effect of filtering by a digitally
implemented H(s) = J"(s) may not be sufficient and a continuous-time filter F(s)
is also necessary to avoid the frequency aliasing effects due to sampling.

Consequently, it is clear that the observed dynamical continuous-time system (3)
is modelled by the linear-in-the parameters equation, which can be shown in the linear
regression form as

T0ys(t) = @z (t) + n(t) (4)

where ©T = |ayay -+~ an:bg by --- bm] and cp?(t) = [=Jrys(t) - =JIys(t)

Jr e (t) TP g (t) oo J™ug(t)], n(t) being an equation error function.
In the identification process that is to be performed by digital means (in the

discrete-time domain), solely samples of the low-pass-filtered input and output signals,
i.e. up(kT), ys(kT) and ¢ (kT), can be employed:

Ty (kT) = 0T (kT) + n(kT) (5)

resulting in a mixed discrete-continuous formulation of the regression model that in
spite of its seemingly discrete form maintains the original parameterisation of the
difference equation of the continuous-time system (1).

The remaining problem is to approximate the continuous-time pre-processing
J(s) necessary for calculating the elements of the (continuous-time) regression data
vector s(kT) by a corresponding discrete-time pre-processing of the sampled-data
signals us(kT) and yg(kT).

3. Discrete Approximation

The methodology known as the discrete-time approximation of continuous-time sys-
tems seems to be most appropriate to this end. A survey of respective methods using
closed-form design can be found in (Kowalczuk, 1993a; 1993b).
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This type of design methods has several advantages. It is simple and gives closed-
form solutions without resorting to iterative optimisation procedures. It enables us to
give a natural interpretation of parameters and variables or other system properties
of interest. What is more, by maintaining the sampling time as a tunable parameter,
it permits implementations at different sampling rates.

The model formulation given in (1)-(5) is suitable to the so-called input-output
matching, and, in particular, to the expanded operator method, where a series of
=i

discrete operators :T(,;) approximating the corresponding set of analogue multiple
integrating elements J*(s) is applied (Kowalczuk, 1993a; 1993b).

The idea of using those operators differs from the approach presented in (Sagara
and Zhao, 1990; Pintelon and Kolldr, 1991), which can be classified as a simple
operator method (Kowalczuk, 1993b).

3.1. Normal Integrating Operators

According to the discretising methodology (Kowalczuk, 1993a; 1993b), the operators

E..(z) can be designed so as to ensure their individual matching to the signals sampled
at the input and output of the identified system.

There are numerous manifestations of the integrating operators Z%(z). The most
general class used in the expanded operator scheme comprises the normal integrating
operators (Kowalczuk, 1983b; 1991; 1993b)

=i ;! Ny4i(2)
2(z)=T1" - 6
=T N G NG (6)
for r =0,1,2,..., ¢ =1,2,..., where N,(z) are certain normal polynomials. The

parameter r is the order of the signal interpolation applied in numerical integration.
This order should therefore match the form of the signal integrated: it can, for in-
stance, be fixed as the order of a polynomial spline function advised for approximation
of the integrated signal between the sampling points (Kowalczuk, 1983b; 1993b).

Using the integrating operators for the calculation of the discrete-time approx-
imation of (4) results in (5) with J° = 1 and with the samples of the regression
vector

@ (KT) = [~Ehys (KT) ~S2y;(KT) -+ ~Zpys(kT)
=g (KT) Ep7 ug(KT) - Spug(kT)] (7)

where r and ¢ are the respective orders of interpolation of the filtered output and
input signals of the identified system.

3.2. Tempering of Integrating Operators

A principal problem in using the integrating operators is that they are intrinsically
unstable (in the BIBO sense) in the open-loop operation that takes place in (7). The
numerical overflow connected with integration can be circumvented by a periodic
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reset of the estimation algorithm (Unbehauen and Rao, 1990), but for higher-order
systems the time interval allowable for integration is usually too short to perform
effective identification. A slight displacement of the pole of Zi(2) from z =1 inside
the unit circle on the z-plane (Pintelon and Koll4r, 1991) may be insufficient since for
T > 2 the operators have also other unstable poles. At the same time, a direct way of
stabilisation of these operators introduces a phase distortion (Kowalczuk, 1991) and
therefore does not seem to be suitable for identification purposes.

Two general ways of tempering characteristics of the operators for on-line iden-
tification schemes have recently been proposed in (Kowalczuk, 1994a; 1994b; 1994c;
1995). One method is based on the transformation of the operator transfer functions
(6) into a set of equivalent transfer functions, and next into a corresponding set of FIR
operations, that leads to the mixed regression model (5), which entails FIR digital
filters. The other method is set up on a simple stabilisation procedure of the model
(5)-(7) that results in an ITR-type processing of the elements of the vector ¢ (kT).

4. FIR Processing of the Regression Vector

The methodology explained below consists in replacing the IIR type of filtering de-
scribed in (6) by the FIR type of a limited-horizon integration. It is clear that in such
a case the problem of unstable poles will be circumvented.

The procedure is based on observation that the elementary single-delay discrete-
time rectangular integration scheme can be transformed into its equivalent [-delay
form (note that in the resulting algorithm the parameter ! will next be interpreted
as the length of a FIR-integration horizon):

1 Pz :
I(z) = = 8
(2) 1—2-1 1— 2! (8)

where Pi(z71) =14 27 4272 4 ... 4 =01,

4.1. Using the Expanded Operators

The first technique corresponds to the expanded operator scheme of discrete approxi-
mation (Kowalczuk, 1983a; 1983b; 1993a; 1993b). The [-delay operators correspond-

ing to (6) can be shown as
rt Nei(zh) Pz

El(z)=T" _ . 9

ra(2) (r+)! Np(z71) (1 —271t) )
For a procedure developed here, all the operators should acquire a form with a
common denominator. Therefore, taking into account the order (n) of the continuous-

time system (1), the final form of the I-delay integrators having a common denomi-
nator is

by = Med (7D Ny(eh) (L= 27
T TN GE D N G-
rIT?

where M:IT(z_l) = m Neyi(z71) PH(z7h).

(1]

(10)
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Using the operators (10) for the construction of the regression vector (7) and
making a simple recalculation of eqn. (5), we obtain

oys(KT) = ©T oy (KT) + n(kT) (11)
with
F(KT) = [~ Thpys (KT) =20y (KT) ... —J7ys(RT)

o7 s (KT) J;:m+1’nUf(ICT) J;f;"uf(kT)] (12)
where the discrete-time J-operators, different both in form and interpretation from
the continuous-time ones,

T = T (z) = Tl (2) = MET (27 NG (271 (1 ~ 27

7q,l

- (TT!JZ:)!Nr+i(z—1)Nq(Z_l)Pzi(Zkl)(l -z (13)

stand for the limited-horizon integration of the FIR type. Note that for boundary
values of the index 1

Jon() = JOP(2) = Ny(z™) Ny(z=)(1 = 2y (14)
yet
TP (2) = o Ny (2 )Ny () PP () (15)
ne (r+mn)!

is different from J7;"(z) for r #q.

4.2. Using the Simple Operators

The simple operator scheme is based on the single normal integrating operator =1(z)
from (6) ’

T ) Ny (YR ()

E;’,(z) = (7" +1) Ni(z71)(1 -z (16)

that is designed for one “shape” of signals under observation. Note that in such a
case, the same interpolation order ¢ = r is applied both at the input and output of
the system.

The I-delay operators adjusted for identification of the n-th order system are

w1 —1yprn—if,—1 _ —l\n—i
Ei,n(z) — M‘I‘,l (Z )NT (Z )(1 Z )
nt Np(z=t) (1= z7t)m

(17)

0T/ - T N 1y pig—
where M (z7) = (=5 ) M (e )PiG™).
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The corresponding regression model takes then the form:
Iy (kT) = 07 o (kT) + n(kT) (18)

where ¢ (kT) is given by
T (T) = [—T1my(KT) —J2nys(KT) .. —J2mys(kT)

Ty (RT) P (RD) T g (RT)](19)

and

= M) = P () = My (TN T (L= 2T
Ti ) -1 n—i( —1 i(,—1 —l\n—1 ‘
= mNrH(z NI P11 - 27) (20)

The boundary values are
T’n.

JPm(z) = Nz =27, () = meﬂ(z‘l) Prz"Y (21)

Note that in both techniques (10) and (17) are respectively of the form

) Jb(2) , Jbm(2)
ZMz) = —L—=  and E'7(2)=—= 22
7, ( ) JT(‘)’,qn(z) Tl ( ) JS’”(Z) ( )

and that the integration approach considered in (Sagara and Zhao, 1990) is included
in the simple scheme (17)-(20) because the trapezoidal rule is realised here by putting
r=1.

5. IIR Processing of Regression Vectors

~In the case of low-order continuous-time systems a simple method of stabilisation
of the original IIR-type integration, necessary for processing of the regression vector
@(kT), is possible.

Consider the system model described by eqns. (5)—(7) and bring it to the form
of (11)
Ttys(kT) = 07 s (kT) + n(kT) (23)
The regression vector is then given by (12), where

r1 T¢

Tin(z) = ]

Npsi(z YNy ) (1 = 271 (24)
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with boundary values

I(:) = Noa N ()1~ 27" = T2 (2) (25)
and
TR = o Nran N (26)

which is different from the filter J7*(2) for 7 # g.

Let us define a polynomial related to J2:7*(2)
D(z) = v+ Jom(2) - (27)

which has all its zeros inside the unit circle on the z-plane. The parameter v is a
non-negative coefficient used in the accommodation ensuring stability of D(z).

By dividing both sides of (23) by (27) one obtains the regression model that can
be expressed as

Iyr(kT) = 0T op (kT) + np(kT) (28)
where

wr(T) = 2085 = Di(ays (k)
and

or(kT) = 2075 — De(2)os0T)

if Dp(2z) =1/D(z), and accordingly
PR(KT) = [~Thryr(KT) —T2pyp(KT) ... —Jryr(KT)

T nup(RT) JrTm g (kT) .. J;;ﬂuF(kT)] (29)

Apparently, the above manipulation implies additional filtering of the input and
output signals. Note that as before, different orders of interpolation can be used to
match individual shapes of the input and output signals of the observed system. It
is also worth noticing that the same model equation will be obtained if one adds
a quantity of yys(nT) to both sides of the basic eqn. (23). Thus it is clear that
for ¥ = 0 one obtains the ideal integration formula (and exactly, its limited-horizon
version).
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Both for higher orders (n,¢) of the system and higher interpolation orders (r, q),
however, the accommodating coefficient  necessary to stabilise (27) must be of a
considerably high value. Therefore in order to avoid undesirable damping of signals,
an auxiliary gain coefficient x has been introduced into the D-filter

P _ do
Y+ Ji(z) iz

Dp(z) = (30)

where do = &/(1 + 7).

6. Simulation Arrangement

Simulations have been performed in a hybrid, analogue and digital simulation envi-
ronment (Kowalczuk, 1992b) for different types of systems and excitations. In the
following sections some results of application of the above algorithms to on-line identi-
fication systems are shown. In the simulation study an initial form of the continuous-
time process (1) has been assumed to be the following:

B(s) 2
A(s) ~ (s+ 1)

The simulation results presented here have been acquired based on sampling and
processing at the sampling rate of fr = 1/T = 20 [He], unless otherwise stated.

G(s) = (31)

6.1. Estimation Algorithm

For identification of a nonstationary process modelled by (1), the exponentially
weighted least-squares (EWLS) algorithm, adopted for the considered versions (I
II and IIT)? of the discrete-continuous regression model (5), has been applied

)

O(KT) = O(KT — T) + L(kT)e(kT) (32)
where

L) = 37 wiﬁ(kk;;;(g“@i(;g (kT)

P(kT) = %(P(kT — T) = L(kT) T (kT) P(T — T))

e(kT) = J0ys(KT) — O (kT — T)yps (KT)
and

O(kT) = [&1(kT) aa(KT) -+ an(kT) * bo(kT) by (KT) - - - am(kT)]T

2 That is, version I—described by eqns. (11) and (12), version II—by eqns. (18) and (19),
and version III—by eqns. (28)—(29). See Appendix for an explicit form of the
algorithms of the regression vector processing. '
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is the vector of the estimated parameters of the continuous-time object given in (1)
and A is the forgetting factor (the sampling period T in (32) might as well be
neglected; then, for all the above time functions, (k) = z(kT') could be practised).
In the simulation runs the covariance matrix P(kT) has been assigned an initial value
of P(0) = 1051, where I is the identity matrix of a proper dimension.

For the considered range of experimental parameters (sampling time, rate of
nonstationarity, etc.) the length ! of the core integrating operator introduced in (8)
has been fixed at a value of 20 or 30 [samples]. The effect of a larger value of I on
the computation effort can easily be predicted from eqns. (13)—(15) and (20)-(21).

6.2. Performance Indices

Losses o; in each of the estimated parameters 6; have been derived from the mean
square of the estimation error

o?=E [(Hj(kT) - éj(kT))Q} (33)

The average estimation loss has been calculated as

9
oc=29"1 E o (34)
J=1 )

where 9 =n+m+ 1.

The effective settling time has been obtained from

T = mjax T;’O% (35)

where T;’O% is the time necessary for reaching 90% of the true value of the j-th
estimated parameter ;, taking into account maximum absolute error. It makes a
useful complement to average estimation errors, and allows for the calculation of the

average errors at “steady-state”.

The average estimation loss o computed after the effective settling time 7 has
been denoted by o,. This measure of the estimation performance gives a legible
measure of accuracy of the identification process that is not perturbed by transient
processes in the estimates’ trajectories.

7. Stationary Processes

Characteristics of the Jj:g(z)—operators and their corresponding performance indices
are given in (Kowalczuk, 1994b; 1994c) for stationary processes identified using A = 1.
A sample of results are recalled here for illustrative purposes.
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7.1. FIR Approach

The effect of the zero-order J%-operation (see eqns. (1)—(4)) performed on the step
response of a fifth-order system is shown in Fig. 1. Transients of all the elements of
the regression vector ¢y (kT'), calculated based on the J-operators, during estimation
of the continuous-time parameters of the same system are given in Fig. 2.

2 4

Fig. 2. Transient of the FIR-processed ¢;(kT) for a fifth-order system (n = 5).

The output of each J-operator is different from the corresponding integrator’s output.
Note, however, that the Jf”g—operator is used to compensate for this effect, and as
it will be shown in the following, the identification procedure based on the proposed
FIR processing has the desired parameter tracking properties.

The performance indices 7 and ¢ (taken from the whole simulation run), defined
in (35) and (34), respectively, are shown in Fig. 3. They have been calculated for an
experiment with a step input function and for the “FIR-processed” identification
algorithms with different selections of the interpolation orders (r,q).
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Fig. 3. Settling time 7 and estimation loss o for algorithms (r,q) versus the
order of the process n.

The estimation accuracy o, calculated after the settling time 7 in experiments
with step and ramp input functions are given in Fig. 4. In the step experiment (Figs. 3
and 4) the algorithm with the interpolation pair (r,q) set to (1,1) yielded the same
result as the simple scheme with 7 =1 and therefore it is not depicted in the figures.

The results corresponding to a sine input are given in Fig. 5. It can be seen from
Figs. 4 and 5 that the performance of the algorithms obtained for ramp and sine input
functions are virtually the same. Moreover, with both the input functions, tuning the
interpolation orders to (2,0) and (1,0) led to practically identical results.
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Fig. 4. The estimation accuracy o, versus the order of the process n obtained
for step (a) and ramp (b) tests.

As could be expected, in the step experiment, the algorithms with the matched
choice ¢ = 0 show clear precedence over the unfit case ¢ = 1, while with the ramp test
the matching choice ¢ = 1 results in a superior estimation performance as compared
to the inapt case ¢ = 0. Note also that a non-matching choice of the interpolation
pair (r,g) can have a serious impact on the quality of estimation of the parameters
of higher-order systems (see n = 4, 5).
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(®

Fig. 5. Effective settling time 7 and estimation accuracy o, gained with sine input.

7.2. IIR Approach

The values of the design parameters: the accommodating coefficient v and the auxi-
liary gain coefficient x of the pre-filler Dp(z) from (30) are depicted in Fig. 6 for
different orders n of the identified process.

Transients of the elements of the regression vector ¢g(k7'), formed via the sta-
bilised IIR-filter processing, during identification of a fourth-order continuous-time
system are given in Fig. 7.

Since, in general, the proposed IIR approach gives analogous results to those of
the FIR method, we shall only give an illustrative sample of comparison of the two
methods.
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20 "Y

10

1000000 | X
10000

100

(®)

Fig. 6. Pre-filter Dr(z) design: accommodating coefficient v and auxiliary
gain coefficient «.

9
031 4

Fig. 7. Transients of regressors for a 4th-order system.
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The performance indices 7 and o, given in (35) and (34), respectively, computed
for an experiment with a step-wise input function and the identification algorithm
with a matching choice of the interpolation orders of the adjusted integration (r =1
for the output signal and ¢ = 0 for the input signal), are shown in Figs. 8 and 9.

6 1 —e—IIR
~—FIR

1 2 3 4

Fig. 8. Comparing FIR and IIR: settling time 7 versus the order of the process n.

(b
Fig. 9. Comparing FIR and IIR: average estimation errors ¢ and o, versus
the order of the process.
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The increased values of the indices obtained for a first order system arise from the
resulting Euler backward integration scheme Z}(z) = Tz™1/(1 —z7!) applied to the
input signal. Note also that the ITR algorithm, which takes into account matching to
the measurement signals on a related basis as the FIR algorithm does, is considerably
simpler than the FIR algorithm. The orders of the IIR-filters used for processing the
vector ¢, for instance, are in practice at least twenty times smaller.

8. Nonstationary Processes

In this section continuous-time processes with variable parameters are considered. As-
suming that the observed non-linear plant can have different linear models depending
on the value of the input signal applied and that a sufficiently small value of the
sampling time can be used, we use a staircase test excitation, and consequently, the
simplest matching case of the operators interpolation orders: that of » =1 and ¢ = 0.
The response of a nonstationary third-order system with the following parameter’s
change at ¢t = 10[s):

OkT) = [al(kT) as(kT) ag(kT)fbo(kT)]T: [3 3 152]T_+ [2 21 2]T

obtained for a two-step input function is shown in Fig. 10.

A

Y
4._
3-_
U
24 e
{
1_,_¥¥_A_..;
t
} t } -
5 10 15 20

Fig. 10. The input and output trajectories of a nonstationary system.

8.1. Sampling Time T and Forgetting Factor A

Let us first illustrate the influence of the sampling period T (see equs. (5), (10), (11))
and the forgetting factor A (32) on the performance criteria (33)—(35).

The settling time 7 and the total estimation error ¢ for the continuous-time
systems of different orders estimated at different sampling periods T' using differ-
ent forgetting factors X (representing different speeds of adaptation) in two chosen
algorithms, denoted by FIRI! and IIRv, are given in Figs. 11-15.
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A;/( ——T=0.02

0.9 0.94 0.98 1

@

o ——71=0.02

0.9 0.94 0.98 1

(b)

Fig. 11. Algorithm FIR20: Settling time T and estimation error ¢ for a 2nd-order system.

Note that by defining an equivalent continuous-time memory length of the con-
sidered estimation algorithm

7, =N,T (36)

where N, = 2/(1 — A) is the equivalent discrete-time memory length of the EWLS
estimator (32), it can readily be observed that a continuous-time memory length
should be approximately equal to 7,

Ty & Tr (37)



Adaptive discrete-time identification of continuous-time systems . .. 59

0.9 0.94 0.98 1

(b)

Fig. 12. Algorithm ITR0.11: Settling time r and estimation error o for
a 2nd-order system.

where 7. is a rise-time constant of the identified plant, defined in an open-loop
operation as the time after which the plant output will be driven to the value of the
reference input signal. Based on this reasoning, one obtains the following heuristic
rule for tuning the forgetting factor of (32):

A%l—g (38)

Tr
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A
0.9 0.94 0.98 1
(2)
A
} + } } : -
0.9 0.94 0.98 1

(b)

Fig. 13. Algorithm FIR20: Settling time 7 and estimation error o for
a 3rd-order system.

Since for the identified continuous-time systems 7. = 1.5 ... 3.7[s], the sampling
time from the following well-known guide

Tr Tr
T< — 39
150 <4< 10 (39)

should be 0.01 < T < 0.15 (for the worst case). The “optimal” values of \ resulting
from (38) for the considered sampling times are marked with empty boxes against
their respective curves in Figs. 11-15.
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A
0.9 0.94 0.98 1
(@
A
0 ¥ + + 4 >
0.9 0.94 0.98 1
®)

Fig. 14. Algorithm ITR1.5: Settling time 7 and estimation error o for
a 3rd-order system.

8.2. Comparison of Algorithms for Fixed Sampling Time

The results of a comparative study of the three chosen algorithms FIR20, FIR30, and
IIR1.5, performing at the sampling frequency of 20 [Hz], are illustrated in Figs. 16-18.

It can be seen from the above figures that using larger values for the FIR inte-
gration horizon [ results in a superior accuracy of the parameter estimates after the
settling time (7), but this is obtained at a cost of deterioration and elongation of the
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] ——7=0.02
—— 7=0.05

—&A—7-0.1

0.9 0.94 0.98 1

(b
Fig. 15. Algorithm IIR5.6: Settling time 7 and estimation error o for

a 4th-order system.

T
g 1 —&@— FIR30

1 ~—Ml— FIR20
6 —&— 1IR15
4
2

A

0 4 + } + } -
0.9 0.94 0.98 1

Fig. 16. Settling time 7 for estimation of a 3rd-order system.
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—@—FIR30
—JB—TFIR20

A
0.9 0.94 0.98 1
(2)
A,
—@— FIR30
010 14 —— FIR20
0.06
0.02
: A
0o 4 4 + } + -
0.9 0.94 0.98 1

(b)

Fig. 17. Estimation errors ¢ and o, for a 3rd-order system.

transient phase in the estimates’ course. In other words, with a longer memory of the
limited integration applied one obtains a larger delay in estimation (7) and a larger
global average estimation error (o), but, at the same time, a smaller estimation error
(o-) measured after the settling time (7). The delay in estimation, as compared to
the IIR approach, is clearly seen in Fig. 18. On the other hand, as can be inferred
from Fig. 17, the IIR approach leads to a higher sensitivity of the parameter estima-
tion algorithm to small values of A. In such a case, practical difficulties connected
with numerical blow ups should be taken into account (Ljung and Séderstrém, 1983;
Kowalczuk, 1992a; 1992c).
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IIR1.5

(b)

Fig. 18. Tracking the coefficients of a 3rd-order system using A = 0.95.

9. Nonstationary Stochastic Systems

In this section, the influence of noise contamination on the identification process
is examined. The previously selected algorithms, distinguished by (r,q) = (1,0),
T'=0.05 and A = 0.95, have been used to estimate a third-order process.

In order to evaluate the effect of a possible contaminating noise process, a
discrete-time stochastic generator characterised by a uniformly distributed density
function has been used as a source of the noise sequence. The generator has been
supplying a stochastic sequence at a multiplicity of the sampling frequency T, at
which the EWLS estimator has been executed. The range of the noise distribution
can be described by

A, =10"% (40)

where w, given in [dB], will be referred to as the noise range order.
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9.1. Discrete-Time Measurement Noise

Let us first consider a case of entirely discrete-time noise generation without any
analogue pre-filtering of the sampled-data measurements as shown in Fig. 19, where
the noise sequence has been simply decimated during sampling of the process output.
A representation of results is given in Fig. 20.

- Identified

Identification

Fig. 19. System with discrete-time output measurement noise.

A

G
04 1 ¢
= i B L ﬁ
02 1 —4@— FIR30
—f— FTR20
—A—IIR1.5 ©
0 t t t t 1 i
10 30 50 [dB]
(a)
—@— FIR30
—— FIR20
—A— TIR1.5

s

10 30 50 [dB]
(b)

Fig. 20. Estimation errors ¢ and o, of the algorithms versus the noise range order w.

(0]
P
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9.2. Guard Pre-filtering in the Presence of Quasi-Analogue Measurement
Noise

In order to simulate a quasi-analogue noise disturbance, the output of the noise gene-
rator has been filtered by means of a noise-shaping low-pass continuous-time filter, as
depicted in Fig. 21,

1

V) =137 (41)

where T, = 0.1 [s]. In order to guarantee the prerequisite conditions for the sampling
process, two guard pre-filters of the same lowpass type are applied at the input and
output of the observed plant (see Fig. 21):

1
Ff(S) = T Tfs (42)
v Y
Vi)

U Y + *+ "
—‘—V“F— Identified

F () F(s)

Y Identification

Fig. 21. System with quasi-analogue noise.

It is clear from Figs. 20, 22 and 23 that the algorithms equipped with the guard
analogue pre-filters, characterised by time constant T, can considerably improve
their robustness to a contaminating quasi-analogue noise. An additional time constant
T; = 0.1[s] introduced to the guard pre-filter with Ty = 1[s], which processes the
data for the IIR algorithm marked with “14” in Fig. 22, brings about a further
improvement in this respect.

Note that the pre-filtering can impair the effect induced by the matching choice
of the interpolation orders (r,q) for large values of w, which represent noise-free
systems. This problem, however, can easily be solved by using a new suitable matching
pair (r,q) (see also the results given in Fig. 27).

A comparison of the three chosen algorithms is shown in Fig. 24 and 25. In the
latter, which summarises the study of the forgetting factor A, the suggested values
of A chosen based on (38) are also marked with empty boxes.

The above considered algorithms, used with various settings of the interpola-
tion orders (r,q), have been tested in identification of the continuous-time systems
of various orders n (with the design and simulation parameters: A = 0.95 and
A = 30[dB}). The corresponding results are given in Figs. 26 and 27.
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A

A
T
04 t
03 T
02 ¥
0.1
0 + t ' + +
10 30 50  [dB]
(b)
Fig. 22. Estimation errors ¢ and o, for algorithm IIR1.5 versus noise range order .
G ‘ —— T7=0
T
1 — R T=0.1
0.16 —&— 77=03
ey Tf=1
N V4 Ve
0.10 ' I\ a ‘S
0.06
T (0]
0 $ + + +—
10 20 30 40 [dB]

Fig. 23. Estimation error o, for algorithm FIR30 versus the noise range order w.
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—$—1IR1.5/0
~fl—— FTR30/0
—A—T1IR1.5/1+
e FIR30/0.1

— A—
0 + } + } } =ﬁ5>
10 30 50 [dB]
(@
‘01 ~—®— IIR1.5/0
04 71 ——TFIR30/0
1 —A—1IR1.5/1+
03 1 3¢ TFIR30/0.1
0.2
0.1
0 4 4 4 +
10 30 50 [dB]
(®)

Fig. 24. Comparison of estimation errors ¢ and o, of the algorithms versus the order w.

o |

08 1 | —4@—TFIR30/0.1
T —f— FIR20/0.1
06 1 | —f&—IIR1.5/1+

04
0.2
A
0 4 + + t } -
0.9 0.94 0.98 1

Fig. 25. Estimation error o of the algorithms vs. the forgetting factor X
(noise order: w = 30 [dB]).
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. ‘ —®— FIR30 (1,0)
—f— FIR20 (1,0)
10 1 | —&—TIR Y (1,0)
—@— FIR20 (2,2)
—¥— FIR20 (1,-

(2,

0 + ¢ o
0 1 2 3 4 5

Fig. 26. Settling time with different algorithms (r,q) for various system orders n.

G A —@— FIR30(1,0)
—f— FIR20(1,0)
U7 | —A— 1R Y (1,0)
e FTR20(2,2)
—¥— FIR20(1.-)
06 1 ey FIR20(2,-)

0.2
n
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0 1 2 3 4 5
@
o A —&@— FIR30(1,0) *
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4+ | —— IR Y(1,0) A
010 4 | —@— FIR20(2,2)
1l | —¥— FIR20(1,-)
0.06 o FIR20(2,-)
0.02
0 .
0 1 2 3 4
(b)

Fig. 27. Estimation errors o and o. with the algorithms (r,q) for various
process orders .
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Note that with the stepwise test and pre-filtering included, the necessity of ad-
justing the interpolation orders is apparent. It also needs to be explained that in the
case of fifth-order systems the settling time 7 exceeds the period of 10 seconds and
therefore the corresponding results are missing in the plot of o, in Fig. 27.

9.3. Plants with Internal Noise Injection

Finally, various schemes of internal plant noise corruption have been considered for a
third-order continuous-time system mechanised in a cascaded form shown in Fig. 28.
The same type of analogue filtering as in Section 9.2 has been used and the sam-
pling time has been fixed at T' = 0.05 [s] for parameter estimation of stationary and
nonstationary plants.

The stationarity case considered is summarised in Fig. 29, whereas the results
concerning nonstationary processes are shown in Fig. 30. Note that in both cases the
internal-plant noise injection has an advantageous effect on the performance of the
considered identification algorithms using the regression-vector’s processing of both
FIR and IIR types.

Fig. 28. Cascaded plant with different noise injections.

‘ —&—TFIR30/ 1,

© —l—FIR30/ 1,

—&—FIR30/ 1,

1 3 TIR1.5/ M

1 —¥—1IIR1.5/ 14

0 —@—1IR1.5/ 1,

02 +4
(0]
0 $ } + 4 + +—

0 20 40 60

Fig. 29. LS-estimation error o for stationary plants with different noise
injection vs. the noise range order w [dB].
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—f— FIR30/ M,
—&A—TIR1.5/ M,
g TTR1.5/ M1
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0 . : + ¢ t 4 (L

0 10 30 50
(@)

{ —&@—FIR30/ My
! —{l— FIR30/ M,
05 1 —A—1IR15/ M,
—3¢—1IR1.5/ N

=% % Ra
30 50
(b)

Fig. 30. EWLS-estimation errors o and o, (at A = 0.98) for stationary plants
with different noise injection vs. the noise range order w [dB].

10. Concluding Remarks

As a result of the transformation applied (adjusting: matching plus tempering) the
pure integration in formation of the regression vector disappears and is replaced either
by finite impulse response filters (the FIR approach) with a limited horizon of inte-
gration or by approximate stable IIR filters (without any integration pole at z = 1).

In terms of the settling time and estimation errors, the simulation results indicate
clear advantages of the proposed FIR method over the classical approach, when the
type of the observed process input and output signals can be approximately estimated
and, based on this, an appropriate choice of the interpolation parameters r and gq
can be made.
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For instance, in the step experiment, the algorithms with the matched choice
g = 0 have apparent precedence over the case of ¢ = 1, while for the ramp test the
matching choice ¢ = 1 results in a superior estimation performance compared with
the case of ¢ = 0. Moreover, it is clear that a non-matching choice of the interpolation
pair (r,¢) can have an extremely negative impact on the quality of estimation of the
parameters of higher-order systems.

It is also worth noticing that using a longer memory (I) of the limited (FIR)
integration applied one obtains a larger delay in estimation (7) and a larger global
average estimation error (o) resulting from the deterioration and elongation of the
transient phase in the estimates’ course, but, at the same time, a smaller estimation
error (0,) measured after the settling time (7) and indicating a better accuracy of
the parameter estimates.

Certainly, the simplified approach IIR offers a lower computational load and
good transients of estimate for low-order systems, but some precautions have to be
taken against possible signal contamination by a system noise, especially against a
measurement noise.

Appendix
A. Regression Vector Formation Algorithms
I. FIR (expanded)
GF (k) = [ Thrys(k) —T27ys(k) - —Trys (k)

Torm™mug (k) Jpmm g (k) - Jrug (k)]

i rIT* - - if,— ~Iyn—i
Jrg(z) = )!Nr+i(z NGz P (27 (1 - 27

(r+1
for i=1,...,n and

TP () = No(z Ny (7)1 = 27"
II. FIR (simple)

@ (k) = [~ Tbmys(k) —T2nys(k) -+ —Tpnyp(k)

T (k) JrT (k) e T (k)|
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D NG ONZ ()R- 2

Jin(z) = —- N
() = e

for t=1,...,n and

JPMz) =N (=2

III. IIR (expanded)
(k) = [~ Thpye(k) —T27ye(k) - —Iryr(k)

Trrm (k) IR (k) - J;;"up(k)]

in T -1 -1 —1\n—i
Jrg(2) = mNrH(Z INg(z77) (1 =277)

for 1 =1,...,n and
Joe(2) = Ne(z ) Ng (27 (1~ 27"

where zp(k) = Drpzy(k) and Dr(z) = /(v + J27(2)).

B. Constituent Polynomials

(a) The l-delay compensator polynomials

1-— -1
P(zY) = = j_l =142z 42724 47D

(b) The normal polynomials (Kowalczuk, 1983a; 1983b; 1993b)

r—1

Nr(z_l):Nr(z):Za:_jzj for r=1,2,..., (and No(z):Nl(z)El)
=0
where
a;:(r+1—j)a;j+ja;_l for r=2,3,..., 7=1,2,...,7

Note that the sum of the weighting coefficients in the calculation of a] is constant
(r+1) for a given normal polynomial of order (r — 1).
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