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OPTIMAL STATE AND PARAMETER ESTIMATION
FOR A FED-BATCH INDUCED FOREIGN
PROTEIN BIOREACTOR

JoNGDAE LEE*, W. FRED RAMIREZ*

An extended Kalman filter was used for on-line estimation of system states and
parameters for a fed-batch induced foreign protein bioreactor. Simulation work
was carried out to test the feasibility of the filter. The extended Kalman filter
worked well for state and parameter estimation. The ratio of the covariance ma-
trices reflecting model uncertainty to measurement noise significantly influenced
the filter performance. An iterative version of the extended Kalman filter algo-
rithm was even more effective in estimating model parameters and states. When
the model parameters to be estimated are assumed constant, application of a
static estimation algorithm was extremely effective. Estimates were significantly
less noisy than estimates using the dynamic extended Kalman filter.

1. Introduction

Biological systems can be characterized as highly uncertain processes, with the system
dynamics changing from process to process. Therefore, on-line state and parameter
estimation should be carried out to obtain current information about the processes
and to improve process productivity. Model-based state and parameter estimation
also gives information necessary for process optimization.

The Kalman filter is an optimal recursive data processing algorithm. It combines
all available measurement data, plus prior knowledge about the system and measuring
devices, to produce an optimal estimate of the state variables. The Kalman filter can
be augmented so that model parameters are also estimated (Maybeck, 1982).

There has been significant effort in mathematical modeling of the dynamics of
foreign protein production by recombinant bacteria. Structured and unstructured
models have been developed to describe host-vector foreign protein production sys-
tems. Lee and Ramirez (1992) have developed a mathematical model which includes
both inducer and glucose effects on the specific growth rate and the foreign protein
production rate. This model was successfully applied to the host-vector system of
E. coli, D1210, and plasmid, pSDS8.

Deterministic models usually have several problems for direct application to real
processes. First of all, the mathematical models are not perfect, since the models

* Department of Chemical Engineering, University of Colorado, Boulder, Colorado 803090424,
U.S.A., e-mail: fred.ramirez@colorado.edu.



78 J. Lee and W.F. Ramirez

were developed to represent the dominant or critical model of system response. Many
effects are knowingly left unmodeled. Secondly, the dynamic systems are driven not
only by the system’s control inputs, but also by disturbances, many of which are
not measurable. Finally, sensors do not provide perfect and complete data about a
system due to measurement noise (Maybeck, 1982). To compensate for both mod-
el uncertainties and the measurement noise, optimal estimates of process state and
model parameters can be obtained via extended Kalman filtering.

Shimizu and Takamatsu (1989) proposed an algorithm for the on-line estimation
of the specific growth rate in fermentation processes utilizing macroscopic balances
and extended Kalman filtering. In the range of low cell density, the cell concentration
was measured by spectrophotometry. However, for high cell densities, a macroscopic
balance model was used. Oxygen uptake rate was used for on-line estimation of the
specific growth rate in baker’s yeast fermentation (Wu et al., 1985). Park et al. (1983)
have estimated the specific growth rate on-line for a glutamic-acid fermentation by
using carbon dioxide evolution rate measurements. Bellgardt et al. (1986) applied an
extended Kalman filter for state and parameter estimation of yeast fermentation. Park
and Ramirez (1990) applied Kalman filtering for state estimation and used a sequential
least squares method to estimate model parameters for a fed-batch bioreactor using
yeast to produce a secreted foreign protein.

1.1. Extended Kalman Filter

The Kalman filter is an optimal linear estimator and is an optimal recursive data
processing algorithm. The Kalman filter uses model predictions and process mea-
surements to obtain optimal estimation of process states. At time t;_;, a state is
assumed to have the Gaussian distribution whose mean and covariance are 7T and
02, respectively. The next state values can be predicted by integrating the state
equations over one sampling time. Because the model is not perfect, the prediction
has a larger covariance. This means that the confidence level of the next state is
decreased. However, system outputs can be measured directly from sensors with a
mean, Zg, and covariance, o%. Information from those two sources is combined by
applying Bayes’s rule. The resulting covariance becomes smaller than that of the
model above.

The basic idea of the extended Kalman filter is to relinearize about each estimate
&(t). In this manner, deviations from the reference (nominal) trajectory are minimized
which enhances the applicability of linearized perturbation techniques.

The nonlinear uncertain system is given by

a(t) = f[2(t), u(t),t] + Gy () 1

where w(t) is a zero-mean white Gaussian noise process with a covariance kernel

B{w®w(t+7)} - Q1)6(r) (2)
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The initial condition x(tg) is assumed to be a Gaussian random n-vector with mean
&y and covariance Py. The discrete-time measurements can be modeled as a known
nonlinear function of the state corrupted with noise,

2(t;) = h[w(ti),ti} +o(t) (3)

where h is a known m-vector function of the state and time, and v(t;) is a white
Gaussian noise sequence of mean zero and covariance kernel

Blutee)) = 0 t:#—tj @

At a measurement time ¢;, the measurements z(¢;,w;) = z; become available.
The estimate is updated by computing the Kalman filter gain K (¢,),

a07) = #(7) + K09z - h o067, 1] | %)

P(tf) = P(t]) - K (t)H [t 8(7)] P(7) (7)

where P is the state covariance matrix and H[t;; &(¢; )] is the m-by-n measurement
matrix defined as
Ghlz,t;]
Htsa()] = =2
( 1 ) aw

(8)

z=&(1])

The estimate and covariance matrices are propagated forward to the next sampling
time t;11 by integrating

B(t14) = F[a(t|4), ut), 1 ©)

P(t|t) = F[t:a(t]t)] P(t] ) + P(¢ | 6)FT [t; (| 1:)]

+GHQM)GT (t) (10)
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using the initial conditions provided by
Bt ) = 2 () (11)
P(t:|t) = P(t}) (12)
Here F[t;&(t|t;)] is the n-by-n state Jacobian matrix defined by

Af[z,u(t),t]

F[t;a‘c(ﬂti)] - =

(13)

m:i(t | t")

1.2. Iterative Linearized Kalman Filter

The basic idea of the iterative linearized Kalman filter is to relinearize about each
estimate #(t). At measurement time ¢;, the measurement z(t;,w;) = z; becomes
available. The estimate is updated iteratively by relinearizing about the current
estimate.

) =2(t7) + K(ti){z(ti) - h[fc(t;)i, ti]

- [t a6y (s - 2(7) | (14)

K(t) = P()HT [ti;ﬁ(tj)i] {H[ti;a“c(t;")i] P()HT [t,-; :E(tj)i]

+ R(ti)}—1 (15)

K

P(tf) = P(t]) - K(t) H [t &(}) | P(t7) (16)

where H (t;&(t})] is the m-by-n measurement matrix

e (9h[:1:,tz]
H[ti;A iyl = — 2 17
8(t)] = —g (17)
z=&(1])i
The iteration with a starting value #(tJ)' = #(tJ) proceeds until |2(t})" —

#(t )| < e is reached. The bound e must be suitably chosen.

A steady-state value, Kgg, cannot be used in this system, because the mea-
surement matrix is not constant. Therefore, the last term of eqn. (14) cannot be
neglected.
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1.3. A Static Parameter Estimation Algorithm

When a parameter, which is considered as a constant, is estimated by applying dy-
namic estimation algorithms, the estimates are usually noisy. This noise level can be
attenuated by using a static estimation algorithm. Noisy estimates are related to a
constant model parameter vector 6 by

y=0+v ' (18)

where y are the model parameters calculated from the extended Kalman filter and
v is an m vector representing parameter identification uncertainty. It is desired to
obtain the best estimate of 6, denoted 6, such that

J= %(9 -TM Y 0-0)+(y-0)TR (y—-0) (19)

is minimum where R is a symmetric positive definite matrix and M is the current
covariance of the parameters from extended Kalman filtering. This is accomplished
by setting

oJ
% =0 (20)
- Therefore, the best least-square error estimate of 8 becomes
6=6+PR (y-9) (21)
where
Pl'=M"1'+R" (22)

Thus, the new estimate is equal to the old one plus a linear correction term based on
the difference between a new Kalman filter value and the old static estimate.

2. Application of the Extended Kalman Filter to a Recombinant
Bacterial System

Estimation algorithms were applied to the fed-batch system model (Lee and Ramirez,
1992) for the induced production of a foreign protein. The reactor system is shown
in Fig. 1. The system has two control variables, glucose and inducer feeding rates.
There are five important state variables: reactor volume, cell concentration, glucose
concentration, protein concentration, and inducer concentration. The glucose and
inducer feeding rates are controlled to follow the optimal trajectories (Fig. 2). Two
measurement systems were incorporated into the system. The glucose concentration
can be measured on-line by a YSI 2000 system from Yellow Springs Instrument Co.,
Inc. The cell concentration can be measured on-line by spectrometry (Lee, 1992).
Simulation work is performed in this study to find the influence of the covariance
matrices, @ and R. The influences of the unmeasured disturbances, the incorrect
initial state estimates, and the incorrect model parameters were also considered. The
extended Kalman filter is compared to the iterative linearized Kalman filter and the
static estimation algorithm is tested.
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Fig. 2. Optimal bang-singular-bang control policies for the glucose and inducer
feeding rates: (a) glucose feeding rate, (b) inducer feeding rate.

2.1. A Stochastic Model

The deterministic model of Lee and Ramirez (1992) can be expressed in a state
variable form as

1 0 1 1

. x T
T2 p(z3, T5, Te, T7) T2 — -z

5

. -1 %4 T z

T3 =Y u(zs, 75, 26, 27) 22 T T
Uy

d — T T
T4 = pr($3,$5)$2 + —z_‘lk “1_41‘ (23)
. c/ L)
s 0 _Zs iz

9 T z1 T
i‘G —k1($5)$6 0 0

j?7 k2($5)(1—x7) 0 0
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where z; is the reactor volume, z, the cell density, z3 the limiting nutrient concen-
tration, x4 the foreign protein concentration, zs the inducer concentration, zg the
shock rate effect, x7 the recovery rate effect, u; the glucose feeding rate,and us the
inducer feeding rate.

Lee and Ramirez (1992) have determined the specific growth rate, u, the foreign
protein production rate, Ry,, and shock and recovery parameters, k1 and ks, for
a recombinant bacteria system. The E. coli host-vector system produces the foreign
protein, f-galactosidase. Isopropylthiogalactoside (IPTG) was used as the inducer.
Since it is found that there is growth inhibition by substrates such as glucose at high
concentrations, the specific growth rate was formulated as

b= _Hr_n_mcﬁs_zz{% + $7RR(~'E5)} (24)
Key +a3+ ?‘35-

where pimax and K¢, are Monod type constants and K5 is a substrate inhibition
constant. The recovery ratio, Rgr(zs), is defined as
K¢ .
Rp(zs) = —— 25
(=) = 7 e (25)

The foreign protein production rate is described as

pr - SmaxT3 (f]o +135) (26)

2
Koy +as+ 7+ ) \E1+25

where fha.x and K are Monod type constants and fr, is a constant.
The shock and recovery parameters, k; and ko, are defined as

kiizs
ki = —22 27
"7 Kix + s @7
kooxs
kg = —— -~ 28
2 K]X + I5 ( )

where k11, k2o, and Kjx are constants.
The initial conditions for the system are
z1(0) = 1L
z2(0) = 0.1
z3(0

( (
( (
(0) = 40g/L (
z4(0) = 0g/L : (32)
( (
( (
( (

z5(0) = 0g/L 33)
Ig 0) =1 34)
z7(0) = 0 35)
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For this system, the measurements are unique functions of the cell density (z5),
the glucose concentration (z3), and the protein concentration (z4)

21 ha(z2)
zo | = | hs(xs) (36)
23 ha(z4)

where h; is the measurement function and z; the digital signal from the sensing
system which is a computer recognizable digital number.

2.2. An Optimal Control Policy

The system has two control variables, glucose and inducer feeding rates. Optimal
control laws that maximize the profitability of the fed-batch reactor system can
be obtained by applying Pontryagin’s maximum principle (Lee and Ramirez, 1994).
A bang-singular-bang (minimum-singular-minimum) control policy was identified in
that work. The glucose concentration is always kept on an optimal singular arc yield-
ing an optimal feeding policy shown in Fig. 2(a). For the bang-singular-bang control
policy (Fig. 2(b)), the inducer control policy can be divided into three sub-regions.
In the first region, inducer is not added in order to increase the numbers of cells. In
the second region, inducer is added in an exponential way to produce the maximum
amount of foreign protein. In the last region, minimum control effort was used in
order to minimize the costs associated with this control variable.

2.3. Parameter and State Estimations

The model parameters can be determined by an off-line method (Lee and Ramirez,
1992). But, for the purpose of on-line optimization, an on-line parameter estimation
method needs to be used. An extended Kalman filter can be used to estimate model
parameters and state variables at the same time. In many applications, the robustness
of the Kalman filter yields adequate state estimation despite parameter uncertainties.
Sometimes it is necessary to add pseudonoise to the filter model to cause a heavier
weighting of real world measurements, thereby decreasing sensitivity to erroneously
assumed parameter values (Maybeck, 1982). For our simulation work, the parameters
and states are estimated simultaneously by using the extended Kalman filter for
estimation.

2.4. Simultaneous Estimation of System Parameters and States

The parameters to be estimated are assumed to be new states. For this system, the
most important unknown parameters are pmax, k11, and fmax. The parameter fi.x
is estimated best by an off-line method (Lee and Ramirez, 1992). The parameters,
Umax and ki1, are considered auxiliary state variables, zg and zg, respectively. The
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two assumed states are incorporated into the system equation set (23) as follows:

g = 0 (37)

Zg = 0 (38)
The model says that the new states (parameters) are constant or at best slowly varying
so that a quasi-steady-state assumption can be used.

With new system state variables, a new formulated state equation set is con-
structed as

_ 0, u(t), 1

F[t;i(t]ti)] =

0 0 0 0 0 0 0 0 0
fao foo fas 0 fas fae for fas O
foo fs2 fas 0 fss fase far fzs O
fao fao fazs faa fss O 0 0 O
=1 fs1 O 0 0 fss O 0 0 0 (39)
0 0 0 0 fes fee O 0 foo
0 0 0 0 fis 0 fir 0 fro
0 0 0 0 0 0 0 0 0
\ 0 0 0 0 0 0 0 0 0 em(t] )

where the f;; functions are given in the Appendix. Also, the measurement matrix is

. 6hm,ti
Ht; (ti)]:—([?—l
T le=a@)
0% 0 0 00000
=]0 0 % 0 00000 (40)
0 0 000 0 0
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2.5. Observability of the System

Based on the matrices, F[t;&(t|¢;)] and H|[t; &(¢)], the following observability
matrix, m, is constructed

m=[FTHT | (FT?HT | - | (FT)" ' HT (41)
rank [m] =n (42)

It can be easily shown that the matrix m, is a full rank matrix. The system is
therefore observable.

3. Simulation

The purpose of this simulation work is to confirm the feasibility of the on-line esti-
mation of both parameters and states. To achieve this goal, the following issues were
considered:

1. The influence of ratio of the system Gaussian noise covariance matrix, @, to
the measurement noise covariance matrix, R,

2. The influence of unmeasured process disturbances,
3. The influence of incorrect estimates of the initial state,
4. The influence of errors in model parameters,

5. A comparison between the extended Kalman filter and the iterative linearized
Kalman filter,

6. The application of the static parameter estimation algorithm.

Even though the extended Kalman filter was derived by assuming a Gaussian
distribution for the measured variables, uniformly distributed random noise was added
to simulate the noisy measurements of the processes. This was done because the
actual process noise was assumed to have a distribution between that of uniform and
Gaussian. Thus, a uniformly distributed noise was apt to test the filter algorithm
more severely. Noise, consisting of random numbers between 0.1 and —0.1, was
added to the measurements. The standard deviation, o, of the noise added to the
cell concentration (OD) was 0.064. The standard deviations of the noise added to the
glucose and protein concentrations, were 0.064 g/L.

The parameters, pmax and ki1, are closely related to each other, because the
parameter, ki1, is determined based on the value of the parameter, pmax. A strategy
to estimate them on-line is that, in the region without any inducer, the maximum
growth rate is estimated, and then the shock and recovery constant is estimated in
the region with inducer addition.
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3.1. Influence of Noise Covariance Matrices, Q and R

The covariance matrices, @ and R, of zero-mean white Gaussian noise were assumed
as diagonal matrices. The physical interpretation of the diagonal matrices, @ and
R, is that the measurement noise is statistically independent and that the model
uncertainties are diagonally dominant. The matrix G(t), is assumed as an identity
matrix. The ratio of the values of diagonal elements, ¢);; and R;;, are very important
in calculating the Kalman gains (Maybeck, 1982).

Case I: Qi,’/Rii = 0.1

The deterministic nonlinear model equation was integrated with the optimal control
policy to simulate the actual process. Random numbers were added to the measure-
ment model to simulate real stochastic measurements.

In this case, the ratio of @;; to R;; is set at 0.1. The measurement uncertainty
is larger than the model uncertainty. An estimator in cases Q/R < 1 will weigh
the model’s prediction, in contrast to the cases /R > 1 which will weigh the noisy
measurements. This estimator (Q;;/R;; = 0.1) will depress the noise from the mea-
surement system. Figures 3 through 7 show the simulation results. Figure 3 shows
changes in the cell concentration during fermentation. The dotted line represents the
true cell concentration based on the nonlinear model’s prediction which in this case is
almost equivalent to that of the optimal estimate (the bold solid line). Before injecting
the inducer, the cell concentration increased exponentially. After injection (region II
in Fig. 2), the specific growth rate decreased, reflecting the metabolic burden due
to the injection of the inducer. During the final times of operation in region II, the
concentration of cells inside the bioreactor decreased due to the dilution effect arising
from the addition of glucose and inducer exponentially. As soon as the minimum
control effort started (region III), the cell concentration increased since dilution is
eliminated. The noisy measurements are also shown in Fig. 3 as the light solid line.
The extended Kalman filter works well in estimating the cell concentration profile.

The glucose level inside the reactor is shown in Fig. 4. The glucose level is kept
at its optimal concentration of 40 g/L. The glucose concentration is well estimated.

Figure 5 shows the protein level inside the bioreactor. In the first bang-bang
period of inducer feeding, foreign protein production rate is minimized in order to
maximize cell growth rate. After two hours, the estimated protein level became more
noisy due to inducer injection.

Figure 6 shows the estimation results for the parameter pmax, diagonal compo-
nents of covariance matrix, and components of Kalman gain matrix. Figure 6(a)
shows that the estimated values of the model parameter scatters around the
expected value. By decreasing the values of @Q;, fluctuations can be depressed.
However, important updated innovations might be neglected, and an incorrect ini-
tial estimate will never be improved by the filter. Increasing the values of @Q;; will
cause increased noise levels in the parameter estimations. This noise problem in con-
stant parameter estimation can be mitigated by use of a static estimation algorithm
discussed later. Figure 6(b) shows the changes in three important diagonal compo-
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nents of the covariance matrix P2 (biomass related), P33 (glucose concentration
related), and Py4 (protein concentration related). The covariance value of the protein
related components, Py4, was larger than those of the other covariance components,
Py and Ps3. Thus, the estimate of protein level is more uncertain than that of either
cell mass or glucose concentration. Figure 6(c) shows values of various components
of the Kalman gain matrix. As expected, the protein related component, K43, of
the Kalman gain matrix had larger value than the other components, K2; (biomass
related) and K3 (glucose concentration related). Therefore, the extended Kalman
filter weighted the protein measurement relatively more than the model prediction
due to the larger uncertainty in that state covariance term.

Case II: Q;;/R;; = 10

In this case, the ratio of Q;; to R is set to 10. This was accomplished by keeping the
same degree of noise in the measurements but increasing the model uncertainty. The
measurement uncertainty is smaller than the model uncertainty. Therefore, the esti-
mates will have less filtering of the measurements and will more closely track the noisy
measurements in comparison with the cases, Qi;/Ri < 1. This estimator reflects the
fact that the measurements are relatively better than the model predictions.

Figure 7 shows the results of estimating the parameter, umax selected diagonal
components of the covariance matrix, and components of the Kalman gain matrix
when Q;;/R;; = 10. Figure 7(a) shows that the estimated values of the maximum
specific growth rate parameter scatter around the expected value. Comparing with
Fig. 6(a), the noise level is larger than that in Case I. Figure 7(b) shows the changes
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in three important diagonal components, Pss, Ps3, and Py4, of the covariance matrix.
The values of the covariance matrix components are larger than those in Case I. Thus,
the estimates of cell mass and glucose concentrations, and protein concentration have
more uncertainty than the estimates of Case I. Figure 7(c) shows components of the
Kalman gain matrix. As expected, the important three components of the Kalman
gain matrix, Ka;, K3z, and K43 are larger than those in Case I. Therefore, the
measurements are more important in determining optimal estimates than the model
predictions.

3.2. Comparison Between Extended Kalman Filter and Iterative
Linearized Kalman Filter

The iterative extended Kalman filter algorithm is compared to the extended Kalman
filter in Figs. 8 and 9. In Fig. 8, a ten times iteration algorithm was used. The results
show that the iterative version of the extended Kalman filter algorithm was more
effective in estimating the parameters and states, even though the extended Kalman
filter performed well. These simulations used a @Q;;/R;; ratio of 0.1.

3.3. Application of the Static Parameter Estimation Algorithm

The static estimation algorithm can be applied again to minimize noisy estimates of
system parameters assuming that the parameters are constant.

When the static estimation filter is applied to the results of the parameter esti-
mates from the extended Kalman filter, parameter estimation noise can be decreased
significantly as shown in Fig. 10. This is a very effective approach to parameter
identification when the parameters are expected to be relatively constant.

4. Conclusions

An extended Kalman filter was applied to estimate the parameters and states of
a fed-batch bioreactor. Simulation work on various cases was carried out to test
the feasibility of the filter. The influence of the covariance matrices, @ and R, on
the filter performance was studied. The ratio of @ to R is an important factor in
performance. Cases when @Q/R < 1 will track the model prediction, while cases when
Q/R > 1 will track the noisy measurements.

An iterative version of the extended Kalman filter algorithm gives better esti-
mates than the extended Kalman filter for the same @ and R design parameters.
When the parameters to be estimated can be assumed constant, then the applica-
tion of a static estimation algorithm is very effective in eliminating model parameter
oscillations.
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Nomenclature
cf inducer level of feed, g/L
cf nutrient level of feed, g/ L
Flz(t),u(t), t] a nonlinear system function of states and controls defined in eqn. (1)
f1o a constant defined in eqn. (26)
Frnax maximum protein production rate defined in eqn. (26)
Flt; &(t|t;)) a partial derivative matrix defined in eqn. (13)
G(t) defined in eqn. (1)
H a measurement matrix in eqn. (18)
h; a measurement function shown in eqn. (36)
hlz(t;),t] a nonlinear measurement function of states defined in eqn. (3)
Hit;, (t;)] a partial derivative matrix defined in eqn. (8)
J an objective function defined in eqn. (19)
ky shock rate constant defined in eqn. (27)
k11 , a constant defined in eqn. (27)
ko recovery rate constant defined in eqn. (28)
koo a constant defined in eqn. (28)
K, a constant defined in eqn. (25)
Ke, a constant defined in eqn. (24)
K; a constant defined in eqn. (26)
Krx a constant defined in eqn. (27) and eqn. (28)
Ks a substrate inhibition constant defined in eqn. (24)
K(t;) Kalman filter gain defined in eqn. (5)
P(t) a covariance shown in eqn. (7)
Q a covariance kernel defined in eqn. (2)
R a covariance kernel shown in eqn. (4)
Rfp foreign protein production rate defined in eqn. (26)
Rp ' recovery ratio defined in eqn. (25)

t time, hr

u(t) a vector of control variables in eqn. (1)
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glucose feeding rate, L/h

inducer feeding rate, L/h

a zero-mean white Gaussian noise measurement in eqn. (3)
a zero-mean white Gaussian noise process in eqn. (1)

a vector of state variables in eqn. (1)

estimate of state variables in eqn. (9)

culture volume, L

cell mass, g/L

nutrient level inside reactor, g/L

protein level inside reactor, g/L

inducer level insider reactor, g/L

shock rate effect

recovery rate effect

a new state variable (maximum specific growth rate, fmax)
a new state variable (recovery rate effect constant, ki)

model parameters calculated by extended Kalman filtering

inverse of growth yield coefficient (produced cell mass/consumed

nutrient)

measurement from sensor
measurement vector
static parameter vector
specific growth rate, h—!

maximum specific growth rate, h=!

Appendix
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