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TWO-STAGE IDENTIFICATION OF INTERCONNECTED
STEADY-STATE SYSTEMS WITH CASCADE
STRUCTURE: A PARAMETRIC APPROACH.

PART 2: EMPIRICAL IDENTIFICATION ALGORITHM

ZYGMUNT HASIEWICZ*

The paper deals with an empirical counterpart of the two-stage parametric iden-
tification algorithm for serially structured systems, introduced and motivated in
(Hasiewicz, 1996). An empirical two-stage identification scheme is formulated
and the convergence (with probability one) of the corresponding model parame-
ter estimates to the desired reference values, when the number of measurement
data records becomes large, is shown. The asymptotic rate of convergence of the
estimates (in probability) is established. Some illustrative numerical examples
are also included.

1. Introduction

This paper constitutes a continuation of the work (Hasiewicz, 1996), where the prob-
lem of parametric identification of a static serially structured composite system was
formulated in a probabilistic framework, and a two-stage procedure for a system
structure preserving model selection from a parametric class of models was intro-
duced and motivated theoretically, while assuming full probabilistic knowledge of the
system. Here, we shall consider the corresponding empirical identification algorithm,
exploiting only measurement data recorded in the system in the noisy environment,
i.e. adapted to realistic conditions, and check whether the algorithm is capable of
achieving the ‘theoretical’ approximate cascade system model, derived and validated
in Part 1.

To recall the problem, let us consider the identification task of an interconnected
static system with cascade structure being a collection of n components (subsystems)
S1,S52,...,5n and described by the equations:

y1=Fi(c1,z), vi=Fl(eiyuiyzi), uwi=wyic1, 1=2,3,...,n (1)

where y; € Y; C R’i, u; € U; CR™ and ¢; € C; C R* denote respectively outputs,
interaction (non-manipulable) inputs and external excitations of the element S;, and
zi € Z; C R% is a stochastic noise disturbing the subsystem. It is assumed that the
true characteristics of the system components F¥ : C; x U; x Z; — R are completely
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unknown and approximate models of individual subsystems are to be selected within
certain, arbitrarily chosen, sets of models, specified by parameter sets A; C R? and
some pre-selected mappings @, : R x R™ x 4; — R'. The interconnected complex
model of a series system is thus defined parametrically by the set of equations

i = Piler,a1), yim = Pilei, uinm, ai), Ui = YoM, 1=2,3,...,m (2)

where a; € A;, and y;r € R and u; € R™ are respectively the outputs and
interaction inputs of the i-th submodel within the complex model. There is no reason
to suppose that the model structure (2) includes the perfect description of the true
system (1) (for z; = 0). This assumption is fundamental throughout the paper (cf.
the pertinent remarks in Section 2 of Part 1).

The aim of system identification is to determine in the set of models (2) the best
approximate system model in the sense of minimizing the global mean-squared model
output error

k03
Q(al)a‘Qz cee ’a‘n) = Ql(a’l) + ZQi(a’i l ay,a2,..-. 7ai—1) (3)
i=2
where
2
Q1(a1) = E||y1 — ®1(c1,a1)|| @
2
Qi(a; | a1,ag,...,0i—1) = E‘ Yi — ‘i‘z‘(ci,uz‘M,ai)“
stand respectively for measures of accuracy of the first and i-th submodel in the
cascade complex model (“ . H denotes the Euclidean vector norm in R and E is the
expectation with respect to (c1,c2,...,¢i, i)

As was explained in Part 1, even if the expectations (4) could be determined
explicitly, the exact solution to the problem (i.e. the strict minimization of (3) on
A = A;p xAs x ... x A, subject to (2)) would not be a good decision because of
computational complexity of the task caused by the structural constraints (couplings)
introduced by the interconnected complex model. Therefore, the following, easy-to-
use but only suboptimal in general, two-stage procedure for system identification was
proposed as an alternative when assuming full probabilistic knowledge of the system:

Stage 1. Compute b minimizing the indices

2

%:(b:) = E||yi — Kin (G, 0:) (5)
on the sets B;, independently for 4 =1,2,...,n.
Stage 2. Using b from Stage 1, find a minimum point
a; = in |07 —i(bi_1,ai 6
6; = arg min [[b} — (b1, a:) (6)
for 1 =2,3,...,n, taking a; = b for < =1, and accept a,’s as the complex

parameters of the model.



Two-stage identification of interconnected steady-state systems with . .. 127

In the above, for 1 =1,2,...,n, K;u(&;,b;) stands for a model of the aggregate
AG; = {51, 52,...,5;} comprising the subsystems S1, S3,...,5; (cf. Fig. 1in Part 1),
composed of (2) as follows:

yir = Kim (i, b;) = (I)i(cia Ki—l,M(Ei»labi~l):ai)

¢ = (Ci—1,¢i) = (c1,¢,...,Cim1,6;) for 1> 2

(7)

and Kip(c1,b1) = ®1(c1,a1), & = ¢; for i = 1. In turn, the set B; contains all
admissible parameters b; of the aggregate model (7), while the function ¢;(b;_;,a;)
describes the manner of stacking the parameters b;_; and a; in the model (7):

by =a;
(8)
bi = @i(bi—1,a:), ©>2

Obviously, B; = ¢;(Bi—1 x A;) for @ > 2 and By = A;. Due to assumptions (c),
(d) and (e) in Section 2 of Part 1, the functions K (&;,b;) and @;(bi—1,a;) are
well-defined, continuous in both arguments, and the sets A; and B; are compact.

One can easily recognize that, by a subsequent aggregation and dis-aggregation
of consecutive subsystem models (their evolving complexes (7)), the routine reduces
the problem of an interconnected cascade system identification to a set of independent
standard identification tasks of single-element systems (aggregates AG; at Stage 1)
and some auxiliary computations (solving the problems (6) in Stage 2). Hemnce, es-
sential savings in complex model computation may rightly be expected. This benefit,
however, is achieved at the expense of the loss in quality (accuracy) of the resulting
model in comparison with the ‘desired’ optimum model, as follows from the analysis
in Section 4 of Part 1.

This part is devoted to an empirical version of the algorithm (5)—(6). We assume
that prior knowledge of the system (i.e. of probability distributions of (&;,y;)’s for
the system at hand) is insufficient, and excludes computation of the expectations
used in Sections 3-5 in Part 1 for the derivation and a theoretical analysis of the
algorithm. Instead, in addition to assumptions (a) and (b) of Part 1 which state
that ¢ = (c1,¢2,...,¢n) and the system noise z = (z1,22,...,2,) are mutually
independent random vectors with finite variances, with zero mean and independent
components in the latter case, we shall assume that:

(a) vectors ¢ and y = (y1,¥2,...,%Yn) can be measured, which results in a set of
data points {(c*,v*¥)}, (the measurement (c*,v*) at instant k), where

i y* for a perfect output measurement

(9)

y* +n* for a noisy output measurement

and 7 (n* at instant k), is a random measurement noise with zero mean and
finite variance;
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(8) {c*}, {#*}, {#*} are mutually independent stationary (with respect to k)
white-noise sequences (i.i.d. random variables).

The last assumption, which neglects any correlation between system excitations,
is made in the paper for the following reasons:

i. to diminish the influence of the complexity of the system structure on the prob-
lem under consideration; actually, the complexity of the system itself, and not
of the correlation structure of system excitations, is the true focus of our con-
siderations;

ii. to simplify and clarify the analysis;
iii. to solve the problem in the theoretically simplest form.

This contribution should thus be considered rather as a starting point to develop
more involved complex system identification problems, better suited for ‘practical’
situations e.g. by taking into account possible dependences between system inputs.
However, the ‘ideal’ situation considered in the paper can also occur in practice. For
instance, this will be the case if in our example from Section 2 of Part 1 (ore con-
centration process) the controls {cF} vary around a fixed set-point (nominal control
value) due to random inaccuracies of the performing devices (feeders) of follow-up
controllers. Such accidental fluctuations can be, of course, independent events.

In Section 2, the empirical counterpart of the two-stage algorithm (5)—(6), based
on the measurements {(c*,v*)}, is formulated and a particular form in the case of
linear subsystem models is discussed as an example. Then, in Section 3, asympto-
tic properties of the empirical two-stage identification scheme are analyzed and the
convergence (with probability one) of the resulting model parameter estimates to
the ‘theoretical’ outcomes bf and d; of Stages 1 and 2 of the algorithm (cf. (5)
and (6)) for a large number of observations N is shown. Next, in Section 4, a
study of the asymptotic rate of convergence is made. Finally, in Section 5, finite-
sample properties of the algorithm are examined through computer simulations and
illustrative numerical examples are given.

2. Empirical Identification Algorithm

Assume that a set of measurements {(c*,v*)}1 . is given. Replacing the theoretical
expectations in (5) with the corresponding sample means and next applying the same
methodology of cascade system identification as in (5)—(6) of Section 1 yields the
following empirical variant of the two-stage identification algorithm:

Stage 1. Compose the models K;pr(¢;,b;) of the aggregates AG; = {51, 52,...,5:}
by stacking the models (2) of subsystems according to (7). Then compute
b,y which minimize the sample means

2

1 N
v (bi) = D |lvE = Kin (@, b2) (10)
k=1

on the sets B;, independently for ¢ =1,2,...,n.
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Stage 2. Using b;y obtained in Stage 1, determine the minimum points

(11)

for i = 2,3,...,n, assuming a;ny = by for 1 = 1, and take a;n’s as the
parameters of the cascade complex model (2).

aiN = arg aI_I}EiE_ lbiN — pi(bic1,N, Qi)

The above algorithm, suited for the application in real conditions, is easy to im-
plement and for a practical implementation only readily accessible, standard, numer-
ical optimization procedures are needed. The ‘raw’ measurements are used directly
only in Stage 1 of the routine, to compute b;y, while in Stage 2 the role of the data
is taken over by the corresponding b;n’s. Thus, after pre-processing in Stage 1, the
original data {(c*,v*)})_, may be wiped out from computer memory (next merely a
relatively small number n of b;n’s, generally much less than the whole number N of
measurement data points, is sufficient to be stored for further computations). Hence,
a gain in memory load can additionally be achieved in the method, compared with the
situation where a full set of measurements {(c*,v*)}Y"_| must be memorized. These
savings grow up with the number N of sample points.

The algorithm takes a particularly simple form for a special case of linear models
in (2) (linearization of system characteristics), as shown in the following example.

Example 1. Assume linear models for subsystems
v = Bicl, Yim = Aivim + Bici, 1=2,3,...,n (12)
as in Example 1 of Part 1. Then the aggregate models K;ps(Z;,b;) are linear (cf. (7))

Yine = Kim (8, b)) = K& (13)
and for the matrix parameters K;pr (= b;) we have (cf. (8))

Kin = [AiKi_1,m, Bi] (14)
for i =2,3,...,n and Ky = By for ¢ = 1. Actually, Kip,n (= b;y) minimizing
(10) in Stage 1 is as follows:

Kinn =VinCly(CinCh)™ (15)
provided that the matrix inverse exists, where

Cin =[c},e2,...,eY], Vin = [v},03,...,0]]

are arrays of measurements. Accordingly, (Ain,Bin) (= a;n) minimizing (11) in
Stage 2 are of the form

_ _ N _ T
Ain = Kz(n/)I,N KiT—l,M,N [(Ki—l,M,N KiT_l,M,N)q (16)
Bin = Kiy n

where, together with the empirical counterpart of (14), we make use of the dependence
Kiun = [I"{f}\},N,I_{fM,N], K}y v being the segment of Kip n related to ¢;, and
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(Kica,m NET 4 n)T is a pseudo-inverse of Ky ap nK ) 5 - Both (15) and
(16) can easily be computed by applying standard linear least-squares algorithms,
separately for each ¢ =1,2,...,n.

Remark 1. If in Example 1 the cascade system generating the data {(c¥,vF)} is
truly linear and disturbed with additive noise (i.e. the set of models (12) contains the
correct description of the system (1)), then the algorithm (15)—(16) converts into the
two-stage parameter estimation algorithm of linear composite systems, worked out

earlier in (Hasiewicz, 1988).

An important advantage for practical applications is that the quality of the model
resulting from the approach (the actual value of the suboptimality index A*; see (20)
in Part 1 of the paper) may easily be estimated empirically from the set of measure-
ments {(c¥,v*)} at hand. In fact, for the model obtained we can readily compute
the empirical value Ay of A* as follows (see (20) and (9) in Part 1):

> [QiN(EiN) - QiN(biN)]
AN — i=1 - (17)
> ain(bin)
=1

where g¢;n(b;) are given by (10), and b;y are determined according to the recursive
formula (see (17) in Part 1)

bin =biy, biv =i(bicin,ain), i=2,3,...,n

binv and a;ny being the outcomes of Stage 1 and Stage 2 of the empirical identification
algorithm. As a result, the degree of suboptimality of the model, and hence also the
efficiency of the method for a given system, may be simply measured, by means of the
index Ap, in each particular case. Let us note that the convergence of the empirical
mismatch (cf. (23) in Part 1 and (11))

&N =

bin — @i(bic1,v, ain) ||

to zero for each ¢ =2,3,...,n as N — oo means asymptotic optimality of the com-
plex model with parameters a;ny (in the sense of (3); see Remark 2 in Part 1). There-
fore, the empirical equation errors £;5 (or the cumulative equation error Z?:Q EiN)
can be used as the complementary test quantities for checking optimality (the range of
suboptimality) of the empirical complex model provided by the two-stage approach.

The main theoretical problem is now to examine whether b,y and a;ny deter-
mined by the empirical two-stage identification algorithm converge, as a sample size
N — o0, respectively to the particular values b and da; of the composite model
parameters following from the theoretical origin (5)—(6) of the method, introduced
and validated in Part 1 of the paper. This problem is considered in the next section.
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3. Convergence Analysis

We begin examining the asymptotic behaviour of b;y and a,y with the following
basic lemma:

Lemma 1. In the case specified in Section 1 (assumptions (a)—(8) and (a)-(e) of
Part 1), we have

sup |gin(bi) — ¢i(bi)] = 0 wp. 1 as N — o0 (18)

for each 1 =1,2,...,n, where ¢;n(b;) and ¢;(b;) are asin (10) and (5), respectively.
Proof. See Appendix A. |

The lemma enables us to relate the minimum points b;y of the empirical indices
g:n(b;) to the minimum points b of the indices ¢;(b;) in Stage 1 of the algorithm
(cf. Sections 1 and 2). Namely, from the uniformity in b; of the convergence of the
objective functions g;n(b;) to gi(b;) in (18) it follows (cf. e.g. Ljung, 1976; 1978;
Vapnik, 1982) that for the corresponding minimum points b;x and b} the first re-
quired convergence does hold, i.e.

bin — b as N — o0 (19)

with probability one for ¢ = 1,2,...,n. Let us denote in turn the discrepancy in
Stage 2 by

di(a:) = |6} = pa(bi_y, i)
and

din(a;) =

bin — i(bi—1 N, as)

for the empirical version of the algorithm, and recall that a;y and a; are exactly the
minimum points of d;y(a;) and d;(a;), respectively (see (11} and (6)):

a;y = arg min d;y(a;)
a;€EA;
and

a; = in di(a;

G; = arg min (a;)

(with this notation d;(@;) = &, the equation error of (8) for b; = b}, bi—y = bl_;
and a; = @,; cf. (23) in Part 1). Thus the second desired convergence:

a;N —a4; as N — o0 (20)

with probability one for ¢ = 1,2,...,n could be deduced in a similar simple way as the
convergence (19) above if the uniform in a; (sup-norm) convergence, with probability
one, of d;n(a;) to d;(a;) were validated as N — oo. Indeed, the following result
may be proved.
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Lemma 2. Under the assumptions of Lemma 1, we have the convergence

sup ]le a;) —di(a;)| = 0 w.p.1 as N — o0 (21)

ai€EA;
fori=1,2,...,n
Proof. See Appendix B. |

The uniform almost-sure convergence (21) of the objective functions in Stage 2
implies as an immediate consequence the almost-sure convergence (20) of the corre-
sponding parameter (minimum points) values. Combining (19) and (20), we are thus
led to the following theorem:

Theorem 1. Under the conditions stated in Section 1, for the two-stage identification
algorithm, we have

(i) biv — b}
(ii) a,N — ﬁ,i
with probability one as N — oo, for i = 1,2,...,n, where b%, 4; and b;x, ain are

the outcomes of Stage 1 and Stage 2 of the algorithm in the theoretical (Section 1)
and the empirical (Section 2) version, respectively.

Therefore, in the case considered, essentially all properties hoped for convergence
hold. It should be emphasized that the uniform convergence of g;n(b;) to ¢;(b;) and
of din(a;) to di(a;) from Lemma 1 and Lemma 2 is the central property related to
the conclusions (i) and (ii) in the theorem. By the model parameter convergence (ii)
and continuity of models ®; (assumption (d) in Part 1), we can easily ascertain that
also the following convergence takes place:

@iN(ci,u,-M) — ‘i)i(ci,uiM) w.p. 1 as N —-

where ®;n(ci,uing) = Pilci,vinr,a:iv) and @i(ci,uiM) = ®;(ci,uim, d;), at each
(continuity) point (c;,uips) attainable in the cascade complex model (2) with pa-
rameters a; = d;. This means that for each 7 = 1,2,...,n the empirical models ®;5
are pointwise strongly consistent estimates of the theoretlcal counterparts (reference
models) ®;, which would be obtained by the two-stage identification algorithm in the
theoretical version, i.e. under full probabilistic knowledge of the system. In the special
case of Lipschitz continuous models ®;, with respect to the parameters a; uniformly
distributed on C; x UzM (the sets of inputs accessible in the complex model), the
convergence of ®;y to <I>2 is uniform, i.e.

sup II'I'iN(éi;uiM) - @i(ci,uiM)” — 0 w.p. 1l as N—
(ciuing)ECix Ui

Generally, the convergence in (ii) of empirical model parameters implies asymptotic
equivalence (with probability one) of the empirical model outputs to the ‘desired’
reference model outputs which would result in the complex model with parameters
a; = &1
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Remark 2. If the minimum points of ¢;n(b:), ¢:(b:), din(a;) or d;(a;) are not
unique on B; and A;, respectively, then the convergence in (i) and (ii) of Theorem 1
is meant as

(i)  dist(bin,,Bf) =0 wp.1.as Ny — o0
(i) dist(ain,,,Ai) =0 wp. 1 as Ny — 00

for every convergent subsequence {b;n,} of {bin} and {ain,,} of {ain}, where B}
and A; are the sets of minimum points of ¢;(b;) and d;i(a;), respectively (Ljung,
1978).

Questions involving the rates of convergence in (19) and (20) are investigated
below.

4. Rate of Convergence

The speed of convergence in (19) and (20) will be studied under some additional
‘regularity’ requirements imposed on the problem. Namely, we shall assume that
the parameter sets A; and B;, and the sets of external excitations C; are compact
and that the objective functions ¢;(b;) and d;(a;) in Stage 1 and Stage 2 of the
theoretical version of the algorithm are twice continuously differentiable and strictly
convex, at least in some convex neighbourhoods N(b}) C B; and N(a;) C A; around
the minimum points b and &,, respectively. Moreover, similarly as in Section 4 of
Part 1, we assume that the functions K;p(&;,b;) and ¢;(b;—1,a;) in Stage 1 and
Stage 2 are Lipschitz continuous with respect to b; and b;_;, now however uniformly
distributed on the respective sets C; = C; xC2 x ... x C; and A;, i.e. that for some
positive constants we have

| Kint (2i,07) — King (€, b7)|| < const [[b} — 82| Vbl,b} € B; (22)

17

and
l‘Pz(bz 15 Qi) — ‘Pz(bz 1,0i) b% 1 1” Vbl —1 € Bi—1(23)

One can easily ascertain that the first of the last two requirements, by the mean-
value theorem, coincides in fact with the assumption of differentiability of ¢;(b;) and
_compactness of B; and Cj, while the second is exactly the same as (27) and (28) in
Part 1. Such requirements are satisfied e.g. for the linear models (12) of Example 1.

< const[

Also, like in Section 3 (see the proof of Lemma 1 in Appendix A), we shall confine
ourselves to the case of accurate output measurements (i.e. to v¥ = y¥) and we shall
assume that the model output errors {||y¥ — K;pr(2¥,8:)||}1_, in (10) are uniformly
bounded, i.e. for each k

(L; > 0 is some constant) with probability one (relative to the probability measure
of (&¥,y¥)’s produced by the system). This means that for each ¢; (from a compact
set of inputs C;) the system outputs y; are (uniformly) bounded, ||y;|| < L; (almost
surely), i.e. implicitly, for additive noise z;, that the system noise is bounded (cf.
Fig. 1 in Part 1).

v — K (eF,b)|| < Li< oo Vb €B; (24)
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In this case, in the neighbourhood N(b}), we obtain by Taylor’s theorem
‘)
where of||b; — bX||?)/I|b; — b}]|> — 0 as b; — b} and the Hessian V2g;(b}) is a

symmetric positive-definite matrix. Thus for b, = b;n, by the convergence (19), we
get that asymptotically (for a sufficiently large N)

09) albiv) - a:6]) = 5 (b = BT V2a(60) Gan = 57)

ai(bi) = as(89) + 50 = B V2a(b) (b = ) + of

b; — b

with probability one and hence, by positive definiteness of V2¢;(b?) and the equiva-
lence of norms in R (h; = dim b;), we conclude that for N growing large

qi(bin) — qi(b7)

Similarly, replacing ¢;(b;) with d;(a;) and repeating the arguments, we obtain
that asymptotically

2
< const

bin — b}

(25)

(26)

t aiN — Qs 2 < const Idi(aiN) — di(fbi)
However, from the relation
di(ain) — di(a:)| <2 sup |din(a;) — di(as) (27)
a;€A;

and the inequality (cf. the proof of Lemma 2 in Appendix B)

din(a;) — di(a;)

<

bin — b}

sup

a;€A;

+ sup lpiN(ai)
a;€A;

where

pin(ai) = ||@i(bi-1,n5, i) — pi(b_y, as)
together with (23), it follows that

|d,~(a,-N) - di(d,-)| < const max{”bm - b

? |

Consequently, combining (25) and (26) with (28) yields the following chain of inequal-
ities:

bi1,n — bl ”} (28)

”biN - b} 2 < const

each with probability one, where the constants above were readjusted whenever nec-
essary.

gi(biv) — ai(b7)
? < const max {||bin — b, |bi-1,v — b1} (for Stage 2)

(for Stage 1)
(29)

aiN — G;

Therefore we see that, in fact, it suffices to show the rate of convergence to zero
of the error function |g;(b;n) — q:(b})| in Stage 1 of the algorithm as N tends to
infinity, for 1 = 1,2,...,n. To this end, we shall investigate thereafter how fast, for a
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given constant a > 0, the probability of the error P{|g;(bin)—¢:(b?)| > a} decreases
'to zero as IV increases.

Lemma 3. Under the above assumptions, for a sufficiently large N

P

where w; = 1/(32L%) (see (24)), for i=1,2,...,n.

q:(bin) — Qi(bf)

> a} = O(exp(—Na2w,-)> (30)

Proof. See Appendix C. ]

Remark 3. To prove (30) in Appendix C, we need in fact only the Lipschitz continuity
of Kipm(Ci,b;) (assumption (22)) and the boundedness requirement of the model
output errors in Stage 1 (assumption (24)). Notice that the faster the asymptotic
rate of convergence of P{|g;(bin) — ¢;(b7)| > @} is, the more restrictive demands are
imposed in the bound (24) (the smaller L;) and it rapidly decreases with L, growing
large. However, for each finite L; the probability P{|g:(b;n) — ¢:(b7)| > €¢/NP} with
0 <p<1/2, >0, still tends to zero at an exponential rate as N — oo.

Remark 4. It is noteworthy that the rate of convergence in (30) does not depend
on the dimension h; of the parameter vector b} being estimated. Therefore the
important advantage of dimensionality invariance of the convergence rate, celebrated
in the parametric inference in the classical estimation theory, is observed.

The following result is a fairly straightforward consequence of Lemma 3, where
for a sequence of random variables {{x} by writing {x = O(ry) in probability we
mean that yv{n/rn — 0 in probability as N — oo for any number sequence {yy}
convergent to zero (Greblicki, 1994; Greblicki and Pawlak, 1994).

Corollary 1. Let all the assumptions of Lemma 3 be satisfied. Then for a sufficiently
large N

gi(bin) — qi(b)

Proof. The proof follows immediately from (30) when substituting e|rn|/ |yn|, € > 0,
for the constant «. |

= O(N~?) in probability (31

Thus the in-probability convergence of ¢;(bin) to ¢:(b}) (i-e. of b;y to b} in the
sense of the objective function values) attains asymptotically the order O(N—1/2),

i.e. the optimal rate of convergence in probability for parametric estimators (see e.g.
(Bickel and Doksum, 1977; Chapter 4.4)).

Remark 5. By (Al) in Appendix A and (C1) and (C14) in Appendix C, the order
O(exp(—Na?w;)) in (30) and O(N~1/2) in (31) characterizes also, for a large N,
the rate of uniform convergence in (18) of Lemma 1. In fact, we obtain immediately

P{ bfggﬂ. @i (b:) — qi(b:)] > a} = O(exp(—Noﬂ(Di))
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where @; = 4w;, and

ain (b:) — ¢i(b:)] = O(N~/2) " in probability.

sup

b;€B;
Lemma 3, Corollary 1 and the relations (29) provide the basis for the following rate-
of-convergence theorem for the estimates b;y and a;y obtained in Stages 1 and 2 of
the two-stage empirical identification algorithm.

Theorem 2. Let all the requirements of this section hold. Then asymptotically (for
a sufficiently large N)

P{|[biw - b

P{]

where 051 and o;2 are some positive constants, and respectively

> a} = O(exp(~Na40i1))

a;y — a;l| > a} = O(exp(——Nasmz))

o — 7

|

Proof. The conclusion is obtained by combining (29) with (30) and (31) and straight-
forward calculation. ]

= O(N~Y*) in probability

= O(N~Y®) in probability

aiN — ai|

Remark 6. If the models ®; preselected in (2) are Lipschitz with respect to the
parameters a;, uniformly on the sets C;x Uipm (cf. Section 3), then for the models

®,v and ®; asin Section 3 we conclude easily that, for large N,

P{ sup | ®in(ci,wine) — ‘i’i(ci,uiM)” > a} = O(GXP(—NCVSPQ))
(civuim )ECixUin

where p;2 > 0 is some constant, and respectively

sup “‘I’iN(Ci,uiM) - ‘i’z‘(cz‘,uiM)” = O(N~!/#) in probability
(civuine)€Cix Uspr

which gives asymptotic rates of uniform convergence of the empirical models ®;y
to the desired ‘theoretical’ counterparts ®; on the sets of inputs attainable in the
complex model, in this special case.

Theorem 2 says that the probability of occurence of errors ||biy — b}|| and
lla;ny — @:| exceeding « in estimation of the minimum points b; in Stage 1 and
@; in Stage 2, respectively, tends, for each a > 0, to zero as N — oo at an exponen-
tial rate. However, the speed of convergence is at each stage different and in Stage 2 is
twice smaller, in the meaning of the order, than in Stage 1. Generally, the established
(theoretical) rates of convergence (in probability) of the estimates b;y and a;v to the
reference points b7 and d; are rather slow. This should not be however discouraging
when considering practical implementation of the method. There are three reasons
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for that. First, our results are asymptotic in nature, i.e. they characterize only large-
sample properties of the estimates. Second, they provide merely upper bounds on
the convergence speed (i.e. give guaranteed rates) and, third, they refer to all, also
unfavourable conditions, where the objective functions ¢;(b;) and d;(a;) in Stages 1
and 2 are arbitrarily flat (therefore e.g. the guaranteed rate of convergence of g;(b;y)
to ¢;(b}) in Corollary 1 is essentially higher than the rate of convergence of ‘pure’
minimum points b;y to b} in Theorem 2). In each particular implementation the
speed of convergence of the estimation error, in both stages, to a fair accuracy may
be thus much faster (see e.g. Remark 1 and the paper cited therein), even if not all of
the conditions imposed in this section hold (e.g. the system noise z; is not bounded).
In the next section, we present some results of computer simulation justifying this
belief experimentally, for a moderate number of data records.

5. Simulation Study

Computer simulation was performed for the cascade system consisting of n = 3
" interconnected static subsystems with the following general description:

Subsystem Si:
Y11 = Pinc + Pliadl + piisdl + 2n

Subsystem Ss:
Y21 = P511C2 + P319C3 + D31sY11 + PraCayi1 + 221
Y22 = Pho1Ca + P322C3 + Pras¥in + PhosCabinr + 222

Subsystem Sj3:
Y31 = P311C3 + PA12C) + D313y + Piralas + PhisCayan + PhigCayan + 231
Y32 = P301C3 + P3aaCs + Piaa¥al + Dhoalizz + PiasCsyar + PaogCalaz + 232
Y33 = P331C3 + D332C3 + Piaslar + Pigalaz + P3zsCaya1 + PaasCayan + 233

being linear in the interaction inputs {outputs of the preceding subsystems; cf. exam-
ples in Section § of Part 1), and the parameters Py, ireely chosen by the experimenter.
For subsequent subsystems linear models were assumed, as in Example 1 of Section 2
(system linearization):

Model M;:
Y1i,M = a111C1
Model Ms,:
Yo1,M = Q211Y11,M + G212C2

Y22, M = Q221Y11,M + G222C2
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Model Msj:
Y31,M = a311Y21,M + G312Y22, M + A313C3
Y32, M = 0321Y21,M + 0322Y22, M T A323C3
Y33, M = Q331Y21,M T+ A332Y22,M + A333C3

It is also assumed that each system noise z;; is Gaussian N (0,0 ;;) and the external
excitations c¢; of consecutive subsystems are generated with uniform distribution in
the range |¢;| < ¢imax (then Ec¢; = 0 and o.; = ¢;max/3'/?) and that they are
stochastically independent. Similarly to the analysis in Sections 3 and 4, we assume
that there is no measurement noise 7;. The estimates Kipr n (cf. (15)) of the opti-
mum aggregate model parameters K}), in Stage 1 (cf. (13) and Example 1 in Part 1)
were computed iteratively (for a growing number N of data points in the experiment)
by using the recursive linear least-squares algorithm and the corresponding estimates
aijk,n (resp. (Ain,Bin) for the empirical model (12)) of the subsystem model pa-
rameters G;jr (i.e. of the least-squares solutions to the equations (14); cf. (6)) were
computed in Stage 2 according to (16). With reference to the above assumptions and
the conclusion of Example 1 from Part 1, we remark that in the case under consider-
ation the two-stage approach provides the optimum linear system model (in the sense

of (3) and (4)), i.e. we get 4 = ajy, say.

The aim of the experiment was to examine the effect of (i) the structure of the
system, (ii) the strength of couplings (interactions) among system elements, and (iii)
the intensity of noise on the efficiency of the two-stage identification method. To
this end, three evolving structures of the cascade system have been assumed: linear,
weakly non-linear and non-linear. The effect of interactions within individual system
elements was varied by changing the ratio between the parameters joint with interac-
tion inputs and that associated with external inputs ¢;, and assuming respectively 0.1
for weak couplings, 0.5 for moderate couplings and 1 (or the same order of parameter
values) for strong couplings. Finally, three levels of noise (defined by the ratio of the
corresponding noise dispersion to the sum of the modulus of the average (nominal)
value of the adequate output in the system and dispersion of this output without
noise) were assumed, namely small noise (1%), medium noise (5%), and large noise

(10%).
For brevity, the efficiency of the algorithm for a given sample size N is further

characterized by the cumulative index, referring to the whole set of complex model
parameters (average relative estimation error) and defined as follows:

aree(N) = 7 ZZZ

where TP is the total number of parameters in the cascade model and the sum-
mands are relative inaccuracies of the corresponding parameter estimates aijk, N With
reference to the desired (here: optimum) parameter values @i, following from the
two-stage approach in the theoretical version.

Qijk,N — az]ki

100 % (32)
az k[
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Example 2. First, we consider a linear cascade system and for the case of strong
couplings assume the following parameter values in the general system description:

e for subsystem Si:

P =1 pi12=0, pi3=0

e for subsystem Ss:
P11 =2, Pp2=0, p33=3, Py =0

P21 =3, Pin =0, Pi3=2, pipy=0

o for subsystem Ss:
P3i=4%4 DP32=0, py3=4, Pia=4 DpP3us=0, pPie=0
P31 =5, D3 =0, Piz =5 Py =05 DPis=0, pi=0
Pis1 =6, Pl =0, P333=6, P33 =6, Piz=0, pize=0

It is also assumed that each of the external excitations ¢; varies in the range |c;| < 1.
In the case considered (the linear system and a linear model to be found), the identi-
fication problem to be solved is reduced, in fact, to the system parameter estimation
task and the two-stage identification procedure turns into the two-stage parameter
estimation algorithm, as indicated in Remark 1 of Section 2. Thus the parameters of
the best model (the reference values in the index (32)) are now obviously as follows:

e for model AM;j:

ai;; =1

e for model Ms:

G211 =3, Go12 =2, G221 =2, G =23

e for model Mj:
G311 = G312 = G313 =4, G321 = G320 = G323 =5, {331 = d332 = G333 = 6

and this is simultaneously the theoretical outcome of the two-stage identification
method. The estimation error aree(N), versus data set size N, arising in the re-
covery of these parameters due to the two-stage algorithm for various noise levels is
depicted in Figs. 1, 2 and 3 for strong, moderate and weak couplings in the system,
respectively. Exemplary final model parameters obtained by the algorithm under
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strong interactions and medium noise in the system for N = 500 observations are as

follows:

aii1,500 = 1.002
as11,500 = 3.000,
az21,500 = 2.008,
asi1,500 = 4.011,
asz21,500 = 4.965,

a331,500 = 5.956,

a212,500 = 1.992
a22,500 = 3.008
a312,500 = 3.983,
a322,500 = 9.097,

a332,500 = 6.026,

a,313,500 = 4068
a323,500 =5.113

333,500 = 6.076

Based on the values of aree(N) we deduce that the parameter estimates behave
satisfactorily for the strong and moderate couplings in the system and that the effi-
ciency of the algorithm significantly deteriorates for weak couplings. This feature is
also apparent in further examples and can be explained by the particular set-up of
the two-stage identification algorithm, where the existence of interconnections among
subsystems is crucial for the very idea of the method. For instance, for N = 500 and
strong couplings we obtained in an experiment aree(500) = 0% under small noise,
aree(500) = 0.6% under medium noise, and aree(500) = 1% under large noise.
Similarly, for moderate couplings, we then have aree(500) = 0% under small noise,

aree(N) (%] 75

7
6.5 -

6+ small

5.5 o medium
5 - L e large
45-
4
3.5 \\\
3 \
25
2 N
1.5
14
0.5

O T T T T T
30 60 %0 120 150

Noise:

180 N
Fig. 1. Average relative estimation error versus data set size: linear system,
strong couplings.
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aree(N) [%]
5.5

5 Noise:
4.5 -

small

e medium
4 L e, large

3.5

SRS N

0 T T T T T T
30 60 90 120 150 180 N

Fig. 2. Average relative estimation error versus data set size: linear system,
moderate couplings.

areo(N) [%] ;g -

110 -
100
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80 - ......... large
701 "
60
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40 -
30 - S

20 4 ‘\\ -------------

101 T
0 N\h

Fig. 3. Average relative estimation error versus data set size: linear system,
weak couplings.
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aree(500) = 0.6% under medium noise, and aree(500) = 0.9% under large noise,
while for weak couplings it was then merely achieved, for the corresponding noise
levels, aree(500) = 1.2%, aree(500) = 6%, and aree(500) = 7.4%. The efficiency
of the algorithm depends visibly on the intensity of noise and decreases with the
growing noise intensity level, which is evidenced by the above-quoted error values and
Figs. 1-3. For example, the same estimation accuracy of 1% (in the sense of aree(N))
is obtained, for the strong couplings, for N = 20 if the noise is small, IV = 200 if the
noise is medium, and N = 500 if the noise is large. A similar accuracy for moderate
couplings and the same noise levels is obtained for N =20, N = 280, and N = 300.
The same tendency is observed for weak couplings.

Example 3. As a weakly non-linear cascade system we consider the general system
description from the beginning of this section, setting for the strong interactions the
following parameters:

e for subsystem S;:
Pl =1, ph2 =01, pi3=01

o for subsystem Sa:
P51 =2, Py =01, ph3=3, p5,=01
Pio1 =3, Piop =02, piys =2, piy =01

e for subsystem S3:
Piu =4 Phe =01, ph3=4, phy=4 Piis = D3 =01
Pio1 =5, Py =02, Pz =05, Djpq =05, Pio5 = D3 = 0.1
D331 =6, p3zp =03, _p§33 =6, p33q =06, p335=p3ze=01"

Actually, for |¢;| €1, 4 = 1,2, 3, the reference parameters of the linear complex model,

resulting from the two-stage approach in the case of full probabilistic knowledge of
the system, are as follows:

e for model My:
dlll =1.06

e for model Ms:

d?ll = 3, &212 = 2003, &221 = 27 d222 = 3.003
e for model Msj:

G311 = ds12 =4, az13 =4.027

G301 = G309 = 5, @303 = 5.027

G331 = Aazp = 6, aszz = 6.027
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and the estimation error aree(N) for evolving sample size N and various noise
levels is presented in Fig. 4 for strong couplings, Fig. 5 for moderate couplings, and
Fig. 6 for weak couplings. The behaviour of aree(N) and the influence of particular
experiment factors is similar as in Example 2, but its rate of convergence to zero is
now generally smaller, i.e. the comparable estimation accuracy is obtained for a larger
number of data records than in the previous example. For comparison, aree(500)
is now as follows: for the strong couplings and small noise 0.7%, for medium noise
1.2%, and for large noise 2.5%; for the moderate couplings we have respectively 0.1%,
0.6% and 0.93%, and for the weak couplings 3.2%, 5.7%, and 8.2%. In turn, the 1%
accuracy is achieved in the case of the strong couplings and small noise in the system
for N > 250, under medium noise for N > 500, and under large noise for N > 850.
In the case of moderate couplings N > 250 is then needed for small and medium
noise, and N > 650 for large noise.

Example 4. Finally, we consider a non-linear series system which has, for the strong
couplings, the following parameter values in the general system description:

o for subsystem S;:

piii=1 pPla=1, piz=1

aree(N) [%] 44 _

121
11

10 4 small
9 ----- medium
S large

8 -
7 -

o T T T
50 100 150 200 250 30 N

Fig. 4. Average relative estimation error versus data set size: weakly non-linear
system, strong couplings.
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Fig. 5. Average relative estimation error versus data set size: weakly non-linear

system, moderate couplings.
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Fig. 6. Average relative estimation error versus data set size: weakly non-linear

system, weak couplings.
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o for subsystem Sa:
Po1 =2, DPya=1 Py3=3, ppy=01

Pyo1 =3, Dagg =2, DPiaz =2, Py =01

o for subsystem Ss:
Pin=4 p32=1 pa3=4 piu=4 P =Dp3e =01
Pio1 =5, Dl =2, Pig=D5, DPiy =05 Pips=pis =01
P33 =6, Pizz =3, DPizz =6, Pz =6, P35 =Dp3z =01

In this case, for uniformly distributed ¢; and |e;| < 1, the corresponding reference
linear model, resulting from the two-stage approach under full probabilistic knowledge
of the system, has the parameters

e for model M;i:

dlll =16

e for model Ms:

d211 = 3, &212 = 2033, &221 = 2, &222 = 3033

e for model Mj:
G311 = G312 = 4, az13 = 4.267
a3o1 = agze =5, G323 = 5.267
G331 = G332 = 6, G333 = 6.267

The behaviour of aree(N) for an increasing number N of data records is illustrated
in Figs. 7, 8 and 9 for strong, moderate and weak couplings in the system, and
various noise levels. As can be seen, the character of the plots and the influence
of particular factors on the efficiency of the scheme remains, in principle, the same,
but (in comparison with the preceding two examples) the rate of convergence of
the error aree(N) to zero decreases, i.e. a similar estimation accuracy is obtained
for a larger number of data records, as shown by the diagrams in Figs. 7-9 when
compared with the plots in Figs. 1-3 and Figs. 4-6. The test value aree(500) is now,
for small, medium and large noise, respectively, as follows: for the strong couplings
3.4%, 3.6% and 5.5%; for the moderate couplings 1.35%, 2% and 4.6%; and for
the weak couplings 4%, 6.7%, 9.2%. Next, the 1% accuracy needs now in any case
N > 850 observations, i.e. a significantly larger number of data records.
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Fig. 7. Average relative estimation error versus data set size: non-linear
system, strong couplings.
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Fig. 8. Average relative estimation error versus data set size: non-linear
system, moderate couplings.
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Fig. 9. Average relative estimation error versus data set size: non-linear
system, weak couplings.

6. Conclusions

The empirical version of the two-stage identification algorithm from Part 1, presented
in this paper, offers a computationally simple way of practical model construction
for complex static systems with cascade structure. The algorithm takes advantage of
the particular series structure of the system and reduces the problem of selecting the
structural complex model from a given parametric collection of models (optimal in
the global sense (3) and (4)) to a set of standard identification tasks of single-element
systems (aggregates) solved independently at Stage 1, and a set of complementary,
local, optimization (disaggregation) tasks solved in a decentralized manner at Stage 2.
Thus the algorithm is easily programmable on a computer and easy to implement.
. The price which is paid for the simplicity of the algorithm is, in a general case, asymp-
totic suboptimality of the resulting empirical complex model instead of asymptotic
optimality (Section 3 and Part 1 of the paper). As shown by the examples in Sec-
tion 5, the efficiency of the method depends essentially on (i) the structure of the
system, (ii) the strength of couplings among system elements, and (iii) the intensity
of noise, and it deteriorates under extreme conditions, when disturbances grow in
the system or interactions within subsystems diminish. The efficiency is also small-
er for increasing non-linearities in the system (compare Examples 3 and 4 with the
effect gained in the linear system identification of Example 2, where in fact, with
the linear models assumed, the system parameter estimation problem was solved by
the approach). However, as follows from the numerical experience, the algorithm
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works rather well under moderate disturbances, interactions and non-linearities in
the system, i.e. in practically relevant cases. The scheme can fail for less emphatic
interconnections among system elements, -particularly for large noises. It should be
emphasized, however, that if interconnections in the system are really weak, and inter-
action inputs influence insignificantly the system outputs, then the complex model of
a series system can in fact be obtained in a completely decentralized way by applying
standard identification methods to individual subsystems as to a set of independent
autonomous objects. Then any non-standard identification method is in fact needless
(see the remarks in Section 2 of Part 1 of the paper).
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Appendix A

Proof of Lemma 1. For brevity, we shall prove the lemma for the case of accurate
output measurements, i.e. for v* = y* in (9). The general case (with 7* # 0) is only
a bit different and can be treated analogously.

Write

i qi(bs)

d; (C’H yzu i) = ”Zh ’LM(C‘L) b )
and notice that
sup |gin (bi) — i(bi)| = sup |Gin (b)| (A1)
b;€B; b;€B;
where

N

Z ek ks b

k

We can easily recognize that in the case considered (cf. assumptions in Section 1)
Sin(b;) =0 wop.las N — o0

for each b, € B;, where we have used the strong law of large numbers and the fact
that E6;(¢;,yi;0;) = 0 (cf. (5) in Section 1). By compactness of B; and continuity
of é;5(b;) (uniform on B, in fact), for any vy > O there exists a positive 7y
(we drop here the additional index ¢ for simplicity) and a finite collection of points
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bf €B;, 7=1,2,...,M(rn), M(ry) < oo (afinite 7x-net of B; from the Hausdorff
theorem), such that

M(ry
U bz,7N)

and (see e.g. (Gikhman and Skorokhod, 1974; Chapter 11, Section 5))

sup  |6in(bi) — &in (b)) <9v wop. 1
bi€BI(b! ,rn)
for every j =1,2,...,M(ry), where Bl(bf,rN) is the open ball of radius ry with

centre b]. Hence it follows without difficulty that

sup |6
b;€B;

<N+ <max |61N b7)|

with probability one. Letting now yy — 0 as N — oo in the above bound, using
(A1) and including the convergence (A2) yields the required (18). [

Appendix B

Proof of Lemma 2. Write

pin(ai) = [|@i(bi-1,3,a:) — @i(b}_y, a5)
By the inequality

sup [diN(ai) — di(a;)] <
a;€EA;

bin

pin(as)
i€EA;

and the convergence (19) in Section 3, it suffices to prove that

sup lplNa,|——+0 w.p.1l as N — o0 (B1)
a;€A;

The proof of (B1) may proceed in exactly the same way as that for §;x(b;) in Ap-
pendix A (cf. (Al) and further steps), by using compactness of A; and continuity
(uniform) of piy(a;) on A; as an argument, and noticing that

pin(a;) =0 wp.1as N — oo

for each a; € A;; the latter again by the convergence (19) and continuity of
©i(bi—1,a;) with respect to the parameters b;_; (cf. Section 1). |
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Appendix C

Proof of Lemma 8. Applying the inequality (27) of Section 4 to the criterion function
¢:(b;) and using (A1) in Appendix A, we obtain

ai(bin) — @i(b})] < i (bi)

B;

Hence

P{lqz‘(biN) — (1) >

a} < P{bieBi v ()| > %}é UBiv  (C1)

Obviously (see the proof of Lemma 1 in Appendix A)

max { sup IEiN(bi)!} (C2)

Gin(bi)| <
1SGSM(rn) S e Bib? irn)

sup
b;€B;
Now, let us rename for convenience B;= Big, 6in(bi) = bino(bi), v =T,
M(rn) = Mo(rn,p) and let
égN,l (bi) = 6N 0( ) - din 0( )

53}\7,2(171') = 5gN,1(bi) - 5{N,1(bZ’T) . (C3)

where bf is an element of the closure of the ball Bl(b’ rn,0) (denoted further by
B] ). Exploiting (C2) and (C3), we see that

—+ max { sup 63 (b:)
1<i<Mo(rn,0) biEBl(bg,'f‘N.o)I N1

(biEBi iN(bi) :) bSEuBI?o |61N0 b )I = 1Sj§n1343(‘))((7‘N.0) {‘é‘iN,D(bg)

J

and hence (cf. e.g. Lemma 1 in Section 4.4 of (Tucker, 1967))

(0] .
UBi = P{ sup o] > 5} < P{_ max  {JBimo(s)

+ P{ max { sup l‘sgN,l(bi)l} > %}

1<G<My(rn o) Ly, €BU(b ,ri.0)
M() TN. 0)

<52 Pt

Mo (rn.0)

+ Z P{ swp  |ey, 0>}

bi€BI(b! 7 x.0)
= GiN,O + Hin

}>5)

S (C4)
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Recalling the definition of &y o(bi) (6in(bi) in Appendix A), the fact that
E6,(¢;,v:;b;) = 0 and the assumption (24) of Section 4, ensuring that for each j

5@k kb)) <kip  VEELN

(kio = L2), and next applying Hoeffding’s inequality to the components of the first
summand, Gy, in the above bound, see e.g. (Hoeffding, 1963; Karlin and Studden,
1976; Chapter XIV, Section 1), we get

P{

 (Bip = 1/32) and consequently

§z'N,0(bg)

> %} < 2exp ( - %ﬁi,o) (Cs5)

Mo(rn.0)

2
Ginpg <2 Z exp ( - ——JZ;I ﬂi,o) (C6)
3,0

5=1

In turn, for the components of the second summand, H;n,1, we have

P{ sup 53N,1(bi)| > %} < P{ sup ina( 4} (C7)

b;€BI(b] v ,0) bi€B]

where BJ , is the closure of the open ball Bl(bJ TNn,0). Since BJ 71 is a compact set,

51N11(b1) is, for each j, of the same kind as 6;y0(b;) (see (C3)) thus, by the same
type of argument as in (C4), we obtain that for every j

= a . .
P{ sup |67y, (b:)| > Z} <Giy,+Hly, (C8)
b; GBJ
where
_ Mi(ryna) _ o
Gha= Y. {wm 0> 5 )
7=1
i (09)
HfN,2: Z { sup zNZ( }
= b €BU ™ ,ri 1)
and b{’r,'r = 1,2,...,M13'(TN71), is a finite ry 1-net of the set BZ,I(TNJ < TN).
Hence
Mo (rn.0) ' _
Hiyy < Z (Ginat Hly ) (C10)
Jj=1

Since, by the assumptions (22) and (24) in Section 4, for each j and each 7

|8:(2k, yk;007) — 6i(ek, yF; )| < constryo  VEETN
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we can again use Hoeffding’s inequality, now with respect to the components of G’g N1
yielding

. ! N012
Ging <2 exp <— 2 ,Bi,l) (C11)

il

T

(Bi,1 > 0 is some constant). For the components of H. sz we can then proceed as for
the components of H;y,; above. The scheme is continued in this fashion and leads
to the following relation (see (C4), (C10) and further by analogy):

Mo(rn.0) ' M{(”‘NJ) '
UBiw < Guvo+ Y. (Gha+ Y (Gli,+-+)
j=1 T=1

which, including (C6), (C11) and further analogous bounds, gives

Mo(rn.0) M{(TNJ)

2 2
UB;y <2 z (exp(—]:Taoﬂi,o)-F Z (EXP(—]—Viﬂm)

2
T
j=1 =1 N,0

M;AT(TN,Q)

b L (e (-5 +)))

or, eventually, the following sequence of nested sums:

Na? Na?
UBin < 2M0(7‘N,0)(6Xp(— 5—Bi0) + M1(TN,1)(GXP(——2—K3¢,1)
Ki0 N0
Na?
+ M2(7'N,2)(eXp (= —=—Bi2) +-- )))) : (C12)
™1
where
M(rya1) = mjax Mlj(rN,l), My(rng) = njlix_x Mg’T(TN’g),
and ryo > 7rN1 > T2 > - Setting now
1 pPo 1 P1 1 D2
TN, = (‘1\7) , TN = (N) y, TNj2 = (”]‘v') R O<po<p1<pa<---
which can be done since the above reasoning holds for any arbitrary choice of
TN,0, TN,1, TN,2,--., and noticing that with this choice (h; = dimb;)

Mo(rn) ~ NPM, My(ry,) ~ NOPOR My (ry o) ~ NP27POR
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where puy ~ vy means that py/vy = const + o(1), const # 0, as N — oo, we can
easily recognize that for N — oo the following is true:

No? Na?

i e = ) =o{ = 0
Na? Na?

Ma(rn ) exp (= =—Pia) = o exp (- = fi1)) (C13)
TN,l TN,O

the latter by the fact that zPe™% — 0 as z — oo for every p,q > 0. Consequently,
including (C12) and (C13), for a sufficiently large N we obtain

Na?
UBin < 2Mo(rno)exp ( — H—z*ﬂi,o)
3,0
Since, obviously, My(rn,0) = O(NP*) as N — oo, we have

2
UB;y = O(Np"h" exp (— %za—ﬂi’g))
0,0

for each po > 0. However, for poh; < 1 we realize from the Taylor series expansion
that

No? Na? .
NPoki exp ( = ﬁz‘,o) = exp (_F; ‘5@0) + N~pohi 1
3,0

3
Kio

which gives asymptotically (for N — o0) on the right-hand side

N 2
exp (‘;&%—ﬂi,o)

Z!

In consequence, since in the above consideration py > 0 may be arbitrary, we conclude
that for a sufficiently large N

No ﬁ,,o)) (C14)

UB;y =0lexp(—
x=0(e (-5

as was to be proved, taking account of (30) in Section 4, (C1) and the constants
kio=L? and B;p = 1/32. n
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