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OPTIMIZATION AND SENSITIVITY OF STEPPED
COLUMNS UNDER CIRCULATORY LOAD

SzyMoN IMIELOWSKTI*, OskArR MAHRENHOLTZ**

This paper deals with the optimal design and sensitivity analysis of a stepped
column subjected to a nonconservative circulatory loading. The analysis is fo-
cused on maximization of the critical force under the constraint of constant
volume. A considerable increase in the critical load is achieved by introducing,
in the middle of the column span, an infinitesimal segment. It follows from the
sensitivity analysis that the stability of the system is extremely sensitive with
respect to the direction of loading application, while an increase in the stiffness
of the infinitesimal segment improves the reliability and safety of the whole sys-
tem. A generalized condition of multimodal design optimization is proposed in
the paper. The analysis is based on the transfer matrix method.

1. Introduction

Optimization theory under stability and frequency constraints was developed by
Prager and Taylor (1968), while Zyczkowski and Gajewski (1971) were probably the
first researchers who considered the optimization problem in cantilevers under cir-
culatory forces. The research was then continued by many others, cf. (Blachut and
Gajewski, 1980; Bogacz et al., 1979; 1986; Claudon, 1975; Gutkowski et al., 1991;
Hanaoka and Washizu, 1980; Tada et al., 1985; 1989). Some results related to the
column optimization (maximization of the critical force) are shown in Fig. 1. A ma-
jority of the presented results are obtained by the finite-element method applied to a
column divided into ten elements of constant height and linear mass distribution. For
such discretisation, the highest value of critical load, equal to P, = 92.56 EJ/h?, was
obtained by Gutkowski et al., (1991) by applying a method based on the Kuhn-Tucker
necessary conditions for optimality. A considerable rise in the critical force value, up
to 136.5 EJ/I? was reported by Tada et al., (1985) who used the inverse variational
principle. The authors increased the number of finite elements and applied the adap-
tive mesh technique, in which a shorter length was assigned to a larger gradient of
the cross-sectional area.
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Fig. 1. Results of column optimization under circulatory load

(maximization of the critical load).
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In practical applications the stepped columns and beams have wider applications
than the optimal continuous forms. The optimization result for the stepped column
consisting of four segments obtained by Bogacz et al. (1979) is shown in Fig. 1(c).

A proper choice of the starting point in the space of design variables, i.e. the
initial dimensions of the column, is essential for the result of optimization. When
looking for an initial shape, the authors take into account the fact that the localized
loss of structural stiffness can stabilize nonconsevative systems. This phenomenon was
studied for the columns with different models of the stiffness discontinuity, namely
a hinge-joint (Bogacz and Mahrenhololtz, 1986; Bogacz and Niespodziana, 1987),

_transverse-slidable joint (Bogacz and Imielowski, 1990; Imielowski, 1989) and generali-
zed rotationally-slidable joint (Bogacz and Imietowski, 1994). One of the conclusions
of this research reveals that a fourfold increase in the critical force value is possible for
a column with locally reduced stiffness placed in the middle of the column span, see
Fig. 1(d) and Fig. 2(a). This shape is taken as a starting point for the optimization
procedure. Since the authors seek the simplest possible shape of a column, the stepped
shape is chosen for analysis.

It is noteworthy that for the optimal shape the error of the approximation method
~ appears. For example, the results of force maximization for the stepped column
composed of two segments, obtained by the variational approach, yield the critical
force of 6% higher than that predicted by the transfer-matrix technique (Bogacz et al.,
1979). Variations of about 20% in the value of critical force are obtained in (Claudon,
1975) and (Hanaoka and Washizu, 1980) by using the same optimality criteria, see
Fig. 1(a).

In the present paper, an analytical solution is obtained by applying the transfer-
matrix method while the gradient-projection method is used as an optimization pro-
cedure. The study is completed by the sensitivity analysis, in which the influence of
the infinitesimal segment stiffness, the direction of the acting force and dimensions
of segments is taken into account. The results of numerical calculations are then
compared with those published in the literature.

2. Problem Formulation

2.1. Mechanical Model

A model of the structure under consideration is shown in Fig. 2(c). The stepped
column consists of n segments of cross-section A;, length I;, mass m; and stiffness
EJ;. A single infinitesimal segment is assumed in the form of an elastic hinge-joint.
It is located at the point zs, in the centre of the structure. The column is subjected
to a tangential compressive force P.

.The equation of motion for the i-th beam segment for small harmonic vibrations
is of the form

62 9%y, &y; %y;
£ (EI" azZ) TP e TrAigE =0 M)

where pA; denotes the mass per unit length.
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Fig. 2. Column with infinitesimal segment (a), segmentation of the struc-
ture (b), and forms of the column under consideration (c)-(e).
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We assume the separation of variables typical for a harmonic motion
vi(z,t) = wi(z) exp(iwt) ‘ (2)

where w is the angular frequency. The exact solution for the segment of uniform
mass and stiffness distribution is given by

w;(z) = Ay sinh Az + As cosh Ajz + Az sin Az + Agq cos Apx (3)

where

P P \*  pAuw?
Mz = i2EL-+\/(2EL-) " EL )

The conditions of force equilibrium and displacement continuity for the infinitesi-
mal segment follow from the analysis reported in (Bogacz and Imietowski, 1990; 1994,
Bogacz and Niespodziana, 1987; Imietowski, 1989). The adequate conditions are

wiles) = win(e,),  wl (z) =l (2.),

'wll“(QSS) = w{-ill.(wS)a sz(xs) - wz‘l(zs) = ’yR’w{_{_l(a:s) (5)

where (-)! = d()/dz and «g is the flexibility of the infinitesimal segment. The
boundary conditions for the Beck problem are of the form

w3 (0) = w{(0) = wy(L) = wi (L) =0 . (6)
In what follows, all cross-sections are assumed to be geometrically similar:
Ai=midy, Ji=mily (7)

where Ay and Jp are reference values, and m,; is a dimensicnless design variable,
which is constant in the i-th segment. From now on, we use the following dimensionless
quantities: '

P*=PI?/EJy, w*?=w?pAL*/EJy, u=w/L, {=uz/L (8)

Equations (1), (5) and (6) can now be rewritten in the final form

m2utt 6)]" + Pt (€) —wman(6) =0, 0<&<1 (9)
uf (€s) = uf (€s) = vhuiiy (€s) (10)
u1 (0) = ul (0) = m2ull (1) = [m2uff (1)]I =0 (11)

where vg = yrEJ/L is the dimensionless parameter of the joint flexibility. The
stiffness parameter «k} = 1/7} is taken for simplification.
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The problem is solved with the use of the transfer-matrix method, in which all
the generalized displacements and forces of an arbitrary cross-section are defined as
components of the state vector Z;, with the following constitutive form:

Zi=1y, o, M,Q|T = w,w',—EIw", ~ ETw"]" (12)

The relation between the state vectors Z; and Z;;; on both boundaries of the 4-th
segment is represented by Z,,; = T;Z;, where T; is the partial transfer matrix. The
global description having the form of a relation between the state vectors Z; and
Zn41 is then obtained by multiplying the matrices T for successive segments:

Znpr =TT y--- T Z, =TZ, (13)

The partial transfer matrix T; for a beam segment is derived from the solution (3) and
given in (Bogacz et al., 1979). For the elastic hinge-joint it follows from relations (5)
and (10). The reader is referred to (Bogacz et al., 1979; Pestel and Leckie, 1963) for
details. There are four equations in the set (13) with eight unknown components of
the vectors Z; and Z,;;. The problem, however, can be solved since four unknowns
are to be obtained from the boundary conditions (11). The characteristic equation
from which the singularity of 7' follows, establishes the relation between the force
and frequency:

B(P*,w*) =0 (14)

The points corresponding to the roots of (14) which are the eigenvalues of the problem,
obtained for the successive values of P*, constitute the so-called characteristic curves
(eigencurves) on the force-frequency plane. A typical configuration of eigencurves for
the column of a constant cross-section is sketched in Fig. 3(a) and by a dotted line
in Fig. 5(a). The critical state is defined as the smallest critical force for which the
successive eigenfrequencies coincide to form an imaginary conjugate couple. On the
force-frequency plane P* = P*(w*), the critical force is represented by a maximum
value, see Fig. 3(a).

2.2. Optimality Criteria

When solving the problems of nonconservative systems we have to overcome mathe-
matical difficulties which are related to the fact that such systems have no potential
and, therefore, the governing differential equations are not self-adjoint. Some of the
methods reported in the literature are discussed in Section 1. In the present paper, we
adopt a multimodal analysis with dynamical stability constraints. In this approach
the objective function P}, = P}, (a), where o stands for a set of design variables, is
not defined explicitly.
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Fig. 3. Definition of the critical forces (a) and the configuration of
the characteristic curves for the optimal shape (b).

The appropriate optimization conditions are imposed in the frequency domain as
limitations on variation in the shapes of characteristic curves. The definition of an
optimum state is adopted from (Tada et al., 1985). The optimal point represents here
the state for which all pairs of eigenvalues become double roots with the same value
of critical force as shown in Fig. 3(b). Taking this into account, the optimization
process consists in the determination of a mass distribution, such that the successive
double roots represent equal values of critical forces:

Poo=Py=PFPeg=--=F;="- (15)
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Here P;; denotes the critical load corresponding to the i-th and j-th frequency branch-
es in the force-frequency plane. Claudon (1975) increased the value of Py until it
satisfied the condition P, = Py34. Hanaoka and Washizu (1980) improved this result
by taking both P and Ps4 into account and maximizing them simultaneously. In
(Bogacz et al., 1979; Gutkowski et al., 1991; Tada et al., 1989) six first eigenfrequen-
cies were considered. In (Bogacz et al., 1979; Tada et al, 1989) the condition of
equality of three successive values of F;;, i.e. Pig = Pay = Psg, is finally satisfied.

In this paper the problem is reduced to increasing the value of P35 under the
constraint

Popt = Pia £ P (16)

Notice that in (16) we define the optimum critical force as that occurring with the
first and second natural form, i.e. Pope = P12. This assumption is very useful in
calculations since the necessity for keeping two or three first values of the critical
force within an acceptable accuracy range can be eliminated.

The next constraint is introduced to preserve a high value of the critical force
against the shape perturbation. Due to possible interactions between the successive
characteristic curves a discontinuous decrease in the critical force value can appear.
The phenomenon is explained in Section 3, cf. (Bogacz and Imietowski, 1994; Claudon,
1975; Hanaoka and Washizu, 1980; Mahrenholtz and Bogacz, 1981). The assumption
of the minimum distance between two successive eigencurves prevents such interac-
tions. The formula for a sufficient distance between two curves is as follows:

Wi —wi >¢ (17)

where ¢ is a positive number and 7 denotes the ¢-th frequency branch. The condi-
tion formulated in this manner was introduced in (Tada, 1989). However, the condi-
tion (17) is here applied only for P* < Py = Pi2, and a switch-over of characteristic
curves resulting in the determination of a critical force larger than Pjs is permitted.

3. Numerical Example: Maximization of the Critical Force

We look for a mass distribution which maximizes the critical load under the constraint
of a constant total mass of the column. For the stepped column this condition is
written as

Smidi =1 (18)
=1

where n denotes the number of segments. A structure composed of at most four seg-
ments with an infinitesimal segment located in the centre of the column is considered.

Looking for the initial shape, we check all possible combinations of the design
variables within the range: /; = 0.1,0.2,0.3,0.4 and m,; = 1.0,0.8,0.6,0.4,0.2, 4,j =
1,2,3,4. For two of them a considerable increase in the critical forces up to values
Py = 140EJ/L? and P23 = 60EJ/L? is observed. The appropriate segmentations
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are shown in Figs. 2(d) and 2(e). Notice that the corresponding configuration of
characteristic forces, shown with dashed lines in Fig. 4(a), differs qualitatively from
those typical for the Beck column, which are depicted in Fig. 3(a). In order to re-
store the required configuration (by lowering joint position n) we cause a qualitative
change in the shapes of characteristic curves. A discontinuous increase in the critical
force value follows a variation of this design variable as shown in Fig. 2(e). This phe-
nomenon is explained in Fig. 4(a). The dashed, dotted and solid lines are sketched
for zg = 0.5, 5 = 0.44778 and zs = 0.4468, respectively. For the highest joint
position the column losses its stability and oscillates with the second and third eigen-
frequencies, whereas for the lower position the instability occurs with the first and
second natural form. The switch-over is depicted with a dotted line. Notice that the
“jump” phenomenon (a discontinuous increase in the critical force) was here directly
applied to the preliminary optimization.

The shape obtained is shown in Fig. 2(e) with the lengths of segments marked
on the right-hand side. It is taken as the initial guess for the gradient procedure. The
procedure selects the design parameter Aa € {m,,l;,z,} by analyzing the configura-
tion of characteristic curves and satisfying the conditions (16), (17) and (18). Notice
that the condition (16) guarantees only a non-negative value of the objective func-
tion gradient and not the largest one. A detailed procedure is given in (Mahrenholtz
and Bogacz, 1981). Discontinuous changes in the critical force are prevented by the
condition (17), however a feasible switching of eigencurves resulting in determination
of a critical force larger then the value of Py5 is observed, see Fig. 4(b). Notice that
the condition (18) can be satisfied for a final shape because the scale effect does not
influence qualitatively the configuration of eigencurves.

The value of the critical force of the obtained segmentation is equal to P., =
133.38EJ/L?. The column is shown in Fig. 5(b) and the corresponding configuration
of the characteristic curves is depicted with a solid line in Fig. 5(a). The eigencurves
of the column of a constant cross-section are drawn by using dotted lines. The value
of the critical force is compared with the best result reported by Tada et al. (1985),
obtained for a complicated shape consisting of twenty trapezoidal elements of different
lengths, see Fig. 1(h).

It is evident that the result obtained does not represent the optimal value even for
a class of stepped columns. When higher frequencies are taken into consideration and
a continuous mass distribution is allowed, this result can be improved. However, this
requires greater computational efforts. On the other hand, due to a high sensitivity,
such optimality is questionable from the viewpoint of the structure reliability and
safety.

4. Sensitivity Analysis

In the sensitivity analysis we determine the dependence of the structure response
upon the design variables. The critical load and the corresponding critical frequency
are taken here as the response. The design variables considered are: the dimensions
of segments, the stiffness of the infinitesimal segment and the direction of the acting
force, defined by the tangency coefficient 7 as shown in Fig. 6(c).
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Fig. 6. Influence of the joint stiffness on the values of critical force and
critical frequency (a), the dependence of the critical force on the
direction of the acting force (b), and the definition of the tangency
coefficient (c).

An important question from the point of view of the structure reliability and
safety is the determination of the infinitesimal segment stiffness. The shape obtained
in Section 3 was calculated for a very small value equal to Kj = 10~8. It follows
from the discussion presented in (Bogacz and Imietowski, 1994) that in the limiting
case, i.e. for K} — 0, the system becomes unstable. It is obvious that an increase
in the joint stiffness will stabilize the system. The diagrams of P}, = PJ(x}) and
wi = wi (kR) are shown in Fig. 6(a). Notice that the decrease in the critical force is
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accompanied by an increase in the corresponding critical frequency. The drop in the
critical force, represented by the vertical dotted line from P to Pj;, destabilizes
the structure.

This analysis allows for a correction of the optimization result. We assume that
the critical frequency of the optimal strucutre should preserve a value for the uniform
Beck column, i.e. w?, = 11.01. From the graph we put the stiffness equal to k% = 1072,
The respective critical force value is equal to B, = 129,305EJ/ L?. The corresponding
configuration of characteristic curves is presented in Fig. 5(a) by a dashed line.

Let us turn into the influence of tangency coefficient 7. The diagram of P =
P (n) is shown in Fig. 6(b). As can be seen, even a slight disturbance of 1 involves
a discontinuous decrease in the critical force value, which changes the character of
stability loss from flutter to divergence. For % = 1072 this range extends. This
corresponds to the results obtained in (Bogacz and Niespodziana, 1987) for the column
of a constant cross-section with a single elastic hinge-joint.

Consider the influence of segment dimensions. The diagrams of P = P (mg3),
P¥ = Pr(l3) and P% = P%(l; = z,), for two values of joint stiffness % = 107% and
&% = 1072 are depicted in Fig. 7. Let us note that an increase in the joint stiffness
results in an extension of the range for which discontinuous changes in the critical
force value do not appear. Such a result is expected from the point of view of the
structure reliability and safety.

It is interesting to observe the variation of the critical load AP} which corre-
sponds to the x£1% variation of selected design variables. Such an analysis was made
in (Gutkowski and Pyrz, 1991) when considering a continuous variation of the column
shape. The results for the stepped column are presented in Table 1. Notice that only
for the case of discontinuous critical force change the system turns out to be very
sensitive to the design variable variation. In general, an increase in the joint stiffness
involves a lower sensitivity of the system.

Tab. 1. Variation of AP, corresponding to variations of selected design variables.

P A Pg (ma) A P (Is) A P (1)
1% | +1% | 1% | +1% | -1% | +1%

kg =107% | 133.380 | 9.57 | 0.40 | 1.50 | 13.69 | 2.46 | 18.43

Ky =10"2 | 129.305 | 0.45 | 0.49 | 1.21 | 10.66 | 2.86 | 15.58

5. Conclusions

This paper deals with the optimal design and sensitivity analysis of a stepped column
subjected to a nonconservative circulatory loading. The analysis is focused on maxi-
mization of the critical force under the constraint of preserving a constant volume. A
considerable increase in the critical load up to 129.3 EJ/L? is achieved for a column
consisting of four segments one of which is an infinitesimal segment situated in the
middle of the column span. We proposed a generalized condition for the optimal
design suitable for multimodal optimization.



168 Sz. Imielowski and O. Mahrenholtz

150 Y 150 T
» — - P‘f
R - ' > _55__ -
p* L = : - PCI - It ;
p* ! N P12 I <
1001 100 t N
P* ~ .
| 43 | pe
L &5
50+ I 50+ l
--—12‘40-6 i ——=xr=10""°
- - -2
x =102 Yo L %z =10 %L
3opt
0 T T T T ] 1] 1 T i 1opt 0 T T T T r T T T T w
-5 0 5 -5 0 5
(a)
150 T
.| s -‘F#&
PCI' S - |
___) o
] 12
™
100 - Pza
50 + |
T =—x} <1078
x* =102 .
0 T T T T T T T T eA3 opt
-5 0 S
(b)

Fig. 7. Influence of the segment dimensions on the critical force value.
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As can be seen from the presented analysis, both the optimization results ob-
tained and those taken from the literature represent only local minima, depending
strongly on the initial shape of the structure, i.e. on the initial set of design variables.
Moreover, the problem considered, being a problem of repeated eigevalues, turns out
to be very sensitive with respect to variation of design variables. The optimal value
is represented by a point on a discontinuous surface in the space of design variables.
A drop in the critical force value may occur due to slight disturbances of the design
variable. A variation of the direction of the loading force turns out to be extremely
dangerous from the point of view of stability, whereas an increase in the infinitesimal
segment stiffness results in an improvement of the reliability and safety of the system.
The results obtained can be improved for a column with locally reduced stiffness and
with a continuous variation of the cross-section. Hovewer, due to a considerable sensi-
tivity, such a model would be questionable from the viewpoint of structure reliability
and safety.
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