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TWO-WAY RECURSIVE DECOMPOSITION OF
THE FREE-FLYING ROBOT MASS MATRIX

GUILLERMO RODRIGUEZ*, ABHINANDAN JAIN*

This paper shows that the mass matrix for free-flying (/N + 1)-link serial robots
can be expressed as M = H[r + Cf:;f'rf + C;,a;brb]H*, which corresponds to
the optimal combination of the covariance of two independent spatially recur-
sive random processes, one going from left-to-right along the spatial span of the
system, and the other going in the opposite direction. The term 2-way recur-
sive decomposition is used here to describe the corresponding mass matrix that
is synthesized by the two opposite recursions. The combination is optimal in
a statistical sense analogous to situations in which two independent estimates,
with known estimation error covariances, are combined. The coefficient ma-
trices Cy and C, add up to the unit matrix so that C; + Cp, = I. These
coefficients are expressed as C; = rp(rs +7)"! and Cp = rs(ry +7)7" in
terms of what are referred to respectively as the “forward” composite body mass
matrix kernel 75 and the “backward” composite body mass matrix kernel 5.
The 6N x 6N matrix ry = diag[rs(1),...,75(N)] is a block-diagonal matrix
whose typical diagonal block r;(k) is the 6-dimensional mass associated with
the composite body formed by collecting all of the links of the system from
the left tip to the joint k. Similarly, r, = diag[rs(1),...,7s(IN)] is a block-
diagonal matrix whose diagonal block 7(k) is the 6-dimensional spatial mass
of the composite body formed by all of the links from joint % to the right-end
of the system. The forward and backward mass matrices are combined by the
equation r~! = 'r;l + rb_l, which is quite analogous to the way two masses
are combined in classical mechanics to obtain what is typically referred to as a
“reduced” mass. The spatial operators $f and $b are defined in terms of the
vectors that link one joint to the next joint. They represent respectively forward
and backward spatial recursions along the span of the system. This expression
for the mass matrix leads to a spatially recursive inverse dynamics algorithm
obtained by summing two independent algorithms going in opposite direction
to each other. The computations necessary to evaluate the mass matrix, as well
as the corresponding inverse dynamics algorithm, are all implemented by means
of the spatially recursive operations advanced by the authors in recent years.
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1. Introduction

This is an additional chapter in a story which the authors have been uncovering in
recent years (Jain and Rodriguez, 1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez
and Kreutz-Delgado, 1992), which draws from the Kalman filtering and smoothing
techniques of estimation theory, to solve robot dynamics problems by spatially recur-
sive methods. The primary problems addressed in the paper are those associated with
the dynamics of free-flying robots projected for future space applications (Bejczy et
al., 1993; Mukherjee and Nakamura, 1992). The space robots have a unique char-
acteristic: they are free to rotate and translate with respect to inertial coordinates,
without being constrained to be immobile at their base. This lack of a constraint
at the base results in distinct robot dynamics characteristics that are typically not
present in more traditional base-attached robotic manipulators. The main goal of this
paper is to investigate these unique characteristics, particularly as they are reflected
in the free-flying robot mass matrix.

Forward Recursion

]
Joint k-1 | Joint N-1
Cﬁo\loint 2 Joint k Joint k+1 :
Joint 1 | Joint N

Backward Recursion

|
le
Fig. 1. (N + 1)-link free-flying mechanical system.

The configuration analyzed in this paper is illustrated in Fig. 1, and it consists
of a series of N + 1 links connected together by N rotational joints, with each
joint having a single degree-of-freedom in rotation. The extension to other type of
joints is easy and has been addressed previously (Jain and Rodriguez, 1995a; 1995b;
Rodriguez, 1987; 1990; Rodriguez and Kreutz-Delgado, 1992). This configuration can
move with a rigid-body motion, in which all of the joints are locked at a fixed angle,
and the resulting “rigidized” system moves in 6 dimensions with respect to inertial
coordinates. In addition to this rigidized-body motion, the system can also articulate
as a result of articulation at its internal joints.

1.1. Forward and Backward Recursions

The type of dynamics solutions investigated here are also illustrated in Fig. 1. First,
the dynamics algorithms process the various dynamical quantities one at a time, in
two independent sequences. One of the two sequences starts at one end, and the other
starts at the opposite end. The two independent sequences go in opposite directions.
The forward sequence, illustrated by the top arrow in the figure, starts at the left end,
moves from left to right, and terminates at the right end of the system. Similarly, the
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backward sequence starts at the right end, moves from right to left, and terminates
at the right end. Fach of the sequences represents a spatially recursive algorithm
of the type developed in (Jain and Rodriguez, 1995a; 1995b; Rodriguez, 1987; 1990;
Rodriguez and Kreutz-Delgado, 1992) to solve robot dynamics problems.

The forward algorithm uses only “past” information, in the sense that its output
at any given body in the sequence depends only on dynamical quantities, such as link
masses, associated with bodies to the left of the given body. Similarly, the backward
algorithm uses only “future” information associated with bodies to the right of the
given body. Together, these two algorithms use precisely all of the available informa-
tion. The algorithms are independent in the sense that their outputs are uncorrelated
to each other. Due to this independence, the outputs of the two algorithms can be
combined in an optimal sense, using the by now classical result (Fraser and Potter,
1969; Gelb, 1974; Liebelt, 1967) of the optimal combination of two uncorrelated state
estimates. The optimal combination turns out to be an optimally weighted sum. It is
this optimal weighted sum that is used to determine the dynamics solutions advanced
in this paper, and the corresponding expression for the free-flying robot mass matrix.

1.2. Two-Way Recursive Decomposition of the Mass Matrix

The main result of the paper is summarized by Table 1. The decomposition for
the mass matrix shown in the table is a 2-way recursive decomposition, in the sense
that it can be synthesized by two independent recursive algorithms going in opposite
directions, one moving in the forward direction and the other moving in the backward
direction. These algorithms are characterized respectively by the rigid transition
operators ¢y and ¢. The operator ¢, is a rigid transition because it is used to
transfer forces and velocities from one link to the next one in a forward direction
from left to right, starting at the extreme left end of the multilink system, with the
multilink system rigidized at all its joints. The operator ¢ is a rigid transition in a
similar sense, except that this operator corresponds to a backward recursion from the
right extreme to the left extreme of the multilink system. The operator ¢y is strictly

lower-triangular, whereas ¢~55 is strictly upper-triangular.

Table 1. The main result of the paper.

M H[T+Cf$f7‘f —I-C'z,gbrb]H*
Tf Forward Composite Mass
Th Backward Composite Mass
T Reduced Composite Mass

$ ¥ Forward Rigid Transition Operator

$,, Backward Rigid Transition Operator

H Joint Projection Operator

The mass matrix decomposition therefore decomposes the mass matrix as the sum
of a diagonal matrix HrH*, a strictly lower-triangular matrix characterized by the
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forward transition operator af, and a strictly upper-triangular matrix characterized
by the backward transition operator ¢;.

The 2-way recursive decomposition for the mass matrix depends on two key
quantities: the forward composite mass 7y and the backward composite mass 7.
The forward composite mass ry(k) at any given joint represents the total spatial mass
(Jain and Rodriguez, 1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez and Kreutz-
Delgado, 1992) of the collection of bodies to the left of this joint, assuming that all
of the joints are “rigidized” in the sense that no rotation is allowed. The composite
mass 75 does not allow joint articulation. Similarly, the backward composite mass
(k) represents the total mass of the collection of bodies to the right of the given
joint, assuming that all of the joints are locked.

1.3. Reduced Composite Mass

The block-diagonal matrix r = 74(ry + 75) 'r, appearing in Table 1 is computed
by combining the “forward” composite spatial mass matrix r; with the “backward”
composite mass matrix 7. The k-th diagonal element r¢(k) of the block-diagonal
matrix 7y = diag[rg(1),...,75(IN)] represents the spatial mass of the composite body
formed by putting together all of the manipulator links outboard, toward the tip, of
joint k. Similarly, r; is a block-diagonal matrix, whose generic element 7;(k) equals
the spatial mass of the composite body formed by putting together all of the links
inboard, toward the base, of joint k. The combined mass matrix r is analogous to
the scalar “reduced mass” obtained in classical mechanics (Goldstein, 1950) when
combining two scalar masses in translational motion. '

1.4. Two-Way Recursive Algorithms for Inverse Dynamics

A by-product of the recursive decomposition for the mass matrix is the specification of
inverse dynamics algorithms, in which two independent recursions, moving in opposite
directions, are combined optimally to arrive at the inverse dynamics solution for the
free-flying robotic system.

1.5. New Results Drawn from the Interplay of Classical Mechanics and
Estimation Theory

The paper arrives at new results by continuing to investigate the interplay between
classical mechanics and estimation theory, which has been set forth in (Jain and Ro-
driguez, 1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez and Kreutz-Delgado, 1992).
It begins conceptually from the result of (Fraser and Potter, 1969), in which the op-
timal smoother is obtained by combining two independent linear filters, and extends
this idea from the time-domain to the very complex situation of spatial relationships
associated with articulated multibody systems. To achieve this extension, the paper
draws heavily on previous results of the authors on the application of spatially re-
cursive and operator methods to robot dynamics. Once the extension to mechanical
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systems of the fundamental idea in (Fraser and Potter, 1969) is achieved, previous-
ly unrecognized architectural characteristics of the mass matrix are revealed, which
would have been very difficult, if not impossible to obtain using other methods.

The 2-way recursive solutions developed here have an interesting physical in-
terpretation, as the generalization to multibody systems of classical results in the
combination of two masses in dynamical motion. In doing this, the paper presents
one more circle of ideas at the intersection of estimation theory and mechanics.

2. Spatial Operator Model

The analysis contained in this paper is based on the spatial operator notation ex-
plained in substantial detail in (Jain and Rodriguez, 1995a; 1995b; Rodriguez, 1987;
1990; Rodriguez and Kreutz-Delgado, 1992), appropriately extended to account for
the 2-way symmetric formulation to be developed here.

The “forward” spatial operators, corresponding to algorithms that go from left-
to-right of the system, are essentially identical to those developed previously in these
references. The “backward” operators, those associated with algorithms that go from
right-to-left, are quite similar to the forward algorithms, except that they go in the
opposite direction.

This section provides a brief summary of this spatial operator notation, and its
extension to the 2-way symmetric formulation. To illustrate ideas, at a few places in
the paper, an example with 4 bodies and 3 joints is considered. The bodies are labeled
1, 2, 3, 4 starting at one of the two ends. There is no generality lost in focusing on this
4-body system, as the essential characteristics of all of the spatial operators defined
for this system are identical to those of the more general system with an arbitrary
number of links and joints.

2.1. Forward and Backward Shift Operators

Let us define the operators

0 0 0 0 ¢(1,2) 0
Egr=1 #(21) 0 0|, Ex=|0 0 4(23) (1)
0 #(3,2) 0 0 0 0
They are related by the identities
Es5Epp = I — my s, Eplyr =1 —mimy (2)

where 7y = [0,0,I] and m = [I,0,0] are “pick-off” operators. To illustrate the
identity £4¢E¢p = I — mimy, observe that

0 0 0 0 ¢(1,2) 0 00 0
#2,1) 0 0 0 0 ¢23) [=l0To0 (3)
0 ¢(3,2) 0 0 0 0 00 I
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The rigid forward-shift operator £4¢ is used to transfer spatial forces from one
joint to the next joint in a forward direction. References (Jain and Rodriguez,
1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez and Kreutz-Delgado, 1992) con-
tain a more complete discussion of the physical interpretation of this operator. The
rigid backward-shift operator £ is used to transfer spatial forces in the opposite
direction.

2.2. Rigid Transition Operators

The rigid transition operators ¢; and ¢, can be obtained from the corresponding
rigid shift operators £4¢ and Egp:

br=T—E5)7" =T —Ew)" (4)
which imply

I 0 0 I ¢(1,2) ¢(1,3)
pr=| ¢21) I 0|, =0 I ¢23) (5)
$(3,1) 4(3,2) I 0 0 I
Observe the relationships
$r=Essbs=0s—1, r=Eppr=¢p—1I (6)
and
0 0 0 0 ¢(1,2) ¢(1,3)
br=| 921 0 0|, H=|0 0 423 (7
#(3,1) #(3,2) 0 0 0 0

The decomposition for the mass matrix is a 2-way recursive decomposition, in the
sense that it can be synthesized by two indepedent recursive algorithms characterized
respectively by the rigid transition operators ¢; and ¢s. The operator ¢y is a rigid
transition because it is used to transfer forces and velocities from one link to the next
one in a forward direction from left to right, starting at the extreme left end of the
multilink system, with the multilink system rigidized at all its joints. The operator
¢ is a rigid transition in a similar sense, except that this operator corresponds to a
backward recursion from the right extreme to the left extreme of the multilink system.
The operator ¢f is strictly lower-triangular, whereas ¢b is strictly upper-triangular.

2.3. Forward and Backward Spatial Masses for Each Link

Associated with each link k, there is a “forward” spatial matrix My(k) representing
the 6 x 6 mass matrix of the link about joint k. This can be computed by the volume
integral

Is(k)  m(k)cs(k)

. (8)
—-m(k)cr(k) m(k)U

My(k) = [ 9(k,2)Bo(e) B (0, ) do =
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where B* is defined as the 3 x 6 matrix B* = [0, ], and p(z) is the scalar mass den-
sity at the point z, an arbitrary point inside the k-th link. The integral is performed
over the volume occupied by this link. The spatial mass of the link is characterized
by 10 scalar quantities (Rodriguez, 1987): 6 scalars for the rotational inertia Z(k)
about joint k; 3 scalars for the vector c¢(k) from the joint k to the link mass center;
and 1 scalar for the total mass of the link. Similarly, the “backward” spatial mass
My(k — 1) for link k reflected at the joint k —1 is the 6 x 6 matrix

Mi(k—1) = [ 9(k ~1,0)Bp(a)B"¢" (k - 1,2) do (9)

represents the spatial inertia of link k about link k¥ — 1. These two matrices are
related by the identities

My(k—1) = ¢p(k — 1, k) My (k)¢ (k — 1,k) (10)

My(k) = ¢(k, k — 1) Mp(k — 1)¢™(k, k — 1) (11)
In terms of the rigid-shift operators €45 and E4p, these identities are:

My = EgpM5Eq, My = Egs MpE¢ (12)

where M; = diag[My(1),...,Ms(N)] and M, = diag[Mp(1),..., Ms(N)] are
6N x 6N block-diagonal matrices.

2.4. Forward and Backward Composite Masses

The “forward” composite mass at any given joint is the spatial mass matrix (Jain
and Rodriguez, 1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez and Kreutz-Delgado,
1992) of the collection of bodies to the left of this joint, assuming that all of the system
joints are rigidized. The joints are not allowed any rotation. Similarly, the “backward”
composite mass at any given joint is the spatial mass matrix of the collection of bodies
to the right of the joint, assuming all of the joints in this collection are locked. An
illustration of the forward and backward composite bodies is shown in Fig. 2.

-
Forward Composite Body |

Joir]tk
Joint k-1 Joint N-1  JointN
T G
Joint 2 I Joint k+1

Joint 1

Backward Composite Body
|

Fig. 2. Forward and backward composite bodies.

Table 2 summarizes algorithms to evaluate the forward and backward spatial
masses, by 2 independent recursions going in opposite directions. The forward al-
gorithm has been discussed at length in previous work by the authors (Jain and
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Rodriguez, 1995a; 1995b; Rodriguez, 1987; 1990; Rodriguez and Kreutz-Delgado,
1992). The backward algorithm, presented here for the first time, is a relatively
simple extension of the forward algorithm.

Table 2. Recursions to compute composite masses.

| FORWARD | BACKWARD |
Tf =8¢f'r'f£;f+Mf T —_—qub’f‘bE;b+Mb
r1(0)=0 (N +1) =0
k=1,...,N k=N,... 1
ri(k) = ¢(k, k= Drs(k — 1)¢"(k, k — 1) | ro(k) = ¢k, k + 1)re(k + 1)¢" (k, k + 1)
+M;j (k) +M, (k)
These two independent recursions compute the “forward” composite mass ma-
trix ry; = diag[rs(1),...,7¢(N)], and the “left” composite mass matrix r, =
diag[rs(1),...,7(N)]. In the following section, these two matrices are combined

to arrive at the “reduced” mass matrix kernel r = r4(rs + 75) " 17f, from which the
diagonal elements of the free-flying manipulator mass matrix can be readily computed.

2.5. Reduced Composite Mass
The reduced mass matrix kernel 7 is defined as
r= ’r‘b(Tf + Tb)~1’rf = 'rf('l‘f + 'rb)_lrb (13)

in terms of the FORWARD composite mass matrix ry and the BACKWARD compos-
ite mass matrix 7. This equation states that the reduced kernel r can be computed
by taking the product of the two component matrices 4 and 3, and dividing by the
sum 75 + 75 of these two matrices. In this last statement, division is interpreted to
mean matrix inversion, and the word product is interpreted to mean that the matrix
inverse is “sandwiched” by the operator r¢[ - ]r, which appears in the numerator of
r =71s(rs +15) "1y, Alternatively,

rl =it 4yt » (14)

The formulas in eqns. (13) and (14) for combining composite spatial masses are
analogous to the well-known formula in classical mechanics for analyzing the motion
of 2 scalar masses in translation. They can be viewed as generalizations to linked,
multibody systems defined in 6 spatial dimensions, 3 for translation and 3 for rotation,
of the classical results for scalar masses. For example, Goldstein (1950) discusses how
the concept of a reduced scalar mass is used to analyze the problem of two bodies
under attraction by a central force. The central force motion of two bodies about
their center of mass can always be reduced to an equivalent one-body problem, where
the scalar mass of the single equivalent body is the reduced scalar mass.

The reduced mass matrix r = r¢(ry + 75) "7y has been defined for the entire
system, in that it is a block-diagonal matrix r = diag[r(1),...,7(IN)] defined over
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the entire spatial system configuration. Alternatively, r—! = rol + rb_l. These are

two formulas that determine the reduced system mass matrix from the FORWARD
and BACKWARD composite mass matrices r¢ and 4, respectively. The diagonal
elements 7(k) of this reduced mass matrix can be computed by very similar formulas:

r(k) = rs(k)lrs (k) + o (k)] ro(k),  rTHR) =17 (k) (k) (15)

These last two equations apply to any particular joint in the system. As illus-
trated in Fig. 2, for any arbitrary joint k, there are two independent collection of
bodies: (1) a FORWARD composite body consisting of all of the links to the left of
the given joint, with a corresponding FORWARD composite mass matrix 75, and (2)
a BACKWARD composite body consisting of all of the links to the right of the given
joint, with a corresponding BACKWARD composite mass matrix .

3. Two-Way Recursive Mass Matrix Decomposition

The foregoing operator notation provides all of the necessary ingredients to describe
the following 2-way recursive factorization of the system mass matrix. The mass.
matrix is formed by combining two independent fixed-base manipulator recursions,
going in opposite directions to each other.

Identity 1. The mass matriz for a “free-flying” serial manipulator, one which is
unconstrained at both ends, can be expressed as M = HRH* with

—Rzr—%—quNSfrf +Cb$bTb (16)

where T =71¢(rs + 1) 1y is the reduced composite mass. The weighting matrices

Cr= 'rb('rf + Tb)—l = TT?l, Cy = Tf(’l‘f + Tb)—l = ’rTl;~l (17)

add up to the identity so that Cy + Cp = I.

The lower-triangular matrix Cfngrf, involving the weighting coefficient Cy =
ro(rs +74) 7!, is determined by combining the forward and backward composite mass
matrices 75 and 73, respectively. This weighting coeflicient multiplies the term afo
which appears in the forward composite mass matrix representation of the “attached-
base” manipulator mass matrix. The upper-triangular matrix Cp¢prp involves the
weighting coefficient matrix Cp, = 7¢(ry + 75)"'. This matrix multiplies the term
q‘gbrb which appears in the backward composite mass matrix representation of the
“attached-tip” manipulator mass matrix.

3.1. Two-Way Recursive Algorithm to Evaluate the Mass Matrix

The operator decomposition described in Identity 1 leads to a corresponding algorithm
to evaluate the mass matrix recursively. To describe this algorithm, it is convenient
to refer to Table 2, which specifies spatial recursions to compute the forward and
backward composite masses 7y and 7. It is assumed in this section that these
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two recursions are used to compute 7y and 74, as well as to evaluate the resulting
reduced composite mass r = 7¢(rs + r5)"17p, and the forward weighting coefficient
Cs =rp[rs +rs] 1. This is done here only to make it easier to describe the recursive
algorithm presented below to evaluate the mass matrix. However, in practice, this
algorithm can easily be combined with the algorithms in Table 2 which compute the
essential quantities ry and ry. Since the mass matrix is symmetric, it is sufficient to
evaluate its elements M(k,m) in the lower triangle m < k < N.

Algorithm 1. The mass matriz element M(k,m) in the lower-triangle m < k < N
can be computed by
loop m=1,...,N

X(m) = r¢(m)H*(m), M(m,m) = H(m)X (m) (18)
loop k=m+1,...,N
X(k) = ¢k, k- 1)X(k—1),  M(k,m)= H(k)Cs(k)X (k) (19)

end k loop
end m loop

3.2. Two-Way Recursive Inverse Dynamics

Algorithm 2. The “computed” moments T(k) which result from the specified joint
accelerations a(k) are provided by the weighted sum of two independent inverse dy-
namics recursions given in Table 3.

Table 3. Two-way recursive inverse dynamics.

B FORWARD BACKWARD |
X;(0)=0 Xo(N+1)=0
k=1,... N k=N,... 1
Xy (k) — p(k, k — 1) X5 (k- 1) Xo(k) — ¢k, k + 1) X3 (k +1)
X (k) = Xy (k) +rp(k)H* (K)(k) | Xo(k) — Xy (k) + ro(k)H* (k) (k)

X (k) = Cs(k)X (k) + Co(k) X, (k)
T(k) = H(k)X (k)

The algorithm assumes that the composite masses r; and ry, and the corre-
sponding weighting coefficients C¢ = ry(ry + 75)~" and Cy = rs(rs + 75)"", come
from the recursive algorithms in Table 2, which could of course be run concurrently
with the present algorithm.

Algorithm 2 is based on the equation T = Ma, where M is the mass matrix,
a = [a(l),...,a(N)] is a vector of desired angular accelerations at the joints, and the
vector of applied joint moments T = [T'(1),...,T(N)] has to be applied in order to
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achieve the desired joint accelerations. It is a generalization of the traditional (Luh
et al., 1980) inverse dynamics algorithm for fixed-base manipulators. It is a gener-
alization in two important respects: (1) it is based on composite masses instead of
the masses of the individual links, and (2) it is based on two independent recursions
which are implemented in parallel, instead of consisting of a forward recursion fol-
lowed sequentially by a backward recursion. Nonetheless, because it solves the inverse
dynamics problem using spatial recursions, it can be viewed as being in the same spirit
as the traditional (Luh et al., 1980) inverse dynamics solutions for fixed-base systems.

4. Derivation of the Two-Way Recursive Decompositions

No proofs have been presented up to here. Instead, the preceding sections have focused
on stating the 2-way recursive decomposition for the mass matrix, on outlining the
corresponding spatially recurive algorithms for inverse dynamics, and on physical
interpretation. This section fills this gap by focusing on the analytical derivation of
the recursive decomposition results summarized in the previous sections. The proofs
begin by first decomposing the total kinetic energy as the sum of two terms: (1) an
energy term due to rigid body motion in inertial space of the “rigidized” multibody
system, and (2) a term due to internal articulation at the system joints. This energy
decomposition is achieved in the following subsection. After this, a series of spatial
operator identities are established leading incrementally to the desired 2-way recursive
decompositions set forth in the previous sections. In addition to having value in their
own right, the derivation of the recursive decompositions lead to additional physical
insights concerning the overall system kinetic energy and the multibody system mass
matrix.

4.1. Kinetic Energy due to Rigid and Articulated Motion

A good place to start in analyzing the dynamics of free-flying systems is the decom-
position of the total system kinetic energy as the sum of energy due to rigid body
motion plus the energy due to internal articulated motion. This is the approach taken
in this paper. To this end, the total kinetic energy can be expressed as

J(VN+1,6) = KE = %

1
V*MV + §V*(N +DM(N +1)V(N +1) (20)
where the first term on the right side represents the kinetic energy due to links
1,..., NV, and the second term is the energy due to the last link N + 1. The “stacked”
spatial velocity V = [V(1),...,V(N)] is a composite vector, with V (k) being the
spatial velocity at joint k. This “stacked” spatial velocity is

V = ¢}H*H.+¢}C*VN+1 (21)

and C =10,0,...,¢(N + 1,N)]. Observe that Vyy1 = V(IV + 1) is the velocity of
the base of the robot. Typically, this base is immobile, so the corresponding spatial
velocity V(N + 1) vanishes. However, in the case of the free-flying robot under
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investigation here, the base velocity may be non-zero. Substitution of (21) into (20)
leads to

; 1 " Sk ’I"f(N+ 1) CRH* VN+1
W) =5 (Vi 00 )| T : (22)

where to simplify eqn. (22), the symbols Vy41 has been used instead of V(N + 1).

The kernel R = ¢; M £@} is the central kernel of the “fixed-base” manipulator
mass matrix HRH* corresponding to an N + 1 link manipulator in which the last
link corresponds to a fixed base which is not moving. The kernel R has been exten-
sively studied by the authors (Jain and Rodriguez, 1995a; 1995b; Rodriguez, 1987;
1990; Rodriguez and Kreutz-Delgado, 1992) in analyzing the dynamics of fixed-base
manipulators. Here the objective is to observe that this fixed-base mass matrix kernel
plays a significant role in arriving at a related mass matrix kernel for the free-flying
systems analyzed in this paper.

4.2. Minimal Kinetic Energy: No Rigid Body Motion

Now, the goal is to find a relationship between the base velocity V(N + 1) and the
joint angle rates 6, so that the total value of the kinetic energy is minimized. This is
done by minimizing the kinetic energy in eqn. (22) with respect to V(NN + 1), under
the condition that joint angle rates « are prescribed. This would correspond to a
physical state of the manipulator, in which all of the motion is “internal” in the sense
that it is due only to the joint angle rates. Motion of the composite mass center of
the complete system, which could be interpreted as external motion, is not included
in the resulting minimal value of the kinetic energy. The base “WIGGLE” velocity
Vwrcere(IN + 1), that results at the base link N +1 due to inner joint articulation,
is provided in the following identity.

Identity 2. The WIGGLE velocity Viwigore(IN + 1) due to internal joint articu-
lation, and which thereby minimizes the kinetic energy, is

Vwicere(N +1) = =r;'(N + 1)CRH"0 : (23)

The corresponding minimal value of the kinetic energy is
Jurn(0) = —;—é*HﬁH*é (24)

This result is established by minimizing the kinetic energy in eqn. (22) with respect
to Vw41 with @ held constant. The matrix (N +1) that needs to be inverted is
the forward composite mass matrix consisting of all of the links 1,...,N + 1 of the
manipulator.

The base velocity determined in the above identity is that due only to articulation
of the internal system joints. There is no rigid body motion, in the sense that the
system is not translating or rotating with respect to inertial coordinates. However,
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even though there is no rigid-body motion, the base of the system still moves due
to the internal system motion at the articulated joints. It is possible to think about
this base motion, induced by joint articulation, as a “wiggle”, which is present at the
system base, even though there is no rigid-body motion of the entire system. The
amount of motion at the base, due to articulated motion, is reflected in the velocity
Vwrccre(N + 1) given by eqn. (23) in terms of the joint angle rates 6.

4.3. RIGID + WIGGLE Base Velocity Decomposition

An arbitrary velocity V(N + 1) at the base link can be decomposed as the sum of
a RIGID base velocity component Vrrgrp(IN + 1) due to overall rigid body motion
plus a WIGGLE base velocity component due to articulation

V(N +1) = Vrieip(N + 1) + VwreerLe(N + 1) (25)

Substitution of eqn. (25) into eqn. (22) leads to the following decomposition of the
kinetic energy as the sum of energy due to rigid-body motion plus energy due to
articulation.

4.4. RIGID 4+ ARTICULATED Energy Decomposition

Identity 3. The total kinetic energy
1 1
Jvin+1),6) = 5VizarpOV + Urs(N +DVarain(N +1) + 56*HRH*9 (26)

is the sum of two terms: the kinetic energy due to the rigid-body motion of the complete
system, plus the kinetic energy due to internal articulation.

The first term (1/2)VE;61p(N +1)7#(N +1)Vrierp(N +1) on the right side of
eqn. (26) is that due to the RIGID BODY MOTION of the complete system, involving
translation and rotation with respect to inertial coordinates. There are a total of 6
independent degrees-of-freedom associated with this motion, 3 for rotation and 3 for
translation. The energy is expressed in terms of the composite body mass r¢(IV + 1)
at the base of the system. This quantity represents the total composite mass of the
system, as it is seen at its base. It is also expressed in terms of the spatial velocity,
due to rigid body motion and not to articulated motion, at the base of the system.

The second term on the right side of eqn. (26) is (1/2)8*Rf, and it represents
the kinetic energy due to ARTICULATED MOTION. This term depends on the
“reduced” mass matrix kernel R, which leads to the mass matrix M = HRH*. Tt
is this mass matrix that is the focus of the present paper. It is the mass matrix
associated with articulated motion due to rotation at the joints only.
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4.5. The Mass Matrix Associated with Energy due to Articulation

Identity 4. The mass matric M which determines the kinetic energy %9'/\49. due
to joint articulation is

M = HRH* - (27
where
R=R-RC*r;'(N +1)CR (28)

and where T;(N + 1) is the forward composite mass at the N + 1 link tip, and
R = ¢; My} is the mass matriz kernel of the fized-base manipulator mass matriz
HRH*.

This result essentially states that the mass matrix M = HRH* for a free-base
manipulator can be obtained from the fixed-base manipulator mass matrix HRH*
by modifying the kernel R = ¢;M;¢} by means of eqn. (28). Understanding this

kernel R better is therefore the key to obtaining the 2-way recursive algorithms for
the free-base manipulator mass matrix presented in earlier sections. The paper now
turns toward developing such an understanding. In particular, the objective is to find
an alternative expression to eqn. (28) that evaluates the modified kernel R as the
weighted-sum of 2 spatial recursions going in opposite directions.
4.6. Two-Way Recursive Decomposition of the Mass Matrix Kernel
The goal of this subsection is to determine the following identity, which represents
the desired 2-way recursive decomposition for the mass matrix.
Identity 5.

R= rlI + T}lqbfrf + T{lgbrb] (29)

where v =r¢(ry +15) 711y is the reduced composite mass.

To this end, it is convenient to first establish a sequence of four preliminary
identities, which together imply the desired result. -

Identity 6.

R=(ry—rsqrs) + (I —149)dsrs + 77631 — qry) (30)

where g = diag[q(1),...,q(N)] is a 6N x6N block-diagonal matriz which satisfies
the backward recursion

q=E51q845 + C* 171 (N +1)C (31)



Two-way recursive decomposition of the free-flying robot mass matrix 427

To establish this identity, recall (Jain and Rodriguez,~1995a) that the fixed-base mass
matrix kernel R can be decomposed as R = ry + ¢s7s + r5¢} . Observe also that
CR = C¢yry, since C’rf¢>* = 0. However, ¢3C*r (N +1)Cés = g + qds + quq
Substitution of these combmed results into the reduced mass kernel in eqn. (28) leads
to the desired identity.

Identity 7.
RZ'I‘-!-Cf(}ngf-i-Tfa}C; (32)

where C; = rp(ry + 15)"1 is the “weighting matriz” associated with the forward
composite mass Ty.

To establish this identity, define the backward composite mass 7, as rp = ¢~1 — ry.

Substitute this into (30) to obtain the desired identity. Observe that the block-
diagonal matrix q = (ry +1)"! appearing in the Identity 7 is the inverse of the sum
of the forward and backward composite masses.

Identity 8. The transpose of the lower-triangular terms Cfaf'f'f, which are computed

by the forward recursive algorithm, are the upper-triangular terms Cydp1s computed
by the backward recursive algorithm, i.e.,

rs¢3C; = Cyery (33)

where Cy = 7#(r5 + 1)1 is the “backward” weighting matriz associated with the
backward composite mass rp.

To establish this identity, the first step is to show the simpler and more fundamental
identity d)*q = q¢p. Observe from eqn. (31) that ¢(k) = ¢*(k+1,k)g(k+1)¢(k+1,k)
which 1mp11es q(k)p(k, k+1) = ¢*(k+1,k)q(k+1). In operator notation, g€4y = £} ¢q.
Hence, ¢(I — ¢3') = (I — ¢;1)*q This implies qﬁfq = q¢b. Premultiply by 7y,
postmultiply by 3, and recall that ¢ = (77 + 1)~ to obtain the desired identity in
eqn. (33).

The last remaining step, toward establishing the desired 2-way recursive decom-
position of the free-base manipulator mass matrix kernel, is to develop a backward
recursive algorithm to compute the backward composite mass r, as is done in the
following result.

Identity 9. The backward composite mass r, satisfies the backward spatial recursion
Ty = 5¢b7‘b5$b + M, (34)

To establish this identity, observe from eqn. (31) that g(k)¢(k,k+ 1) = ¢*(k + 1,%)
q(k +1). Invert this equation to obtain that ¢(k+ 1,k)[rs(k) + rs(k)] = [rs(k + 1)
ry(k +1)]¢* (k, k + 1). Post-multiply this by ¢*(k+1,k), and recall that rs(k+1) =
o(k + 1,k)rs(k)¢*(k + 1,k) + Ms(k + 1) to obtain that rp(k + 1) + Ms(k + 1) =
¢(k + 1,k)ry(k)¢*(k + 1,k). Finally, premultiply by ¢(k,k + 1), post-multiply by
¢*(k,k + 1), and recall that the forward and backward link masses M; and M, are
related to each other by eqn. (12).
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5. Analogy with the Brownian Bridge

In this section, an analogy is developed which allows interpretation of the preceding
results within the context of a very easy to understand one-dimensional analogy. The
Brownian bridge of length ¢ can be thought of (Hida, 1980) as a random process
generated by the equation

X=w (35)
with the boundary conditions
X0)=X®)=0 (36)
The random process W is a zero-mean white-noise process, with covariance
E(WW?*) =pI (37)

with p being the mass density of the bridge. In relatively imprecise terms, the
Brownian bridge is the integral of white noise, subject to boundary conditions, similar
to those of an actual physical bridge: the bridge does not translate at its two end-
points. The Brownian bridge is therefore Brownian motion with fixed conditions at
both ends. The equation X = W that governs the Brownian bridge process within
the spatial interval is identical to that of the Brownian motion process.

The random process X(z) is “sampled” at the finite number N of discrete
locations, corresponding to the locations of the N joints of the manipulator, which
the bridge is analogous to. At each of these sample locations z = k, there is defined a
corresponding random variable X (k). The covariance of this sampled random process
X =[X(1),...,X(N)] is analogous to the kernel R associated with the manipulator
mass matrix M = HRH* as discussed below.

5.1. Covariance of the Brownian Bridge Process

Identity 10.
R=E(XX*)=71+Cs¢srs + Coprs (38)

Here 74 is the covariance of a “forward” Brownian motion process that starts at the
left and moves forward in space toward the right, with zero initial condition at the left
end of the bridge. Similarly, r, is the covariance of a “backward” Brownian motion
process that moves backward in space toward the left, with zero terminal condition
at the right end of the bridge. The covariance r¢(z) at a point z represents the
composite mass of that portion of the bridge to the left of this point. The covariance
75(z) at a point z is the composite mass of that portion of the bridge to the right of
this point. The forward and backward covariances are:

ri(@)=pe,  ro(@) = p(t - ) (39)

where p is the mass density of the bridge. The reduced composite mass r(z) =
7s(z)[rs(z) + ro(z)]"'73(2) is obtained by combining the composite masses 7;(z
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and 73(z), in the same sense as in computing the reduced mass of two bodies in
classical mechanics (Goldstein, 1950).

Since the Brownian bridge process X is sampled at the finite number of discrete
locations N, the corresponding covariance kernel R is a matrix. To simplify notation,
consider the case in which there are 3 equally spaced discrete locations, separated by
the distance A, and which are inside the spatial interval £ representing the overall
length of the bridge. In this case, the covariance kernel R is

&
I

pA (40)

P TS N T
[T el Lol T o
N L Y N T

The 2-way recursive decomposition corresponding to this matrix is provided by e-
gn. (38) with the various matrices involved in the right side of this equation being
defined as:

200 100 000
r=pA| 0 0 |, 7¢=pA| 0 2 O , dr=|1 0 0 | (4
0 0 3 00 3 110
and
300 $ 00 100
m=pAl 0 2 0|, Cs=|0 % 0|f, CG=]0 % 0 (42)
001 0 0 % 00 3

6. Extension to Tree Configurations

While the results of previous sections have been illustrated by using a simple serial
multilink system, it is relatively easy to extend these results to arbitrary tree-like
configurations. To this end, and without loss of generality, consider the 9-link example
shown in Fig. 3.
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Fig. 3. Nine-link tree configuration.

Table 4. Forward tree at each joint.

l Joint l Forward Tree

1
2

1,2,3

1,2,3,4
1,2,3,4,5

6

1,2,3,4,5.6,7
1,2,3,4,5,6,7,8

Q|| |O || Wb =

The general idea in arriving at the desired extension is to view each of the joints
in the system as “partitioning” the overall system into two subsystems, a forward tree
and a backward tree. In the example above, for joint 1, the forward tree consists only
of the first link, while the backward tree consists of all of the other links. Similarly,
the forward tree for joint 2 consists of link 2, while the backward tree consists of all
of the other links. As the joint number increases, the number of links in the forward
tree increases, and the corresponding number of links in the backward tree decreases.
At the last joint, labeled No. 8 in Fig. 3, only link No. 9 remains in the backward
tree, and all of the other links are in the forward tree. While the above procedure for
constructing the forward and backward trees for each joint has been explained in the
context of a specific example, similar results can be achieved for arbitrary tree-like
configurations.

7. Concluding Remarks

This paper has developed a new 2-way recursive decomposition for the free-flying robot
mass matrix. It has been done by drawing substantially from the spatial operator
methods advanced by the authors in previous publications. The decomposition reveals
structural properties of the system mass matrix which are not be easy to detect using
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other methods. The decomposition has a very elegant interpretation in terms of both
classical mechanics and estimation theory.
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