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MOTION GENERATION IN CARTESIAN SPACE
FOR INDUSTRIAL ROBOTS
WITH ACTUATOR LIMITATIONS

YASMINA BESTAQOUT*, PATRICK PLEDEL*, MAXIME GAUTIER*

Cartesian positions, speeds and accelerations are planned to describe the desired
motion of manipulators. We examine the cases of point-to-point and via-points
motions, assuming that the reference values of the manipulator are represented
by C? polynomial trajectories. Taking into account usual kinematical con-
straints does not make use of full dynamic capabilities of the actuators. We
propose to take into account the actuators’ limitations on voltages and cur-
rents, in order to minimize the arrival time. We present some simulation results
and show that the adopted method is of easy use.

1. Introduction

This paper is primarily concerned with motion generation when the end-effector of
the robot must follow a prescribed trajectory as a straight line or a circular arc in
the Cartesian space. Motion generation consists in computing reference values to be
given to the controller. Most preceding studies (Binford et al., 1977; Dombre and
Khail, 1988; Morlec, 1992; Paul, 1982; Plédel and Bestaoui, 1995b) refer to joint
motion generation while inverse kinematics are used to transform Cartesian points
to joint ones. We employ another approach where all parameters are reported in the
Cartesian space (Plédel et al., 1996b).

The minimum-time motion generation has been solved in a number of ways, fol-
lowing the usual approach, i.e. taking as feasible limits purely kinematical constraints
on the velocity and acceleration (Binford et al., 1977; Dombre and Khail, 1988).
Conventional motion generation uses a constant bound on the acceleration (Morlec,
1992). This bound must represent the global least upper bound of all operating ac-
celerations so as to enable the manipulator to move under any operating conditions.
This implies that the full capabilities of the manipulator cannot be utilized if the con-
ventional approach is taken. The efficiency of the robotic system can be increased by
considering the characteristics of the robot dynamics at the motion generation stage.
In (Kahn and Roth, 1971), the classical approach of point-to-point minimum-time
control to robot arms has been applied using only a linear approximate model. In
(Bessonnet, 1992) a trajectory generation based on an optimal control formulation is
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presented. Assuming that joint torques are constrained and using the Hamiltonian
formulation of the dynamic model, a minimum-time cost criterion was considered. It
has been shown that most often the structure of the minimum-time control requires
that at least one of the actuators is always in saturation whereas the others adjust
their torques so that constraints on motion are not violated while enabling the arm
to reach its final desired destination (Bobrow et al., 1985).

Although these results are very important theoretically, practically they are not
applicable directly to an industrial robot. From a user’s view point, it would be
preferable to have a somewhat suboptimal but simpler solution to implement. For
this purpose, we have chosen, a priori, a polynomial trajectory where coefficients
are optimized to get a C? minimum-time motion. The position and orientation are
considered. The resulting motion for the end-effector position is usually obvious, but
the end-effector orientation motion depends on the parameters adopted to describe
the orientation.

In this paper, using the computer-algebra system Maple V, we will show that the
simple expressions previously obtained (Dombre and Khail, 1988; Morlec, 1992), can
be numerically extended taking into account different actuator constraints.

This paper is divided into six sections. While the models and the proposed
problem are formulated in Sections 2 and 3, the resolution method is stated in Sec-
tion 4. Some simulation results are given in Section 5 and, finally, some conclusions
are provided in the last section.

2. Models
2.1. Manipulator Model

The manipulator is assumed to be made of rigid links. Its dynamic model depends
on ¢, ¢ and g, being respectively the joint position, velocity and acceleration:

T = A(q)§ + ¢"B(q)d + F(q)d + G(q) (1)

The vector T' is the joint input torque, G denotes the gravitational force vector, B
stands for the nxnxn Coriolis and centrifugal force matrix, F' is the viscous friction
and A is the nxn inertial matrix. Coulomb frictions are included in the gravitational
force G and we suppose that the friction derivatives with respect to time are equal
to zero.

2.2. Actuator Model

Electrical motors are very popular for driving manipulators. We focus on DC mo-
tors that are often in use as servo-motors. For a permanent magnet DC motor,
the torque I' is proportional to the armature current /. For a non-redundant multi-
degree-of-freedom robot, there are usually as many actuators as the number of degrees
of freedom. Then actuator dynamics for the whole robot can be characterized in a
matrix form as:

I=Kenl, U= L% + RI + Kemg (2)
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L,R and K., are square regular diagonal matrices representing inductance, resis-
tance and torque constants of the robot actuators, respectively. U is the motor
voltage vector. We assume the transmission from the motor to the mechanism to be
perfectly rigid, i.e. the transmission does not suffer from backlash or flexibility.

2.3. Actuator Constraints

DC motors are supplied with Pulse-Width Modulation voltage amplifiers. The motors
and amplifiers have limited voltages and currents. Thus usual current constraints
must be coupled with constraints on the voltage and current slew rate, for every joint
1<y<m

[Izl .<_ Imax,j (3)
U] < Uiy 4)
dI

\E < dImax,j (5)

Imax,; is the maximum armature pulse current avoiding actuator demagnetization,
or the amplifier current limit. Upax,; is the actuator or amplifier voltage limit and
dImax,; is the amplifier current slew rate limit. If Inax; is greater than the maximum
allowable DC permanent current Ifnfix’j in continuous operation, the thermal limit
must be taken into account to prevent overheating. Power losses are mainly resistance
losses so iron and friction losses will be neglected. We will only consider the case of a
periodic motion with period t¢. This is common in robotic applications. The power
losses are periodic and filtered through a low-pass thermal model whose time constant
is very large versus ¢y. Then the motor temperature can be easily obtained with the
average power which is proportional to the square root of the mean square value of
the current. This must be limited by the following relation:

Finally, we also have to fulfil a limitation on joint speeds because of mechanical
considerations:

ldj | < qPmax,j (7)

In general, more restricting relations than (3)-(7) are used. Maximal accelera-
tions and velocities, making approximations for the worst case in (1)—(7) are defined
(Dombre and Khail, 1988; Morlec, 1992). The motion is not optimized with respect
to real actuators’ capacities.
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3. Problem Formulation
3.1. Point-to-Point Motion

The desired trajectory must be chosen smooth enough so as not to excite the high-
frequency unmodelled dynamics. This is the reason why we shall choose polynomials
allowing for the zero speed and acceleration motion at start and end points.

In order to satisfy the previous assumption, we assume that the position and ori-
entation of the robot are represented by using a fifth-degree polynomial interpolation
.in time between two points X, and X; (Plédel et al., 1996a):

X(t) =X, + Dr(t/tf), D= X —X; (8)

r(t/ts) = 10(¢/t5)® — 15(t/ts)* + 6(t/t5)° 9)

For instance, if X = [z,v, 2,¢,0,w]T using Euler angles, the position and orientation
are given by (Taylor, 1979):

T
P(t) = [a(t), 9(2), 2(¢)] (10)
A(t) = Rot(Z, ¢(t))Rot (X, 6(t)) Rot (Z, w(t)) (11)

For our problem, the fifth-degree polynomial is the lowest degree polynomial
which satisfies the actuator limitations introduced previously.

Using the Inverse Geometrical Model (IGM), with x = t/t, gives
q(t) = fiem(X (z)) = §(z) (12)

It is convenient to introduce a normalized time variable z that allows for treating
each joint trajectory equation in the same way, with time varying from z = 0 (initial
time for all joints) to = = 1 (final time for all joints). To get a synchronized trajectory,
all joints must reach their destination position at the same time determined by the
so-called restricting joint.

Joint velocities and accelerations are given as:

. 1, . 1,
q(t) = FQm(w)a q(t) = t”z‘(h'z(x) (13)
f f
with
dX d?x

0(e) = T (1) S deel®) = T | oy — (e (0@) (@)} e 2)

J is the Jacobian matrix which is supposed to be square and regular. The study of
singular points is beyond the scope of this paper. So we choose Cartesian trajectories
without singularity.
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We can see that the joint velocities and accelerations can be written as separate
functions of z and t;. Then we are able to rewrite the constraints (3)—(7) introduc-
ing (13) in the dynamic model of the robot (1) and the actuator model (2) (Plédel

and Bestaoui, 1995b):
+qPmaxts — 4(z) <0
[i Tpax — K21 ~(ac)] 2 — K2 F(x)ty — K;1A(z) <0

em

+dlnaxt? — Kin Q@)t} — Koh F(z)ty — K1 A(z) <0

[£Umae ~ REZIQ(@)] 8 — C(a)% — Bla)ty - LKGAA(®) <0

where all matrices are given by:

A(z) = A(§(z)) doz (z) + H(d(z), o (2))

C’(z) = Kem D (z) + LK;& ~(:E) + RK;;F(:E)

(14)
(15)
(16)

(17)

Equations (14)—(17) are related to the constraints (7), (3), (5) and (4), respectively.

Analogously, the constraint (6) becomes:

1 1
I )2 gt E(z)dz — 3 D(z)dz
max f f 0 f 0

1 1 1
—ti/o C_"(z)dx—tf/o ﬁ(x)dz—/o A(z)dz <0
with

Ao = |(k,46)']

1<j<n

B(z) = [ZK_1 Fi(x)KE Aj(z

em,j em,j J( ]1Sj§n

(18)
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- [ . 2 o = o -
) = | (Ko F5(@)) +2K50 Q5 (0)K5 45 ()
L 1<j&8n

STORW P iy -1 7.
Do) = (2K Fi(2) Kol ,Qs(@)] | __

When a constraint ((3) to (6)) is saturated, the corresponding relation ((14) to (18))
is equal to zero.

3.2. Via-Points Motion

Now the manipulator has to go through m+1 points, with some imposed straight-line
trajectories between via-points. Velocities and accelerations at these via-points are
different from zero. The motion is supposed to have a continuous acceleration. Start
and end-point speeds and accelerations are equal to zero. For this reason, the motion
is given by a fifth-degree polynomial with respect to time between each crossing point:

5 t—t 7
Xik(t) = aiju ( £ )
=0

Lrk
5 i
t— 1ty .
=Y k| ——), 1<k<m, 1<j<6 (19)
= tet1—1,,
where ¢ is the arrival time at point k+1 (k= 1,...,m).

But, in order to have expressions which are not explicit functions of the final
time %y, we introduce the following change of variables:

A . x o t k
Xp=Xitpr,  Xp=Xpthy, = fo—:—l (20)

The time tfx is a function of ®; and time ty;:

k
trkt1 = Yrtra, Yk = H ®; (21)

i=1

Additional assumptions are added in order to obtain a straight-line motion be-
tween two adjacent via-points. Two adjacent straight lines are connected by the clas-
sical fifth-degree polynomial allowing for position, speed and acceleration continuity.
Then, for every polynomial k defined on ¢ € [0, ¥x_;t7,], (19) can be rewritten as
follows:

5 .

~ ik q t ) .

Xk,j(t)=2—f/);"” (=), i<i<nmi<k<m (22)
i=0 k-1
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with

X 1 =
ao,kx = Xk, a1 x = X, agy = '2‘Xk (23)

Xy + 1 Xgp1 %

a3k = 10(.Xk+1 — Xk) - GX]C +4 (bk 5 q)%

2 A

;X
agp = —15(Xpg1 — Xp) + | 8K, +7 £+1 -
k

;X 1 (X .
sk = 6(Xpe1 — Xi) — | 3K, -3 | + 5 | =P - X,
®; 2\ ¥

Joint speeds and accelerations can be expressed by (13). Then relations (14)-(18)
can be obtained with t; ;.

The general problem of minimum-time motion (PMTM) may be formulated as
follows: Minimize t; subject to the path equations and

Aty €RY, |45 < @Pmax,i> 1] £ Tmax,js |Ujl £ Umax,j
a; @
dt

1 (¥ )
<dImax,j, E—‘/ I;(t)dtﬁ]eff 1<j<n
0

> max,j?
f

The overall problem consists now in determining some variables (t51, ¥k, X o Xe)
so as to minimize the specified objective function ts, subject to several equality (path)
and inequality constraints (actuators). A proposed resolution method is introduced
in the following section.

4. Resolution Method

4.1. Proposed Minimum-Time Approach

Optimization theory gives a solution to the PMTM. It is located on the boundary of
the admissible set, i.e. when the robot moves using maximum motor capabilities. The
resolution will be organized as follows. First, this problem will be solved assuming
that each constraint (14)-(18) is saturated at a given time. Then the largest value of
all the computed times will be taken as the predicted arrival time t;. Let us assume
that the robot moves using the maximum motor capabilities.

In what follows, we present a method to calculate ty in the case of a point-to-
point motion under technological constraints (3)—(7), or respectively (14)—(18). First,
second, third and fourth-degree polynomial equations may be solved analytically.



466 Y. Bestaoui, P. Plédel and M. Gautier

First we consider joint speeds limitations (14). The minimal time is obtained
when

q(z)

" +qPmax

tf5/qp(T) (25)

Current bounds (3) lead to the second-degree equation in ¢; (15). For every
joint (5 = 1,n), the solution ¢;,;(z) of (15) can be approximated, neglecting the
gravity and viscous frictions, by

tr3/1(2) ~ ) A(2)/ (2K o ona) (26)

Then we may assume that there always exists a real positive root of ty; /1(z).

The candidate times ¢; for the constraints on the current derivative (16) and the
voltage (17) are also obtained by solving two third-degree equations in ty. A third-
degree polynomial equation may have one or three real roots from which we choose
the smallest positive value. Such equations can be solved using the computer-algebra
system Maple V. The solutions are called ts;/q7(z) and ts;/y(z), respectively. The
constraint concerning (18) leads to a fourth-degree equation in t;. Maple V gives all
the four solutions. The smallest real positive solution is called bpj/pes .

4.2. Numerical Implementation

The matrices 4,...,F A, ... ,C’, and ff, - ,E are obtained analytically in the first
step for a given robot. Then, in point-to-point motions, the numerical implementation
consists in choosing the start and end points of the path (8). We then calculate, in the
second step, for the given trajectory, the solutions of (14)—~(17) for every z belonging
to [0,1] (i.e. with a sufficient discretisation). Besides, the numerical calculus of the
coefficient of (18) allows Maple to give all the solutions. The minimum time is the
following maximum value:

tf = lréljagcn ({tfj/qp(x), tfj/]($)7 tfj/d[(x),th/U(x) I T € [Oa 1]}>tfj/1“ff) (27)

In the via-point problem, we calculate in the same way, for every polynomial &,
the time ¢7,;1. The time t; is then obtained for the maximum value in order to satisfy
the contraints (3)—(7) for the whole motion.

The obtained value depends on the variables X,, X, and ®;. Those variables
are optimized using the NPSOL software based on a Sequential Quadratic Program-
ming method (SQP). NPSOL is Fortran software designed to minimize a non-linear
function subject to a set of constraints. SQP belongs to the class of projected La-
grangian methods. This class includes algorithms that contain a sequence of linearly
constrained subproblems based on the Lagrangian method. The idea of linearizing
non-linear constraints occurs in many algorithms for non-linearly constrained opti-
mization problems, including the reduced-gradient type methods. The subproblems
involve the minimization of a general non-linear function subject to linear equality
constraints and can be solved by using an appropriate technique.
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For such a method, we need an initial estimate. It is obtained by considering the
point-to-point motion between two adjacent points.

The exact solution of this optimal problem, without assuming that trajectories
are polynomial, is very difficult to obtain, except for some very particular robots.
Many methods have been presented to give an approximate solution to this problem.
The well-known phase-plane method was presented in (Plédel and Bestaoui, 1995a).
Bobrow et al. (1985) used an algorithm to determine the time-optimal trajectory
of a manipulator along a specified path given dynamic constraints on torques and
velocities. But, even for the joint space, the computation of this trajectory is too
slow to be suitable for on-line generation but may be used for pre-planning trajectories
and as a basis to compare suboptimal trajectories. A discretization method should be
used to make the resolution possible (Plédel and Bestaoui, 1995a). However, this leads
to a large-scale optimization problem. The implementation of this optimal method
is time-consuming and not very easy from the user’s point of view because of the
computation time and because of the memory space needed to store the reference
values of various joints.

For joint-space trajectories (Plédel and Bestaoui, 1995b; Plédel et al., 1996a), we
found that the fifth-degree polynomial is a good choice to approximate quasi bang-
bang solutions. In our method, for on-line use, given the via-points, we need to store
only the polynomial parameters to retrieve the full trajectory.

5. Numerical Examples
5.1. Robot Characteristics

The methods described in the previous sections are used to elaborate the robot’s tra-
jectory. We performed numerical simulations with a two-degree-of-freedom SCARA
robot (parameters are those of the prototype robot of our laboratory) whose arm
lengths are 0.5m and 0.3 m. The values of the actuators limitations are:

Inax = [11.53,7.29] A, Umax = [40.0,26.3] V
dInax = [104,104] A/s, I =1[12.0,10.0| A
qPmax = [70, 210] rad/s

5.2. Simulation Results

Example 1. We present an example of a point-to-point motion for constraints
(3)~(7). The trajectory is a straight line (Fig. 1) between two points represented
using a fifth-degree polynomial interpolation (9), see Table 1.

Table 1. Straight-line trajectory of Example 1.

I ‘ Cartesian position I
start point [0.6,—0.4)m
end point [~0.2,0.6] m
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In Fig. 1, the disc represents the reach space. With our new formulation (27),
involving actuator constraints, the value of the final time is tfa1 =6.4s.

Figure 2 presents the current of the first joint, for which the bound is reached.

08 : —
06}
04}
0.2}
ol
02
04

06} \

1 -05 0 05 1
Fig. 1. Trajectory in Example 1.

15 " T ;

0 2 4 6 8
Fig. 2. Current of the first joint in Example 1.

The two-rotational-joint inverse geometrical model admits two solutions. Then
the same trajectory has been tested with another configuration of the robot arms.
The duration of the motion is then ¢7,3 = 6.65. We give the current of the first Jomt
as a function of time in Fig. 3.

Usual approaches consider bounds on the Cartesian speeds and accelerations
(Morlec, 1992), or refer to constraints on torques and joint speeds (Bessonet, 1992).
In the first case, the values of the bounds are not easy to define. In the second case, the
values are chosen to realize a trade-off beetwen the torque and joint speed available. In
both cases, those values are lower than the ones obtained when considering constraints

3)-(7).
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15 T " .

Fig. 3. Current of the first joint in Example 1 (for another configuration).

Example 2. Our formulation is also applicable to a via-point trajectory using
eqn. (22). The points shown in Table 2 are defined in the Cartesian space.

Table 2. Points defining the trajectory in Example 2.

[ [af2[s[safs[e6]
zm] | 06|05 |02|—-02|-04]-01
y[m] [ 00|03 |06 06 | 04 | 02

The time obtained for a point-to-point motion between these crossing points is
tfq3 = 4.9s. For a via-point motion with straight lines between points 1 and 2, points
3 and 4 and points 5 and 6, the time is ty,3 = 3.52s (Fig. 4).

For the resulting motion, the current of the first axis reaches its bound (Fig. 5).
The current of the second axis is adjusted in order to follow the prescribed path
(Fig. 6).

We show that all the constraints are satisfied. Then the motion is admissible.
The optimal-control approach (Bessonnet, 1992) will certainly lead to shorter times.
However, such approaches only consider constraints more restrictive and more unre-
alistic than (3)—(7). Including those constraints imposes a great cost for calculation
(Paul, 1982), involving no possibility for on-line computation.

Compared with the maximal velocity and acceleration problem, even though the
computation time for our formulation is longer and depends on the discretisation
adopted, it leads to good results. A special fixed motion has often to be repeated
thousands of times. In such cases, the generation of smooth trajectories, which can be
performed in minimum time, becomes interesting even at the price of longer off-line
computation times (2min). On-line computation times, involving a few parameters
(9) or (21), remain short.
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Fig. 4. Trajectory of Example 2.
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Fig. 5. Current of the first joint in Example 2.
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-]

Fig. 6. Current of the second joint in Example 2.

6. Conclusions

When specifying a trajectory, the physical limits of the system must be taken into
account. It is common to model these limits as constant maximum values for the
acceleration and velocity. The trajectory goes from the initial to the final position
with initial and final velocities equal to zero, subject to limits on the speed and
acceleration. These considerations mean that even for joint level trajectories, any
assumptions about fixed acceleration limits must be based on the worst case. This
results in motions that are usually slower than necessary or, otherwise, the actuators
may be unable to follow the requested trajectory. A more realistic assumption is that
the amount of voltage and current a motor may generate is limited.

The proposed motion generation algorithm uses the solution of polynomial equa-
tions in ¢ to find the predicted arrival time. Besides, the polynomial interpolation
with only a few parameters, allows us to generate easily the path on-line.

Although we have considered DC motors, other actuators such as synchronous
machines present the same constraints on both the current and voltage.
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