Appl. Math. and Comp. Sci., 1997, Vol.7, No.2, 253-272

ADAPTIVE AND ROBUST CONTROL OF FLEXIBLE
JOINT ROBOTS IN CONSTRAINED MOTIONT

TIAN LIN*, ANDREW A. GOLDENBERG**

This paper addresses motion and force control issues of flexible joint robots in
constrained motion. A two-stage control scheme, consisting of a constrained
motion controller and a joint torque controller, is established in a systematic
way for general n-link flexible joint robots. To deal with uncertainties in the
parameters of the robotic system, adaptive and robust control algorithms are
developed assuming that all system parameters, including the joint flexibility
values, are unknown except for some of their bounds. The system stability is
analyzed via the Lyapunov stability theory. It is shown that with the proposed
control method, the closed-loop system is uniformly stable, and motion and force
tracking errors are uniformly ultimately bounded. Simulation results illustrate
the effectiveness of the proposed control method.

1. Introduction

In many robotic applications, it is necessary to control both motion of the end-effector
and contact force between the end-effector and environment. Numerous approaches
have been proposed to deal with this problem. Typical force control schemes are the
explicit force control, hybrid position/force control and impedance control (Hogan,
1985; Raibert and Craig, 1981; Whitney, 1987). The underlined control problem,
that has received extensive attention in the literature, is control of manipulators in
constrained motion. During constrained motion, the end-effector of robot manipulator
is assumed to be in contact with rigid frictionless surfaces, which impose kinematic
constraints on the robot motion. Solutions to this control problem can be found in
(Kankaanranta and Koivo, 1988; McClamroch and Wang, 1988; Mills and Goldenberg,
1989; etc.). In the work (Kankaanranta and Koivo, 1988), a method for reducing the
dimension of the dynamic model of constrained motion is presented, and a control
method which leads to exact decoupling of position and force controlled directions
is proposed. Similar studies have been conducted by McClamroch and Wang, and
a general theoretical framework of constrained motion control has been developed.
In (Mills and Goldenberg, 1989), descriptor theory is applied to constrained motion
control and a linearized feedback controller is developed. Some adaptive control
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algorithms and robust control methods have also been proposed to deal with the case
of parametric uncertainties {Su et al., 1990; Zhen and Goldenberg, 1994; etc.).

However, in the work cited above the robot manipulator is modeled as a com-
pletely rigid structure. So far, only a few studies have addressed the force control of
flexible joint robots. The works (Marino and Nicosia, 1984; Spong, 1987; Sweet and
Good, 1984) have pointed out that control of robots based on rigid-body dynamics
formulation is inadequate in dealing with more stringent operating conditions. The
elasticity of the transmission elements between actuators and links has a significant
influence on the robot dynamics. In some cases, joint flexibility can even lead to insta-
bility if it is neglected. It is more critical to account for joint flexibility when dealing
with a force control problem than with a pure position control problem. Spong (1939)
addressed the force control issue of flexible joint robots and derived a control algo-
rithm for both hybrid control and impedance control methods. The results are based
on the exact knowledge of the dynamic model. Recently, an adaptive force control
scheme for a single-link mechanism with joint flexibility was developed by Lian et
al. (1991). In their work, an explicit force control approach is used, but constrained
motion control is not considered, and the method cannot be easily extended to the
general n-link case.

In this paper, we consider the control problem of flexible joint robots in con-
strained motion using joint torque feedback. First, the constrained dynamic model
of flexible joint robots is derived. Then, based on the two-stage control strategy (Lin
and Goldenberg, 1995), a control scheme consisting of a constrained motion controller
and a joint torque controller is established in a systematic way for the general n-link
case. To deal with the uncertainties of the robotic system, adaptive and robust con-
trol algorithms are developed assuming that all system parameters, including the joint
flexibility values, are unknown except for some of their bounds. The system stability
is analyzed via the Lyapunov theory. It is shown that, with the proposed controller,
the closed-loop system is uniformly stable, and the tracking errors are uniformly ul-
timately bounded. The major contribution of this work is the development of a new
control method for flexible joint robots in constrained motion. The method provides a
systematic approach to motion and force control of flexible joint robots in the general
n-link case without requiring the exact knowledge of robotic manipulator parameters.

The paper is organized as follows. In Section 2, the constrained dynamic model of
flexible joint robots is derived. The proposed control scheme and convergence analysis
are developed in Section 3. Simulation results are presented in Section 4 to illustrate
the effectiveness of the proposed control methods. Conclusions are given in Section 5.

2. Constrained Dynamic Model of Flexible Joint Robots
Consider the dynamic equations of a constrained n-link flexible joint robot with joint
torque measurements described as follows (Kircanski and Goldenberg, 1997; Spong,
1987):

D(a)gi + Clar, @) + G(@) =75 + f (1)
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Imqm + BQO +Ts=1u (2)
Ts = Ks(qm - ql) (3)

where D(q;) is the n xn positive definite, symmetric inertia matrix; C(q,q;) is
the n x 1 vector containing Coriolis, centrifugal terms; G(q;) is the n x 1 vector of
gravitational terms; I, is the n x n constant diagonal matrix with diagonal elements
Yi(¥i + 1) Imi, Jmi stands for the inertia of the rotor/gear; B, is the n x n diagonal
matrix of damping terms and K, is an n xn diagonal matrix of the joint torsional
stiffness. Here ¢; and ¢,, are n-dimensional vectors which represent the link angles
and rotor angles, respectively. Moreover, % is the n x 1 input torque control vector,
7, denotes the vector of joint torque measurements and f is the vector of generalized
contact force! in joint space.

Let X € R® denote the generalized position vector of the end-effector in Carte-
sian space. The algebraic equation for the constraints can be written as

®(X)=0 . (4)

where the mapping ®: R™ — R is twice continuously differentiable. Assuming that
the vector X can be expressed in joint space by the relation

X = H(a) | (5)
then the constraint equation (4) can be expressed in joint space as
@(q) = 2(H(q) =0 (6)

The Jacobian matrix of the above constraint equation is

_ 0¥ (q) _ 9% OH (qi)
Je(@) = ou ~ X o (M

Since ¥(g) = 0 is identically satisfied, it is evident that J.(g;)gi = 0. When the end-
effector is moving along the constrained surface, the constraint force in joint space is
then given by (McClamroch and Wang, 1988)

f=J5@)A (8)

where A € R* is the generalized Lagrange multiplier associated with the constraints,
and it represents independent normal contact force components.

Since the presence of « constraints causes the robot to lose x degrees of freedom,
n — & linearly independent coordinates are sufficient to characterize the constrained
motion. Let us partition the vector ¢; as

1
q

Q= ; (9)
q;

1 Hereafter, we use ‘force’ to mean generalized force that could be force and/or torque.
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with

T T
d=ld o do] e d=[d @] ew

According to the implicit function theorem, there always exists a function o which
can be obtained from the constraint eqn. (6), such that (McClamroch and Wang,
1988)

g =a(q) (10)

Thus, the joint space vector is expressed as

@ = q;
o(q})
Defining
I’n,—K,
L) = | ao(q)) (v
dg}
we have
1
a=|" | =L)d, d=Lg)g +Lia)d
q

Substituting the above relations into (1), we get

D(g))L(a1)di + Blar,di)di +G(ap) =7 + JT (a1)A (12)
where

B(qi,4i) = D(a)L(at) + C(q}, 41 ) (i)
It can be shown that the constrained dynamic system (12) has the following properties.
Property 1. The LHS of (12) can be ezpressed as (Su et al., 1990)

D(q))L(q;)d + Blai,@)dt +Glat) =Y (gl 4, )P (13)

where Y'(-) is an nxr matriz of known functions, referred to as the regressor, and
P is an r-dimensional vector of parameters.

Property 2. Let A(q}) = L¥(q})D(q})L(g}). Then
Alal) - 2L7(¢})B(qf,41) = LT (D - 2C)L (14)

is skew symmetric, as (D ~ 2C) is skew symmetric (Slotine and Li, 1987).
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Property 3. Since J.4; =0, i.e. J.(q})L(q})4} =0, and g} is linearly independent,
we have

Je(a)L(q}) =0, LT(q})JI(qf) =0

Thus, multiplying eqn. (12) from left by LT yields
Algh)ir + L7 (a)B(at»d)dr + L* (a)G(at) = LT (a})7s (15)

For controlling the system with joint torque feedback, we assume that the link
angle ¢, joint torque 75 and constraint force A are available for feedback control.
From (3), we have

dm :Ks_lTs +q

Substituting this equality into (2), we get

Lis#s + Buists + hes(ql 41,61, Ts) = (16)
where

Its = ImKs_l

Bt.s = BmK:l

his = Imi + Bomdi + s = I L} + (ImL + B L)d} + 7

Equations (12) and (16) constitute a dynamic representation for the flexible joint
robot in constrained motion.

3. Control of Constrained Flexible Joint Robots

The objective of constrained robot control is to determine the input torque necessary
to achieve trajectory tracking on the constrained surface with specified constraint
forces. It is noticed that the constrained link dynamics (12) has exactly the same
formulation as the rigid one if 7, is viewed as the ‘input torque’. To achieve the
control objective, a suitable ‘input torque’, which will be denoted here as a ‘desired
joint torque’ 7,4 since joint flexibility exists, should be generated. Based on the
two-stage control strategy (Lin and Goldenberg, 1995), a control scheme consisting
of a constrained motion controller and a joint torque controller is developed. The
constrained motion controller is designed to generate the ‘desired joint torque’ 7.4
and the joint torque controller to regulate the required control torque u, so that the
joint torque 7, tracks the desired joint torque 754, and thus the whole system achieves
the control objective. The control scheme is shown in Fig. 1.
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Fig. 1. The two-stage control scheme with joint torque feedback.
3.1.

Control Scheme with All Parameters Known

If all dynamic parameters are known exactly, the constrained motion and joint torque
controllers are designed under the following assumptions:

(A1) the signals g, d;, 7s, 7s, A and A are available for feedback control;
(A2) the desired trajectory gq(t) € C* and the desired force Ay € C? are bounded.
3.1.1. Counstrained Motion Controller
Let us define the tracking errors:
€r=q —4qd

6f=>\~—Ad

€t =Ts — Tsd
and write

v =gy — Mg — qb)

<1 1
TI=¢ —v =

(4 —da) + Mgl — g3)
t
FC:JCT)\d—JCTkI/ (A = Aq)dt
0
(1987),

The desired joint torque 754 is generated by using the method of Slotine and Li

7sa = D(q; ) L(q; )o + Blai, 41 )vi +G(ai) — KipL(gy )i — Fe (17)
where K;p, kr and A; are diagonal matrices of positive gains.

Subtracting (17) from (12) and re-arranging the terms leads to the following
equations:

D(q})L(qy)* + B(qy , 1 )r1 + Kip Ly

e + Jz"[(,\— Aa) + ki1 /Dt(,\ - ,\d)dt]

t
= et+JcT[ef +k1/ efdt] (18)
0



Adaptive and robust control of flexible joint robots in constrained motion 259

and

A(g )i+ LTB(q},d1)ri + LT KipLry = LT e, (19)

3.1.2. Joint Torque Controller

In order to control the actual joint torque to follow the desired joint torque 744, a
computed-torque like control law is adopted for (16):

w = ItV + Bisvs + hes — KTy (20)

where vy = T30 — At(7s — Tsd) = Tsa— Atesr, 7+ = 7s—wy, and Kip and A are diagonal
positive definite gain matrices. Then, from (16) and (20), we have:

Iis7s + Bisry + Kipry = 0 (21)

3.1.3. Convergence Analysis

The stability and convergence properties of the closed loop system are analyzed based
on the Lyapunov stability theory. First, an important lemma is recalled, then Theo-
rem 1 is proved.

Lemma 1. (Horn and Johnson, 1985) Suppose that a symmetric matriz Q is parti-
tioned as:

Q= Q;l Q12
Q12 Q22

where Q11 and Qa2 are square. The matriz @ is positive definite if and only if Q11
is positive definite and Q22 > QT,Q17 Q12

Theorem 1. Consider the robot dynamic system (12) and (16). The constrained
motion controller (17) and joint torque controller (20) stabilize the closed loop system
and achieve global asymptotic convergence, i.e.

lim r; =0, lim r; =0, and lim ef =0

t—ro0 t—o0 t—o0

Proof. Choosing the Lyapunov function candidate as

1 1
V = irlTA(qll)n + §TtTItsTt + e?AgKtDet > 0 (22)

the differentiation of V' gives

14

. 1 5. . .
rlTAn + 5rlTArl + rtTItsrt + Ze;AfKtDet

1

= T,TAh + irlTArl - rthsrt — é?KtDét — e?AgKtDAtet (23)
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From (19) and the fact that (A — 2LTB) is skew symmetric, we have

V = —TITLTK[DLTI + T;‘”LTet - T;rBisT't - e;TKtDét - e?AthDAtet

L’I‘z

€t

- ’I';I‘Bts'l't - é;thDét (24)

I

- [ (Lr)T ef ]Q

with
Kp i
— %I ATK:ipA,

By Lemma 1, for matrix Q to be a positive definite matrix, the requirement is
1 .
ATK.pA; > ZK,Dl

Since K:p, Kip and A; are diagonal matrices of controller gains, we can choose
them properly to meet the requirement, such that Q@ > 0 and V < 0.

Thus, the system is globally asymptotically stable in the sense of the Lyapunov,
and we have
lim r, =0, lim r; =0
t— o0 t— oo

Moreover, as t — 00, the system converges to the equilibrium point and (18) results
in

¢
ef+k1/0 esdt =0

Hence, we have tlim ey = 0 as well. This completes the proof of the theorem. n
—o00

Remark 1. From the control design and the convergence analysis, it can be observed
that, with the joint torque controller, motion and force control methods developed
for the rigid case can be used for controlling flexible joint robots. This will greatly
facilitate the control design of robot manipulators.

Remark 2. In much the same way as in (Lin and Goldenberg, 1995), g can be
calculated using 75, ¢f and ¢; in (15).

3.2. Adaptive and Robust Control with All Parameters Unknown

In practice, there are uncertainties in the manipulator parameters. Here, we assume
that all parameters, of both link dynamics and drive system, including the joint flex-
ibility values, are unknown except for some of their bounds. To handle this case,
adaptive and robust control algorithms are developed based on the result of the pre-
vious section.
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3.2.1. Adaptive Constrained Motion Controller

According to Property 1, and (17), the adaptive control law is derived as
7o = D(a})L(q} )} + B(q}, 4} )} + G(a}) - KipL(g})r ~ F.
=Y'(ql,di,vi, )P~ KipLr - Fe (25)
Subtracting (25) from (12) and re-arranging the terms, yields
D(qi)L(qt )71 + B(ai 4t )1 + KipLri

= (D — D)Li} + (B — B)u} +(é—G)+et+J,T[(A—Ad)+k,/t(A—,\d)dt]
]

t
= Yl(q},d},v},ﬁ})f'+€t+J;‘r[6f+k1/ 6fdt] (26)
0
with P=P - P.

3.2.2. Robust Joint Torque Controller

To deal with the uncertainty in the rotor subsystem, let us define an n x p matrix Y;
and a p-dimensional vector of parameters P; as follows:

Kﬁ(dl;dl;Tsa‘i'sa;fs) = [dia‘g(i:S)a diag (7.—3)’ dia'g(q.l)a diag(ql):Ts]

T
P = [..Im.., Busivy +Tmiver - Bumive, 1]

Equation (16) can then be written as
Yi(qlaq.lyTs,%sa;’:s)B =u

We assume that the uncertainty of the parameters is bounded, i.e. for the available
parameters P; there exists p € Ry, such that

IBd =B - Pl <p (27)
Based on (20), using the control law:
u = 0 + Biove + hye — Kypry + YiAu (28)
we have
Listt + Begry + Kipry = (It — Is )0 + (Bis — Bis)vt + (hes — hus) + YiAu
= Ye(de, G, 7o, v, 92) (B + Au) (29)
where Au is defined below in (30).
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3.2.3. Convergence Analysis

Theorem 2. Using the controllers (25) and (28) with

YT
—p i (V) > e
Ay = 1Y el (30)
“E¥fr i YT <e
and parameter update law
- —11T . .
P=-T 1Y1 (QIl7qll7Ullvvll)LTl (31)

the closed-loop system is uniformly stable and the tracking errors are uniformly ulti-
mately bounded (u.u.b.).

Proof. Choosing the Lyapunov function candidate as

1 1-p - 1
V= Er;‘rA(qll)n + QPTI’P + ETtTItsTt + el AT Kipe; > 0 (32)
through a similar calculation of previous section, the differentiation of V' gives
. T T Lry T .T .
V =- [ (L))" €f ] Q — 7Ty Bisry — €5 Kypéy
€t
+ BTV Lry + TP) + (YT r)T(B, + Au) (33)

With the parameter update law (31) and control Au (30), we can show that V < 0.
Let us examine the last term in the above. If [|V,7r]| > €, then

. v
(YtTTt)T (Pt —p L >

I

(Y re)T (P + Au)

Y|
< Il (180 - p) < 0 (34)
If |V r) <e .
T \T/( P T \T YtTTt
(Yere)” (Pe+ Au) < (Y )™ | prop— + Au
1Y 7l
= @¥Tr)T (p Yir _pyr, (35)
I e

This last term achieves a maximum value of ep/4 when ||Y,Tr:|| = ¢/2. That is,

. Lr
V < —[ (Lr)T ef }Q l: : j' —TEFBtsTt~étTKtDét+%

IA

~Amin(@I(r, €)1 — min(Byes)|Irell” — min(Kops)lle.|* + -ef (36)
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If Amin(@)((Zr)T, €l)II2 + min(Bisi)|lre||* + min(Kepi)léd|* > ep/4, then V < 0,
uniform ultimate boundedness and uniform stability follow using the results of Corless
and Leitmann (1981).

The uniform stability of the system and uniform ultimate boundedness of the
tracking errors 7; and e; guarantee the boundedness of ef. As the errors 7; and
e; can be made arbitrarily small by a suitable selection of the coefficient €, from
eqn. (26), force error es will be affected mainly by the error in parameter estimation.
The integral action in F, will reduce the error and make ey tend to zero. |

Remark 3. It is noticed that using a single bound p to measure the parameter
uncertainty may lead to overly conservative design and limit the adjustable capability
of the controller (Liu and Goldenberg, 1996). To minimize this respect, Y;Au can be
partitioned as follows.

Similar to (Liu and Goldenberg, 1996), suppose we have the knowledge of the
uncertainty bounds of each parameter component:

“Ptz”gph ’L=1,2,,p (37)
Partitioning
Py »
ViPo= Y, o Y| | 1| =D VuPa (38)
i=1
P,
A'Lbl »
Vidu=[Ya, ., Y| | 1 | =) Yulu (39)
Auy =
we have
T
i R
A’U,i = ta Tt (40)
“ByIn i YInll<e

2

Thus, our knowledge of the parameter uncertainty can be better utilized in control
design as there is more freedom to adjust the control gains.

4. Simulation Examples

In order to verify the effectiveness of the control method proposed in this paper,
numerical simulations were carried out based on the dynamic model of the IRIS
(Institute of Robotic and Intelligent System) robot built in the Robotics and Au-
tomation Laboratory at the University of Toronto (Kircanski and Goldenberg, 1997).
Consider the robot manipulator with an upper arm and a forearm located in a vertical
plane and moving in contact with a circular path constraint, as shown in Fig. 2.
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Circle Constraint
D) =0

Fig. 2. The schematic diagram of a robot manipulator and the circle constraint.

The dynamic model of the rotor subsystems with joint torque sensors is given as
follows:

Y1 + DImiGmt + (11 + Dbmigmi + 71 =

Y2(72 + 1) Jm2Gmz + 12(V2 + D)bmadma + Ts2 = up
and the corresponding link dynamics is:

Hiigin + Hizdiz — hdfy — 2hdndiz + G1 = 7 + f1

Horén + Hoadio + hify + G2 = To2 + fo

where
Hi1 = a3 + az cos(gz), Hys = ay + az cos(qi2)
Hj = Hya, Hjy = ay, h = a3 sin(q2)
G1 = aqgcos(qn) + asgcos(gn + qiz)
G2 = asgcos(qu + qi2)

The values of the parameters are listed in Table 1.
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Table 1. The parameter values of the flexible joint robots.

Jm1 = 9.0 x 1078 kgm? Jm2 = 8.0 x 1078 kgm?

bmi = 5.4 x 107* Nm/(rad/sec) bms = 6.4 x 107* Nm/(rad/sec)
y1 = 100 2 = 50

Kg1 =10 Ko =85

a1 = 0.1499 az = 0.0311

az = 0.0235 as = 0.6762

as = 0.1288

The constraint surface is expressed in the task space X = [z,y]7 as
(X)=2+y> -r*=0
The transformation from task space to joint space is given by
l1 cos(qi1) + Iz cos(qu + qi2)

H(q) =
Iy sin(gi1) + losin(gin + qi2)

Thus, in terms of joint space coordinates, the constraint can be expressed as
\II(ql) = ‘I’(H(ql)) = l% + l% + 21112 COS(qlz) - 7‘2 =0

and the Jacobian matrix (7) is

0

I (@) =
—21112 Sin(qlz)
Since g2 is constant on the constraint surface, let ¢/ = ;1. Then the matrix defined
in (11) is

L¥(g))=[1 0]
The constraint forces are
fi=0, fo = =211, sin(gi2) A

In simulations, the desired trajectory ¢} is generated by a fifth-order polynomial
(from —90° to 10° in the first 2 seconds, then constant afterwards), and the desired
Aq is chosen as a constant (10N). The control gains were chosen to be K;p = 2.0,
Ay = 251, K;p = diag(0.015,0.012) and A, = diag(20,25). The simulation results
are presented in Figs. 3 to 8.

Figure 3 is the response of the system in the case that all parameters are known
precisely. It is illustrated that the tracking errors converge to zero. In the presence
of parameter uncertainty, the adaptive and robust control scheme is compared with
the non-adaptive-robust case. The results are plotted in Fig. 4 and 6, respectively. It
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50 . (a). Desired trajectory -, and actual trajectory --
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0.02 ‘ Y (C.)' Motion tlracking error

time(sec)

Fig. 3. The response of the system with parameters known precisely.

is shown that the manipulator using the adaptive/robust control scheme can track the
desired trajectories closely. The parameter estimation curves are plotted in Fig. 5. It

is noticed that parameters do not all converge to their true values; that is the similar
phenomenon observed in (Slotine and Li, 1987).
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Fig. 4. The response of the adaptive and robust control system: trajectory
tracking curves.

The situation that the joint flexibility is neglected in the control design is also
studied. Assuming that the parameters are known, by neglecting the joint flexibility,
the dynamic model for control design is given as (Spong, 1987),

D(g)i+C(q,9)i+G(g) =u+ f
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parameter estiamtions: al -, a2 --, a3 ., a4 0, a5 -.
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Fig. 5. The response of the adaptive and robust control system: parameter
estimation curves.

where D = [D(q) + I,,), C = [C(q,qd) + Bm] and ¢ = ¢, = g, The control law as
derived in (17) becomes:

u = Toq = D(q*)L(g")9* + B(¢}, ¢*)v* + G(¢') — KipL{g*)r — F,
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Fig. 6. The response of the non-adaptive-robust control system.

The simulation result plotted in Fig. 7 shows that the flexible joint robot system using
the rigid control method is unstable if the link angle is used in the feedback control.
If the rotor angle is used instead, the system is stable, but it can be seen from Fig. 8
that oscillations occur and the system performance is degraded.
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Fig. 7. The response of the system using rigid control with link angle feedback.

5. Conclusion

In this paper, motion and force control of flexible joint robots in constrained motion is
considered. A two-stage control scheme, consisting of a constrained motion controller
and a joint torque controller, is established in a systematic way for the general n-
link case. To deal with uncertainties in the robotic system, adaptive and robust
control algorithms are developed assuming that all the system parameters, including
the joint flexibility values, are unknown except for some of their bounds. Moreover,
the uncertainty bounds needed to derive the robust control law depend only on the
parameters of the drive system. It is also easy to partition Y;Au into different types of
components. Thus, our knowledge of the parameter uncertainty can be better utilized
in the control design. The proposed controller includes a PI type force feedback control
structure which enhances the force tracking performance. The system stability is
analyzed via the Lyapunov theory. It is shown that with the proposed controller,
the closed-loop system is uniformly stable, and the tracking errors are uniformly
ultimately bounded. The major contribution of this work is the development of a
new control method for flexible joint robots in constrained motion. The method
provides a systematic approach to motion and force control of flexible joint robots in
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Fig. 8. The response of the system using rigid control with rotor angle feedback.

the general n-link case without requiring the exact knowledge of robotic manipulator
parameters.

The simulation results show the effectiveness of the proposed control scheme.
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