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ON THE STABILITY OF NONLINEAR PD CONTROL

BrIAN ARMSTRONG*, JosepH MCPHERSON*
YoNGGANG LI*

A construction of nonlinear-PD control (NPD control) is considered which ap-
plies increased control effort when the system output is moving away from its
desired value and reduced effort when the output is moving toward the goal
point. Such NPD control has been described previously in the literature and
experimentally demonstrated; but to date, no stability proof has been given.

For strictly proper, time invariant SISO systems with NPD control, stability
is established by demonstrating a Lyapunov function. Design, and implementa-
tion issues are addressed and design examples are presented.

1. Introduction

Broadly speaking, Nonlinear-PD (NPD) control is any control structure of the form:
u(t) = k(-)e(t) + b(-)é(t) (1)

where k(-) and b(-) are time-varying stiffness and damping terms, which may depend
on system state, input or other variables; and u(¢) and e(t) are the system input
and error, respectively. NPD control is illustrated in the block diagram of Fig. 1.
The estimated state is shown as an input to the control block to support evaluation
of the gains k(-) and b(-). NPD control has been proposed for a number of robotic
applications, including the Utah/MIT hand (Jacobsen et al., 1984) and the Sarcos
Dextrous Arm (Xu et al., 1993; 1994; 1995).

Xu et al. (1993; 1994; 1995) have presented a construction of NPD control which
increases damping relative to what is achieved by linear PD control. This is done by
increasing the error gain, k(-), during periods when the output is moving away from
the goal point, and reducing the gain while the output is traveling toward the goal
point, as illustrated in Fig. 2.

The proof of stability for the NPD control technique demonstrated by Xu et al.
is addressed in this paper. In their construction, which they term NPD control, k()
and b(-) are chosen according to

k?l bl

k‘(e,e) = W + ko, b(e’ 6) = 1+ Be sgn(é)e

+ bo (2)
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Fig. 1. A block diagram illustrating NPD control. This study is limited to
linear, time-invariant, SISO systems.
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Fig. 2. NPD control applies high stiffness and damping gains during periods
when the output is receding from the goal point.

where ko, k1, bg and by are constants which determine the magnitudes of the feed-
back gains, and a and 3 are constants which determine the width of the transition
between k(-) ~ ko and k(-) ~ ko + k1, and between b(-) =~ by and b(-) =~ by + b;.
Xu et al. (1993; 1994; 1995) demonstrate by simulation and experiment that NPD
control can achieve damping that is difficult to achieve by standard PD control.

Modulation of the proportional gain, k(-), can increase damping, while modu-
lation of the derivative gain, b(-), can shorten rise time. The stabilizing effect of
NPD control can be qualitatively understood in this way: consider a second-order
system with k(-) chosen so that the larger control gain, k() = ko + k1, operates as a
stiff spring while the system output is moving away from the goal point; the smaller
control gain, k(-) = ky, operates as a softer spring while the output is moving toward
the goal point. With each half cycle, the stiff spring is compressed. At the point of
greatest compression, € = sup {e(t)}, the stiff spring is removed from the system and
the soft spring applied (k(-) is switched from kg + k1 to kg). In doing so, the energy
difference between the springs, AE = (1/2)k; €2, is removed from the system, thus
providing dissipation.

If the rate gain, b(:), is modulated with the smaller gain applied while the output
is moving toward the desired value, the rise time may be shortened. Reduction of
settling time will depend on the interaction of &(-), b(-) and system dynamics.

Xu et al. justify heuristically NPD gain selection such that the stiff gain, ko+ k1
is chosen so as not to destabilize the system if the stiff gains were continuously applied
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(i.e., standard PD control, k = ko + k1, b = bp + b1) (Xu et al. , 1994). This is a
conservative value which should not result in instability. But simulations presented
below show that increasing ky beyond this limit continues to yield increased damping.
Thus, achieving a tighter determination of the stability limit for NPD control will
make possible increased performance for these systems. An example of NPD control
showing instability in this system and treatment of third-order systems may be found
in (Armstrong et al., 1996).

The object of this paper is rigorous determination of bounds within which the
larger gains of NPD control may be applied. To support derivation of a Lyapunov
function, a discontinuous control is introduced in Section 2. In Section 2.3 a Lyapunov
function is presented and stability established. In Section 3 the design of NPD control
is addressed and simulations are presented. The conclusions follow in Section 4.

2. Stability of NPD Control
2.1. Model

A linear, time-invariant, single-input single-output, strictly proper state-space system
is considered:

z(t) = Az(t) + Bu(t)
y(t) = Cu(t)

where A is [nxn], B is [nx1], C is [Lxn]. The system {A, B, C} must be
stabilizable by PD control.

The NPD control law considered is given by

u(t) = —k(z)y(t) — b()y(t)

(3)

k(m‘) - ko if Sk(l‘) ==0
ko+ k1 if sgp(z)==1 (4)
b(z) _ bo if sb(z) ==0

bo+b1  if sp(z) ==1

where kg, by > O are constants which determine the smaller control gains; k1, b >0
determine the larger control gains; and sg(z), sp(z) : R* — {0,1} are switch func-
tions which control the application of the larger control gains. Regulation to y(t) = y.
can be represented in eqns. (3) and (4) by a suitable shift of coordinates or a feed-
forward term; reference tracking is not considered. The NPD control law can also be
expressed as

k(z) = ko + k1sk(z), b(z) = by + biss(z) (5)

In this paper, the term stiff control will refer to applications of a larger gain,
k() = ko + k1 and/or b(-) = by + by. Soft control will refer to application of the
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smaller gains, k() = kg and b(:) = bp. The term high gain will refer to NPD control
with values of the stiff gain, k(-) = ko + k1 and/or b(-) = by + b1 sufficiently large
that instability would result if the stiff control were applied continuously in linear
PD control. With these definitions, the design guideline of Xu et al. (1994) may be
stated: “choose stiff gains which are not high gains.”

Writing
y=Ci=CAz+CBu (6)
it is possible to solve for u(t) in terms of z(t), giving

u(t) = —k(-) C z(t) — b(") C Ax(t) — b(-) C Bu(t)

1

= e —k(-)C - b(:-)C A)z(t 7

O CE (THOC - H) € 4)at) (7)
Folding the control into the state derivative matrix gives the autonomous state

space system:

(t) = A(t) z(t) (8)
where

Aw) :A+Bm(-k(-)c—b(-)cf1) (9)

Feedback matrix A(t) takes four possible values, depending on the values of s ()
and sp(z).

2.2. Treatment of the Discontinuity: Differential Inclusions

Because of the switch functions in control law (5), the right-hand side of differen-
tial eqn. (8) may be discontinuous. The classical existence and uniqueness results
for differential equations require the right-hand side be at least Lipschitz continuous
and are not immediately applicable to differential equations which are discontinu-
ous with respect to z(t) (Filippov, 1988; Schevitz and Paden, 1994). Among others,
Filippov and Roxin have established a framework which gives meaning to the solutions
of differential equations with discontinuous right-hand sides and provides a general-
ized notion of Lyapunov stability (Filippov, 1964; 1988; Roxin, 1965a; 1965b; 1966).
More recently, the Clarke generalized gradient (Clarke, 1983) has been employed by
Paden and Sastry (1987) and Schevitz and Paden (1994) to develop the mechanics
of establishing the existence and stability of solutions for systems which arise with
variable structure control. The calculus of differential inclusions presented by Paden
and Sastry (1987) has been applied by many authors (e.g., Chiacchiarini et al., 1995;
Heck, 1991; Hsu, 1990; Oh and Khalil, 1995; Subbarao and Iyer 1993).

Following Paden and Sastry (1987), given

dz

E = f(m7t) (10)
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where
(i) f(-) is defined almost everywhere (which is to say that f(-) may be discon-
tinuous on a region of Lebesgue measure 0),

(ii) f(-) is measurable in an open region Q C R**!,

(iif) for all compact D C @ there exists an integrable function A(t) such that
If ) < A(t) almost everywhere in D,

a vector function z(¢) on [tg ¢;] is a solution to (10) in the sense of Filippov when:

(iv) z(t) is absolutely continuous on [tg #1];
(v) for almost all ¢ € [tg t1]

dz(t)

= € K[f](a() (1)
where
Kfiw= N Ef(B(z,&)-N,t) (12)
§>0 puN=0

and B(z,6) defines a ball in R™ around z of radius §; €6 indicates the
convex closure over the set of values generated by applying f on the ball B(-)

with subsets N removed. The intersection [ denotes the intersection over
pN=0
all sets N of Lebesgue measure zero.

Equation (11) is a differential inclusion (Filippov, 1988). It is a differential
equation with a set-valued right-hand side, and existence and uniqueness properties
which are quite distinct from ODE’s with Lipschitz-continuous right-hand sides. The
term K[f](z) is a set-valued function returning a single value at any point z at
which f(-) is continuous, and the convex closure over limits of the derivative at
points where f(-) is discontinuous. The set of points on which f(z,t) is evaluated
to form the convex closure is a ball of diminishing radius around z, less regions of
measure 0, which, by condition (i), includes the region of discontinuity. The calculus
of differential inclusions (Paden and Sastry, 1987) provides a means of calculating
K|[f](z) for a broad class of functions f(z, t), including those common to variable-
structure control.

Many constructions of discontinuous control, including that studied here, give rise
to ODE’s with piecewise continuous right-hand sides. Such systems may be studied
within the framework of eqns. (10)—(12) and conditions (i)-(v). The derivative f(:)
is undefined at points of discontinuity, and condition (i) requires that the regions of
discontinuity occupy zero volume in R". This condition is satisfied for a piecewise
continuous control where the discontinuity exists on finitely-many boundary regions
of dimension n — 1.
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Conditions (ii) and (iv) serve to insure that the derivative in (10) is meaningful.
The requirement of condition (iii), that f(-) be dominated by an integrable function,
assures that the integral of f(-) is well-defined. Conditions (ii)-(iv) are satisfied
for piecewise continuous control systems with bounded control action and physically
meaningful z(¢). Finally, condition (v) is satisfied when z(t) is a solution to the
differential inclusion (Filippov, 1988).

A Lyapunov stability theory for differential inclusions is demonstrated by Filip-
pov (1988). For a function V(t,z) € C! the upper and lower derivatives due to the
differential inclusion (11) are defined by (following (Filippov, 1988)):

. v\ *
V*(t,z) = (d—) = sup (Vi+AV-y)
di vek[f)(=) (13)

)= — | = i .
Va(t.) ( dt ) seilf Vet AV )

where V; is the partial derivative 8V/8t; AV is the gradient of v (recall that V(-
is not discontinuous) and y is an element from the set of possible derivatives of z
given by the differential inclusion, y € K[f](z).

Theorem 1. (Filippov, 1988) Generalized Lyapunov stability.
Given:

(i) a differential inclusion, as described by egn. (11);
(ii) the inclusion is defined on a closed domain D(tg <t < o0, |z| < €);
(iii) on D are defined functions V(t,z) € C*, Vy(z) € C for which V(t,0) =0
and 0 < Vo(z) <V (¢, z).
Then:
1. If V*(t,z) <0 in D, the solution x(t) =0 of the inclusion is stable;

2. If there ezist functions Vi(x) € C, w(z) € C defined on D and 0 < Vo(z) <
V(t,z) < Vi(z), V*(t,z) < —w(z) <0, V1(0) = 0, then the solution z(t) =0
is asymptotically stable.

Using Filippov’s generalized notion of Lyapunov stability, conditions for the as-
sured asymptotic stability of NPD control will be established.
2.3. Lyapunov Stability of NPD Control
Let us define the standard quadratic Lyapunov function:
V(t,z) =V (z) = 27 (t)Px(t) (14)

where P is a constant, symmetric, positive-definite matrix. Then the Lyapunov
derivative is given by

V() =27 (2) (ET )P + Pz(t))zm (15)
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If we require that ko and by be chosen so as to stabilize {A, B, C'}, then during
intervals when si(-) = s3(-) = 0, the Lyapunov derivative is given by

V(t) =27 (2) (KEP + PEL) 2(t) = ~T()Qra(t) (16)
where

~ 1

AL —A+Bm(—k‘oc—boCA) (17)
and

-QL=AlP+PAL (18)

Standard results for linear systems assure that given Ay stable, for any constant,
symmetric, positive-definite matrix @1, a constant, symmetric, positive-definite ma-
trix P can be found which is the solution to eqn. (18) (see e.g. De Carlo, 1989).

Expanding A(t) in (15) using (8) gives

1

A\(t) = A\L + (T—FT()—C—'E

) (—sk(-)leC - sb(~)blBCA) (19)
Folding A(t) in (15) gives

V(t) = —zT(t) {QL + si()k1 (Tl?(l')"c_é) (CTBTP + PBC)

+ s3()b1 (___._1 - b(l-)C’ B) (ATCTBTP + PBCA)} z(t)
which may be written as
V(t) = =27 (O] Qr + 51 ()@, + 35()Qu, }a(t) (20)

where

1
Qu() =k (TIRT‘) (CTBTP + PBO) "

CB
()=t (5003

Theorem 2. Stability of NPD control.

Consider a linear, time-invariant, SISO, strictly-proper system, as given by (8), and
NPD control, as given by (5), and choose the switch functions so that

0 if (z7Qk,z) <0
() = (22)
Lo 0 if (z27Qxz)>0
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and

0 if (z7Qyz) <0
sp(v) = (23)
1 or O if (zTlez) >0

Then the system with NPD control will be globally asymptotically stable for any choice
of k1 >0 and b > 0.

Proof. The proof follows directly from Theorem 1. With V(¢,z) as given in (14),
Vo(z) = Vi(z) = V(z) and the domain D taken to be a large but finite cylinder in
R™*1, we obtain, by the above choice of s;(-) and s3(-)

V*(t,2) < ~aT(8)Qra(t) = —w(z) <0, |lzf| #0 (24)
N

Theorem 2 establishes the stability of NPD control. It has the remarkable impli-
cation that we may chose k1 and b; to be arbitrarily large positive values and that
sk(t) and s3(t) may be chosen with great freedom, including finitely-many switches
during the interval (z7Qy,z) > 0. Simulations presented below demonstrate that
very large values may be chosen.

2.4. Properties of Qp,(-) and Q, (")

The following discussion addresses properties of Qg,(-) and selection of si(z). The
corresponding properties carry through directly for Qp,(-) and selection of s;(z).
Following eqn. (21) and considering the restriction to SISO systems, Qy,(z) may be
written in the form

Qu (z) = a(z)(27 + @) (25)
where a(z) = k1 /(1 + b(z)CB) is a scalar and & = PBC is a rank-one matrix.

Lemma 1. Rank and eigenvalues of matrices of the form (&7 + ®).
A matriz of the form Q = (®T + &) where ® is a square, rank-one matriz, will:
(i) be symmetric,
(1) have rank 2, except for the special case that ® is symmetric, in this case Q is
of rank 1,

(iii) when ® is non-symmetric, @ will have one positive and one negative eigenvalue.

Proof. @ is evidently symmetric. That the rank of Q for the general case (® not
symmetric) will be 2 can be seen from the singular-value decomposition (SVD) of &.
When [U, S, V] = svd(®),
g1 ’Ullr
d=USVT = |y, ' ! 0 oo | =l (26)
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The vector vy is the row space of ®, u; is the row space of ®7, and [v1,u,] spans
the row space of Q. If & # &7, then v; # u; and the rank of Q is two. Matrix Q
is evidently of rank 1 when @ is symmetric.

To establish proposition (iii), we may write
T Qi z = a(z) (27 @z + 27 82) = 20(2)3T Bz

Tyl z = 2a(z)o; (uF z)(vF z) (27)

= 2a(z)o1z
where u; and wv; arise with the singular value decomposition, eqn. (26). When
u; # v1 (® not symmetric), z may be chosen such that the terms (ufz) and
(vIz) are same or opposite signed. Choosing z such that the terms are same-
signed establishes that one eigenvalue is positive; choosing z such that the terms are

opposite-signed establishes the other eigenvalue to be negative. |

Lemma 1 establishes that, when ® is not symmetric, the state space is
partitioned into three subspaces: two with nonzero measure corresponding to
(zTQr,z) > 0 and (zT7Q4,z) < 0, and the zero-measure null space of Qr;. These
subspaces of R™ are respectively the region on which stiff control may be applied,
the region on which it may not, and the boundary between the two.

3. Implementation

To implement nonlinear PD control in the form of eqn. (5) requires that switch func-
tion sk(-) be evaluated. To assure negative definiteness of the Lyapunov deriva-
tive (21), application of stiff control must be restricted to the region of state space on
which (27Q4,z) > 0. Determining and maximizing the region in which stiff control
may be applied, specification of switch functions which do not depend on the full
state vector and issues of practical implementation are addressed in this section. In
what follows, we assume that & in (25) is not symmetric. If B, C and P are such
that ® is symmetric, a different choice of @, resulting in a different P, will break
the symmetry.

3.1. Choosing Qr to Maximize {z: (zTQs,x) > 0}

For stability as established by Theorem 2, si(z) must be chosen so that
{z s sp(z) = 1} C {:1: : (27 Qpyz) > O} (28)

The subspace in which (z7Qg,z) > 0 is determined by the Qs, matrix, which is
determined in (21) by the P matrix, which itself is determined by the designer-chosen
Q1 matrix. To determine the largest volume in which stiff control can be applied,
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Q@1 should be chosen to maximize {x (2T Qg z) > 0}. This can be done by a gra-
dient search:

1. Define ¢: the half-angle subtended by {z: (zTlez) < 0},
¢: tan‘l(—)q//\g) (29)

where A1 and Ay are the negative and positive eigenvalues of Qp,, respectively.
2. Set Qr = WTW, where W € R**™ will be adjusted in the gradient search.

3. Since ¢ is a scalar, d¢/dW 1is an [nxn] array, which can be approximated
using the numeric first difference, and evaluating ¢(Q, (P(Qr(W)))), according
to (29).

4. With d¢/dW in hand, any suitable gradient technique will find W which min-
imizes locally ¢.

3.2. Control in the Eigenspace of Qg,

The eigenspace of @, is guaranteed to be no more than two-dimensional. An inter-
esting possibility arising with the rank deficiency of Q, is that the null space of Qy,
could be aligned with the z-coordinate axes, such that some elements of z would not
be required to compute (z7 Qy,x).

When A is the feedback matrix of a stable system & = Az, a unique PD ma-
trix P solving the matrix Lyapunov equation, (18), will correspond to each PD choice
of @r. Though numerically better alternatives exist, conceptually P is given by

—vecQp = [I® AT + AT @ I|vec P (30)

where n is the order of the system, P is an [n xn] matrix, vecP is the [n? x1]
column vector of the columns of P, and ® is the Kronecker product operator (De
Carlo, 1989).

If we define
Ka=[I®AT + AT®1] € R xn’
(31)
Kp=[I®(BC)T +(BC)T®I] €R¥*"
then
—vec = K4 vecP
QL A (32)

—vecQr, = Kp vec P
which gives

vecQk, = KBKzl vecQr, (33)
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Recalling that Qp, is not directly chosen but is determined by @, the matrix
(KpK;') may be used in at least two ways:

1. If a proposed vec Q, does not lie in the column space of K BKZI, no Qp will
exist which will establish the corresponding controller to be Lyapunov stable.

2. By translating specified directions in the space of Qk, into constraints on the
space of vec Qx, and projecting these onto the space of vecQy, it is possible to
select Qr which will give @, orthogonal to specified directions.

Given a proposed switching rule which can be represented by sg() =
((zTQk,z) > 0), the first use is straightforward.

The second use is carried out by selecting certain directions, X, in state space
to which (z7Q,z) is to be made insensitive. The matrix Q; must be chosen so
that each row (and therefore column) of Qy, is orthogonal to X,,. The orthogonality
requirement can be translated to the space of vec @, by creating matrices M; =
[0,--+,Xp,--+,0] which have X, as their i-th column. For each row of Qx, to be
orthogonal to X,, we must have

vecQy, L V;, te{l,...,N} (34)

where Vi = vec(M; + MT) € R %! are the constraint vectors in the [n%x1] space
of vecQ,. Equation (34) will be satisfied if

(vecQL)T(KpK ))TVi=0, i€{1,...,N} (35)

which is given by orthogonalizing vec Q1 with respect to {(KpK;')TV;}. This can
be accomplished by first determining a set of orthogonal vectors spanning the subspace
of {(KpK;")TV;} using Gram-Schmidt orthogonalization, and then orthogonalizing
vec Q1 with respect to these spanning vectors.

The matrix @ given by this process is not guaranteed to be PD. However,
in an example described in Section 3.4 below, by search on randomly selected @y,
candidates which can satisfy (35) and remain PD have been found. It is interesting
to note that if a vec Q} is known which is orthogonal to the vectors (KpK;")TV;
a larger class of orthogonal @ is given by

- vecQp = vec QS + vec QY » (36)

where vec QY is an element of the null space of (KpK ;). Unfortunately, the space
of PD matrices is not a vector space, and so eqn. (36) does not directly provide a
means to produce a PD matrix Qp.

3.3. An Example Application

Xu et al. (1993; 1994; 1995) demonstrate NPD control of a robotic hand to quench
oscillations arising with the transition from non-contact to contact and force control.
Their application is used here to demonstrate the present results. The manipulator
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with force sensor, low pass filtering of the force error signal and force rate feedback
may be represented by the state space model:

[ 0 0 1 0 0 | -
0 0 0 1 0 0
_ ke ke b (bo—bok) 1 0
l'(t) = my my _m—l my mlﬂl (E(t) + 0 'Ll,(t)
ke (b tks) b (be4b) 0 (37)
ma ma My My | fr |
| 0 0 0 0 o |
y(t) = [o ks 00 O]z(t) + [O}U(t)
where the states are as follows:
., Ty : position of the acutator
z(t) = [171 Ty T T2 273] ) To : position of the output (38)
z3 : state of the low-pass filter

and where the model parameters are given in Table 1. The model is fifth-order because
the low-pass filter, described in (Xu et al., 1994), has been folded into the state space
description. The parameter oy,s determines the low-pass filter pole location, and the
scaling parameter ;5 has been added to balance the A matrix of eqn. (37). The
parameter by in eqn. (37) and Table 1 is the force rate feedback gain used by the
authors.

Table. 1. Parameters of the example NPD application (from (Xu et al., 1995),
parameter §; added).

my | 119.4 [ke] my | 13.24 [kg]
k. | 110100 [N/m] | k. | 11010  [N/m]
b, 10 [N-s/m] | b, 10 [N-s/m]
op | 40.0m [1/s] B | 01/ [
bo 0.01 [N-s/m]

The output, y(t), is the contact force, and is given by y(t) = ks;z2(t). The force
rate is given by y(¢) = ks22(t). A detailed description of the system, with mechanical
schematic and system block diagrams, can be found in (Xu et al., 1994; 1995).
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3.4. Three Example Controllers

Three NPD controllers are presented here in simulation. These controllers are repre-
sented by the Qk, matrices: 81", QEFR and Q¥HM . Each of these Qx, matrices
determines the switching function according to

si(z) = ((a:Tlex) > 0) (39)

ng: A controller derived from Q=1

The first controller was derived directly from (21), with @1 chosen to have balanced
eigenvalues. Setting @ = I and solving eqns. (18) and (21) gives the matrix

r 0 —0.4010 0 0 0 7
—0.4010 0.8384 0.0276 —0.0030 0.0032
lel« — 0 0.0276 0 0 0 (40)
0 —0.0030 0 - 0 0
0 0.0032 0 0 0

which determines the switching function via eqn. (39).

The balanced eigenvalues in @ was made a consideration when a controller
optimized as described in Section 3.1 performed poorly. While the optimization in-
creased the volume of stiff control by approximately 20%, it resulted in Qp with
eigenvalues ranging from 10% to 10™*. The small eigenvalues correspond to compo-
nents of the response for which V'(¢) decays slowly (cf. (16)). Empirically, balanced
eigenvalues in () were observed to give better performance.

QZFE: A controller which does not depend on force rate

An important lability of the proposed NPD control is that evaluation of the switch
function, eqn. (39), may require knowledge of the full state vector. In the example
application, actuator velocity and contact force rate are unsensed (corresponding to
#1 and &2 in (38)). The force rate was chosen as the more difficult sensing or
estimation challenge, and correspondingly the row space of Qj, was orthogonalized
with respect to 2. The resulting controller is given by:

[1.187 0.511 0.641 0.627 1.5267
0.511 1.971 1.286 0.709 1.707
Q= |0641 1.286 1.109 0.666 1.536 (41)
0.627 0.709 0.666 1.134 1.129
1.526 1.707 1.536 1.129 3'052J
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and
r 0 0413 0 0 0 7
—0.413 0.826 0.056 0 0.008
QEFR = 0 006 0 0 O (42)
0 0 0 0 0
L o 0008 0 0 O

where the superscript ZFR (Zero Force Rate) indicates that this is the controller
independent of force rate.

The controller of Xu et al. (1995)

The third controller is that presented in eqn. (2) and demonstrated by Xu et al. (1993;
1994; 1995). In the limit as o — oo, the control law of Xu et al. takes the form of
eqn. (5), with

se() =

{ 1 if sign(e(t)) = sign (1)) (43)

0 if sign(e(t)) # sign(é(t))

where e(t) = y, — y(t). This control law may be written in the form of eqn. (39),
where the @i, matrix is

00000
00010

QEEM =10 0 0 0 © (44)
01000
00000

The possible existence of a function V = z7 Pz which would establish this control
law to be Lyapunov stable can be explored by examining whether vec Q#* lies in
the column space of (K BKZI). It does not, and thus there is no quadratic function
of state which establishes this controller to be Lyapunov stable. This result does not
establish instability for this controller. Simulations presented below show stability for
moderate values of k; and instability for large (high gain) k;. The question remains
open as to whether stability can be demonstrated for this system with moderate k,
and the control law of Xu et al. (1993; 1994; 1995).

3.5. Simulations

The simulations presented below show response of the system to each of the three
controllers of Section 3.4. The controller and gain combinations tested are listed in
Table 2. In each of Figs. 3-9 two plots are shown; they are the contact force, y(t),
the applied control u(t).
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Table. 2. Table of simulations presented.

Stiff Control Gain
Controller
k1=0 k=1 Fk =20
Qr Fig. 3 | Fig. 4 | Fig. 5
QLFR — Fig. 6 | Fig. 7
QrrM — Fig. 8 | Fig. 9

In Fig. 3 the response of a system with k; = 0 is shown. The NPD control
is turned off and standard PD control is demonstrated. This case is similar to that
presented by Xu et al. (1995) and is presented as a control case.

y, system output, k0 = 0.30, b0 = 0.00, k1 = 0.00

0.2 T T T I l

— ! I
T o0 TN\ —— ~———: -------

1 1 3

0.2 | : A ) ?
-0 0.5 1 1.5 2 2.5 3

t Seconds

u, system input

u(t)

Fig. 3. System response for standard PD control.

Figures 4 and 5 illustrate the system response to the controller obtained by setting
Q1 = I, eqn. (40). Of the three, this controller shows the greatest degree of damping.
In Fig. 5, corresponding to k; = 20, it is seen that the slower mode of the system
response is not visible after a single cycle and that the faster mode is also effectively
damped by the NPD control. While damping of the faster mode is consistent with
theory, it was anticipated that the discontinuous NPD control would excite rather
than damp this mode.

Figures 6 and 7 illustrate the system response to the controller obtained by
orthogonalizing @&, with respect to the force rate. For k; =1 the response is quite
similar to that of the first controller. For k; = 20, it is seen that damping of the
faster system mode is less effective than that of the first controller, partially offsetting
the advantage of implementation with no estimate of force rate.

Figures 8 and 9 illustrate the system response to the controller of Xu et al
(1995), modified as described in Section 3.4. With k; = 1 the controller performs
well, showing approximately the damping of the other NPD controllers. With k; = 20
the controller is unstable.
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y, system output, kO = 0.30, b0 = 0.00, k1= 1.00
|

f
| I
[ |
! |
1 |
l !
| |
1 |

I
i
|
I
I
|
2 2.5 3

1.5
t Seconds

u, system input
T

|
|
I
|

!
1

S S

1.5 2.5 3
t Seconds

Fig. 4. System response with Qr =1, ki1 = 1.

y, system output, kO = 0.30, b0 = 0.00, ki = 20.00

T T T T T
A ! : : 1
= 0 g I ] i I
> i | i | ;
1 | | | |
01 : 1 : : :
0 0.5 1 1.5 2 2.5 3
t Seconds
u, system input
1 T T T T T
| | I 1 |
g 05— T drmmmmes A fomnmee omm]
S | Adginin L i ! !
LN E ! | |
0 05 1 1.5 2 25 3
t Seconds

Fig. 5. System response with Qr =1, k1 = 20.

In Fig. 10 the damping rate demonstrated by five simulation runs of each of
the three controllers is summarized. The damping rates presented in Fig. 10 were
obtained by fitting an exponential curve through the peaks to the successive cycles
of y(t); damping rate values below zero correspond to instability. The controllers are
identical for k; = 0 and have a damping rate of 0.142 [sec™!]. The three controllers
show comparable improvement for low and moderate values of k1, but quite different
performance as k; is increased. The controller given by @ = I showed the greatest
damping above k; = 10,
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y, system output, kO = 0.30,bO= 0.00, k1 = 1.00

T T T T T

i | |

= 0 ---f--- i | i |

> j | i i i

| | I i |

-0 : : E : :
20 0.5 1 1.5 2 2.5 3

t Seconds
u, system input

0.2 T T T T |

i I ] t i

— 1 | t ' !

=1 | | | i i

O N="""XF Jermm T

. | z z :

0 0.5 1 2 25 3

1.5
t Seconds
Fig. 6. System response with Qi, independent of force rate, k1 = 1.

y, system output, k0= 0.30, b0 = 0.00, k1 = 20.00

I N

I
|
i
I
I
!
1
2

- ——

0 0.5 1.5 25 3
t Seconds
u, system input
‘ ! : : ! !
g 08— o jm I I b
El * rsrnnnd I !
o Lt
— I | 1 1 1
055 05 1 15 5 25 3
t Seconds

Fig. 7. System response with Q, independent of force rate, ki3 = 20.

4. Conclusions

A Lyapunov proof of stability has been presented for NPD regulation of LTI SISO
systems and a particular construction of NPD control. The result establishes that on
predetermined subspaces of state space, arbitrarily large proportional and rate gains
can be applied. Simulations, as well as experiments reported in the literature, show
that application of the larger gains can provide increased damping.
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y, system output, k0 = 0.30,b0 = 0.00, k1= 1.00
T ) T T

T T
1 [}
= 0 —rf—- N ) | 1 1
> | | | | |
[} | 1 I ]
02 ! : : : :
0 05 1 1.5 2 25 3
t Seconds
u, system input
0.2 y P

Fig. 8. System response with control of (Xu et al., 1995), eqn. (2), in the limit

as @ — 00, k1 =1 (¢ =100 and k; = 1 demonstrated by Xu et al.
(1995)).

y, system output, kO = 0.30, b0 = 0.00, k1 = 20.00

]
|
i
J
1
|
|
!

]
I
\
0 0.5 1 1.5
t Seconds

u, system input

u(t)
o

T
|
|
|
i
1
|
|

|
|
|
1

!
{
1
2 25 3

Y et

0 0.5 1.5

t Seconds

Fig. 9. System response with control of (Xu et al., 1995), eqn. (2), in the limit
as a — oo, k1 = 20.

The switching function which determines application of the stiff gains has been
shown to be no more than rank two, even for higher-order systems. This opens the
possibility that only two states might be required to compute the NPD control. A
fifth-order application has been demonstrated for which only four states are required
to compute the switch function.

The present study raises many questions regarding NPD control. The stability
proof presented will carry over when the higher gains are allowed to vary during
the interval of stiff control. The implications and utility of time varying stiff gains
is the subject of continuing investigation. Questions of robustness are also central
to practical application of this control strategy. As these and other questions are
resolved, NPD control may enter the growing list of nonlinear controller structures
which offer performance advantages when applied to approximately linear systems.
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) Damping of Various Qk1 versus ki1

2.5 T

'
1
'
'
'
¢
K
'

Damping Rate [sec~1]

k1 [Amps/N]

Legend:
o Q from Qr=1I, QFF;
+ Qr, independent of force rate, Qle £,

X Q, corresponding to control of (Xu et al., 1995) QleM.

Fig. 10. Damping rates achieved by three constructions of NPD control.
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