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CONTROLLABILITY FOR MECHANICAL SYSTEMS
WITH SYMMETRIES AND CONSTRAINTS

Jim P. OSTROWSKI*, JoeL W. BURDICK**

This paper derives controllability tests for a large class of mechanical systems
characterized by nonholonomic constraints and symmetries. Recent research in
geometric mechanics has led to a single, simplified framework that describes
this class of systems, which includes examples such as wheeled mobile robots;
undulatory robotic and biological locomotion systems, such as paramecia, inch-
worms, and snakes; as well as the reorientation of satellites and underwater
vehicles. This geometric framework has also been applied to more unusual
examples, such as the snakeboard robot, the wobblestone, and the reorienta-
tion of a falling cat. Using results from modern nonlinear control theory, we
develop accessibility and controllability tests based on this reduced geometric
structure. We also discuss parallels between these tests and the construction
of open-loop control algorithms, with analogies to the generation of locomotive
gaits for robotic systems.

1. Introduction

Mechanical systems provide a fertile area of study for researchers interested in non-
linear control, due to the inherent nonlinearities of these systems, and the Lagrangian
structure that they possess. Recently, a great deal of emphasis has been placed on
studying systems with nonholonomic (non-integrable) constraints, including mobile
wheeled robots and multiple-trailer vehicles, where the wheels provide a no-slip ve-
locity constraint. For the purposes of controls, however, these systems are very often
treated as kinematic systems, i.e., the dynamics of these mechanical systems are as-
sumed to be inverted out. Very often this assumption is quite valid, but frequently it
is not. There are also a growing number of systems in which this type of assumption
is not even approximately valid. We focus in this paper on one such class of systems,
namely the class of systems with nonholonomic constraints and symmetries. We will
make the definition of symmetries more precise below; however, for mechanical sys-
tems symmetries essentially imply an invariance of the system, often with respect to
inertial positioning. In the absence of external constraints, these symmetries lead to
momentum conservation laws. Motivating the study of this class of systems is a large
array of examples of undulatory locomotion systems. These examples will be used
throughout this paper to illustrate and motivate the developments contained herein.
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Making use of modern advances in geometric mechanics, researchers have made
great progress in analyzing the mechanics of locomotion. This problem asks the
fundamental question of how a system uses its control inputs to effect motion from
one place to another. By utilizing the inherent mathematical structure found in these
types of problems, one can formulate the dynamics of a wide variety of locomotion
problems in a very intuitively appealing and insightful manner. Doing so leads to a
stronger comprehension of the mechanics of locomotion, but leaves open some very
basic questions about the control of such systems. Preliminary research (Kelly and
Murray, 1994; Krishnaprasad and Tsakiris, 1994) suggests that the geometric tools
used to formulate the mechanics will also provide a basis for unlocking the answers
to many of the questions regarding the control theoretic issues involved.

An important by-product of the mechanics research in locomotion has been the
development of a theoretical bridge between systems with two different types of non-
holonomic constraints. On one hand, there are systems with ezternal (often called
kinematic) constraints which include wheeled vehicles (Murray and Sastry, 1993),
grasping with point-finger contacts, and some models of snakes (Krishnaprasad and
Tsakiris, 1994), paramecia (Shapere and Wilczek, 1989), and even legged locomotion
(Goodwine and Burdick, 1996; Kelly and Murray, 1994). Recent work by Kelly and
Murray (1994) provides kinematically constrained models for a wide range of systems.
However, the models are again restricted to purely kinematic systems, which require
active input controls to generate movement. A kinematically constrained body in
motion will remain in motion only if its control inputs are continually active. Thus
it is not possible to build momentum or to “coast”—it is exactly this component of
locomotion that has been added in the models considered here.

Characteristic of all of these systems, however, is a second type of nonholonomic
constraint, which arises due to Lie group symmetries. For locomotive systems, this
is often a “pick-and-place” symmetry, whereby the rigid body dynamics are invariant
with respect to inertial positioning. In the absence of external constraints, these in-
variances imply the existence of internal (sometimes called dynamic) constraints on
the system, which very often take the form of momentum conservation laws. Examples
of systems with internal nonholonomic constraints include satellites in space (Krish-
naprasad, 1990; Nakamura and Mukherjee, 1995) and the problem of the “falling cat”
(Montgomery, 1990).

Naturally, there exist problems for which both internal and external constraints
may exist and interact in a nontrivial manner. Examples of these problems fall gener-
ally into two realms: one in which certain of the conservation laws may remain after
the addition of constraints, such as in the rolling penny or the constrained particle
(Bloch et al., 1996); and one in which the conservation laws are transformed into
what Bloch et ol term a generalized momentum equation, where the momenta are
governed by a differential equation. There is strong evidence to suggest that many
different modes of locomotion (such as undulatory, legged, etc.) are governed by equa-~
tions of this form. What is present in the case of mixed constraints (i.e., kinematic
and dynamic) is the ability to change the momentum of a locomotive body. This is
crucial for many types of locomotion, such as running or swimming. Thus, by using
internal, shape controls it is possible not only to change the position of the system,
but to generate velocities and hence truly locomote in a dynamic sense.
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Recent investigations have led to a unifying geometric framework within which to
analyze these types of problems. Along with the problem of mechanics comes a host of
associated issues to investigate, including (optimal) control, stabilization, trajectory
generation, and path planning. Certainly, extensive work has been done in analyzing
these issues for systems with purely kinematic or purely dynamic constraints. We will
highlight some of the more recent theoretical results on controllability for these types
of systems here. While certain initial results do exist for dynamic mechanical systems
(Bloch et al., 1992}, they generally require that the unconstrained dynamics be fully
actuated. While this is a stronger result than those derived for kinematic systems,
these assumptions still require the continual motion of the inputs to generate motion
of the system; that is, there are no “dynamic,” or momentum, effects present. In
deriving the conditions for controllability presented here, the authors have employed
the most advanced tools of which we are presently aware for showing small-time lo-
cal controllability of nonlinear control systems with drift (Sussman, 1987). For a
nice review of the issues involved in local controllability tests, the reader is referred
to (Kawski, 1990). Also, since the structure of the equations was largely motivat-
ed by developments in locomotion, some mention will be given to the relationship
between the controllability tests derived here and trajectory/gait generation. As an
example, we will examine the snakeboard model, which has been an important moti-
vating example behind the theoretical progress for this mixed kinematic and dynamic
constraint case (Bloch et al., 1996; Ostrowski et al., 1994; 1995).

2. Background and Problem Formulation

The use of Lie groups will be important for the analysis performed in this paper. The
principal motivation for using Lie groups arises from our studies of robotic locomotion,
where displacements occur in some subgroup of SE(3), most often translation and
rotation in the plane, SE(2), or rigid body rotation, SO(3). However, the analysis
here is valid for general mechanical systems which have some or all of their dynamics
evolving on a Lie group. In order to appeal to the general community’s intuition
of rigid body motion, we will very often make reference to Lie groups as describing
position and orientation of a robotic system, but the reader should keep in mind that
the results hold much more generally.

Formally, the displacement of a robot’s body fixed frame is considered as a left
translation. That is, if the initial position of a rigid body is denoted by g, and it is
displaced by an amount A, then its final position is hg. This displacement can be
thought of as a map L, : G — G given by Lj,(g) = hg for g € G. Hence, we can
describe the evolution of the position of the robot by referencing it using a Lie group
with respect to some inertial frame.

The remaining components of the system are assumed to be controllable, and
these configuration variables will be represented by a manifold M. Most often for
locomotion systems, these variables will describe the internal shape of the system.
Again, this designation of the controlled subspace with internal shape is convenient
for giving an intuitive picture of a locomotive body, but it should be remembered
that the manifold M is quite general, and so can describe whatever variables are
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necessary to complement the Lie group, G. Thus, the configuration manifold will
be the product manifold given by @ = G x M and the left translation induces a left
action of G on Q. For those familiar with the mechanics literature, the manifold @ is
said to define a trivial principal fiber bundle with fibers, G, over a base space, M. We
will assume the coordinates on @ to be decomposable into fiber and base coordinates,
i.e., for ¢ € Q, we can write ¢ = (g9,7) € G x M.

Definition 1. A left action of a Lie group G on a manifold @ is a smooth map
$: GxQ — @ such that: (1) ®(e,q) = ¢ for all ¢ € Q, where e stands for the
identity element of G; and (2) ®(h, ®(g,q)) = ®(hg,q) forevery g,h € G and ¢q € Q.

It will be useful to consider the left action as a map from @ into @, with the element
h € G held fixed. Notationally, &5 : Q@ — @ is given by (g,7) — (2(h,9),7) =
(hg,r). The lifted action, which describes the effect of ®, on velocity vectors in
TQ, is the linear map, T, ®y : T,Q — TxQ. This is similar to a Jacobian matrix
corresponding to the mapping ®4, often written as D,®, or (®4)..

Since we are working with mechanical systems, we will assume the existence of
a Lagrangian function, L(q,q), on T'Q. In the absence of constraints, the robot’s
dynamical equations can be derived from Lagrange’s equations:

d /dL oL
i (55) 5 W

where 7 is a forcing function. Our interest, however, is in systems in which non-
holonomic constraints are present. These constraints can take many forms, including
no-slip wheel conditions and viscous friction. Let us restrict our attention to Pfaffian

constraints, which are linear in the velocities. Given k& such constraints, we can write
them as a vector-valued set of k& equations:

wig)d =0, for i=1,...,k (2)

This class of constraints includes most commonly investigated nonholonomic con-
straints.

The constraints can be incorporated into the dynamics through the use of La-
grange multipliers. That is, eqn. (1) is modified by adding a force of constraint with
an unknown multiplier, A, as

d [/ dL oL j
E(a_q'l:)_a_qi+AJwi_Ti—0 (3)

However, once the Lagrange multipliers are solved for, much of the physical intuition of
the problem may be lost. This is very often done by choosing generalized coordinates
to represent velocities in the unconstrained directions. Doing so is usually an ad-hoc
procedure that we have found to be greatly improved by using the formalism and
structure of Lie groups (Ostrowski, 1995; Ostrowski and Burdick, 1996b).

For systems in which the Lagrangian and the constraints are left-invariant, i.e.,
for which

L(21g, Ty®hd) = L(¢,9) and w'(g)q=w'(h™'q)Ty®s-14, VhEG,q€Q (4)



Controllability for mechanical systems with symmetries and constraints 309

it was shown in (Bloch et al., 1996; Ostrowski, 1995) that the equations of motion
can be transformed into the following form:

g_lg = —A('I‘)‘f‘ + H_I(T)p (5)
p= %fTUH(T)f + ]i’Tffpr'(T)f~ + %pTUPP(T)p (6)
T =1 (7

These equations, of course, deserve a good deal of comment (to gain a much better
insight into these equations, the reader is referred to the paper (Bloch ez al., 1996)).
Equations (5) and (7) are the fiber and base equations, respectively. They will de-
fine velocity vectors for the configuration variables (and accelerations for the base
variables). Equations (6) is called the generalized momentum equation, where p is
a momentum vector associated with the momentum along each of the kinematically
unconstrained fiber directions. Notice that in (7) we have assumed the base (shape)
space to be fully controllable, with acceleration inputs, u.

Let us briefly examine how this set of equations reduces in the more familiar
limiting cases. First, in the principal kinematic case, the shape space is assumed to
be controlled (eqn. (7)), and the invariance of the constraints leads to the kinematic
equation

g7tg = —A(r)F (8)
Examples such as the wheeled mobile robot, the N-trailer system, and inchworm

locomotion can be put in this form.

On the other hand, if there are no constraints, but the Lagrangian is invariant (the
first half of (4)), then one can define a momentum for the system that is conserved.
In this case, (5) and (6) simplify to

oL, . . . o
P=30ma) = g Yg=—A(r)i +17%(g,)p 9)
o (1)

Notice that in both cases, the symmetries allow us to pull the group variable g out of
the equation. In the controllability analysis of (5)-(7) this fact will be used to greatly
simplify the necessary calculations.

Returning to eqns. (5)—(7), notice the central role played by the term A(r)
in (5) (A(r) in eqn. (9)). In the language of geometric mechanics, A is said to define
a connection on the trivial principal fiber bundle Q. The connection satisfies cer-
tain geometric properties, the most important of which is to specify the relationship
between control velocities on T'M and spatial (group) velocities on T'G. In investi-
gating issues of controllability, the connection is extremely useful, because it defines
the role of the control inputs in generating spatial motion along the fiber. In testing
for controllability, we will see that derivatives of A have a direct correspondence to
Lie brackets of the control and drift vector fields. One of the advantages of dealing
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with A directly is that we bypass the need to deal with parameterizations of the
manifold, instead of performing calculations on the Lie algebra directly. This can be
particularly useful for Lie groups such as SO(3) and SE(3).

The [~'p term determines the effect of the momentum on the fiber equations.
I is called the locked inertia tensor. Its development is beyond the scope of this
paper, but essentially I corresponds to the inertia of the system given a particular
(locked) configuration of the shape variables. For the terms, o7, 0ps, and o, of
the generalized momentum equation, we mention only that they are strictly functions
of the base variables, 7, and so the generalized momentum equation can be written
as a function only of the base and momentum variables (Ostrowski, 1995; Ostrowski
and Burdick, 1996a). We have written (7) in terms of acceleration inputs so that the

system of equations can be written in the standard form for a control system with
drift:

i = f(2) + hi(z)u’ (11)
Let N=GxRP xM xT.M, where dimRP is the dimension of the unconstrained

fiber directions (i.e., the dimension of p). Then, using 2z = (g,p,7,7) € N, we see
that (5)—(7) can be written in the form of (11) with

g( ~ A +T174(r)p)

1 T . T . 1 T
=7 O i+ = 0
fey=| 2" THTTPORT IR P | )= (12)
; 0
0 &

where e; is the m-vector (m = dim M) with a “1” in the i-th row and “0” otherwise.

2.1. The Snakeboard Example

Now let us turn to a formulation of the snakeboard problem in terms of the rela-
tionships derived above. The Snakeboard is a commercial variant of the skateboard,
which allows for independent rotation of the wheel trucks. The simplified model of
the Snakeboard (referred to as the snakeboard model) is shown in Fig. 1, along with a
robotic version built in our lab to verify theoretical simulations (shown in Fig. 1). We
will briefly recall the description of the snakeboard as developed in (Ostrowski et al.,
1994). As a mechanical system the snakeboard has a configuration manifold given by
Q = SE(2) xS xS xS. Here SE(2) is the group of rigid motions in the plane, and is
to be thought of as describing the position of the board with respect to some inertial
reference frame. As coordinates for () we shall use (z,y,6,v, ¢y, ¢s) where (z,y,0)
describes the position of the board with respect to a reference frame, 1) is the angle
of the rotor with respect to the board, and ¢, and ¢; are, respectively, the angles of
the back and front wheels with respect to the board. Note that the wheels themselves
are allowed to spin freely, just as with the traditional skateboard.
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back wheels

Fig. 1. The simplified model of the Snakeboard, along with a demo prototype.

The configuration space easily splits into a trivial fiber bundle structure, with
g = (g,7) given by g = (,y,0) € G = SE(2) and r = (¢, ¢s,p5) € M =S xS xS.
The left action for a group element, h = (a',a?,a) € G, is given by the map:
¢)h(my Y, 07 "p’ ¢bv ¢f)
= (zcosa —ysina +a',zsina + ycosa + a2, 0 + o, ¥, ¢y, d5) (13)

and the lifted action takes the form:
Tqéh(ia Z], éa 'l;&a éba ¢f)
= (¢ cosa — gsina, &sina 4 ¢ cos o, 0, v, ¢y, d) (14)
Parameters for the problem are:

: the mass of the board,

: the inertia of the board,

: the inertia of the rotor,

: the inertia of the wheels (assumed to be the same), and

: the length from the board’s center of mass to the wheels.

BT

For the snakeboard, the unconstrained Lagrangian is given simply by kinetic energy
terms as

1 1 . 1. .. .. 1 S S
L= 5m(gz2 +9%) + 5Je2 + 5 +6)% + 5Jw((qs,, +0)* + (o5 + 9)2)

The control torques are assumed to be applied to the rotation of the wheels and the
rotor. The wheels of the snakeboard are assumed to roll without lateral sliding. At
the back wheels, this implies a nonholonomic constraint of the form

— sin(¢p + 8)d + cos(¢y + 8)y — L cos(¢p)8 = 0 (15)
Similarly at the front wheels the constraint appears as
— sin(és + 0)z + cos(¢5 + 6)y + Lcos(p5)§ =0 (16)

A quick set of calculations shows that both the Lagrangian and the constraint one-
forms are invariant with respect to the lifted group action. The momentum is defined
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along directions which are tangent to the fiber and lie in the constraint distribution
(i-e., satisfy the constraints). Thus, we define the constrained fiber distribution for
this problem to be the one-dimensional subspace,

0 d 0
Sg=sp {a£+bég+cb—0}

where

a= —l[cos ¢y cos(¢s + 0) + cos ¢} cos(¢p + 0)]

b= -l [cos @y sin(¢y +6) + cos gy sin(dy + 0)]

¢ = sin(¢y — ¢y)

All vectors in &, are tangent to the group G and satisfy the constraints in (15)
and (16). The generalized momentum, p, defined by Bloch et al. (1996) is then also
one-dimensional. Let ((,)) denote the inner product defined by the kinetic energy
metric for our mechanical system. Then

= (¢, X(q))
= ((2,9,8,%, s, ¢7), (a,b,¢,0,0,0))
= max + mby + Jeb + Jrcv,b + ch(qu + ¢f)

where X(q) € S, and J = J + J, + 2J,, is the sum of the moments of inertia.

Before continuing with the derivation of the generalized momentum equation,
we first make two simplifying assumptions that greatly reduce the complexity of the
derivations to follow. First, we assume that the wheels are controlled to move out
of phase with each other, in opposite directions. In other words, let ¢ = ¢» = —¢;.
This is motivated by the motions seen by actual riders of the Snakeboard. Second,
along the lines of Bloch et al., we will assume that J = J + J.+2J,, = ml?. This will
significantly simplify the analysis to follow, without overly constraining the example.

Then, writing the equations as in the form of (12):

g7'g = —A(r)r +17'(r)p

.1, . o1
p= E’I‘TJHJI‘ + pTJpT-'r + EpTappp

F=u

we find that for 7 = (4}, é),

Jr . 1
—ﬁ Sin 2¢ 0 _2—77’[,1
A= 0 0o, 1'= 0
T sin?
T sin 0 D tan ¢
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The generalized momentum equation is

p = 2J, cos® p ) — tan ¢ dp

Finally, we can write the shape space dynamics as

(1= s 8)d = 5o sin 28 — 5o+ -7 (17)
b= g5 (18)

which is easily seen to be controllable. As above, we rewrite this simply as
’l]) =uy and (ﬁ = Uy (19)

Let z = (z,y,0,p,v, ¢,1/}, qb) € N. Then we can write the snakeboard equations
in the form of (12):

cos §(—p + 1 J; sin 2¢)
2ml

sin §(—p + ¥ J, sin 2¢)
2ml

—21/),], sin’ ¢ + ptang
2mi?

f=| 2¢bJ.cos®>p— dptang |, hy =
¥

S = O O © O O o
- O O O O O o o

¢
0
0

2.2. Definitions: Accessibility and Controllability

In order to discuss control theoretic issues regarding a particular system, we must
start by precisely defining the types of control goals we seek. In nonlinear control
theory, there are two commonly used notions of control—accessibility and controlla-
bility. Putting aside technical definitions for a moment, we would like our control
goal to be something like the following: “a system will be said to be controllable if,
given any initial point ¢; and final point gy, there exists an admissible control law u
which drives the system from ¢; to g;.” For general nonlinear systems, the notion
of small-time local controllability, in which controllability is shown for local neighbor-
hoods of ¢;, will be the closest we can come to our goal of controllability. Note that
it is still very much a local condition, and, while it is a much stronger condition than
accessibility, it is also much more difficult to satisfy. Here we give definitions for these
terms and in the next section present an example of how they differ.
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Let RY(20,T) denote the set of reachable points in N from z, at time T' > 0,
using admissible controls, u(t), and such that the trajectories remain in the neigh-
borhood V of zp for all ¢ < T'. Furthermore, let

R¥(Zo) = U RV(Zo,t)
t<T

be the set of all reachable points from 2y within time T'. These two definitions lead
us naturally to define the following:

Definition 2. (Nijmeijer and Van der Schaft, 1990) The system given by (11) is
locally accessible if for all z € N, R¥(z) contains a non-empty open set of NV for all
neighborhoods V of z and all T > 0.

Definition 3. (Sussman, 1987) The system given by (11) is called small-time locally
controllable (STLC) if for any neighborhood V, time T' > 0 and z € N, z is an
interior point of RY(z) for all T > 0.

For driftless systems, local accessibility and local controllability are equivalent.
Notice, however, that the general types of systems in which we are interested will
require the presence of a drift vector field, since this is how the momenta enter into
the dynamic equations (notice the I=1p term in (7)). To give a motivating example
of how these definitions differ, consider the problem of controlling an airplane in flight.
The airplane can in a coarse sense be thought of as a system that is locally accessible,
since it can basically reach an open set of points relative to its forward trajectory. It
is, however, obviously not STLC, since the open neighborhood that it can reach after
flying for some small time T does not contain the point at which it started. Notice
that here we emphasize that this only holds for small time, or in a local neighborhood.
Using these same arguments (which can easily be formalized), one sees that mechanical
systems can only be STLC around states with zero initial velocity. If our requirement
for a system to be controllable were only that it be able to move between two points,
then the airplane would satisfy this condition, since it could perform a circle in order to
return to the starting point (or any point in an open neighborhood around the starting
point). It is/unclear as to what sense of controllability will be most important for
the purposes of locomotion. To date, however, there are very few theoretical results
concerning questions of global nonlinear controllability, and so we must be satisfied
with investigating small-time local controllability. '

/

2.3. The Lie Algebra Rank Condition
For general systems of the form:
i=f(5) + (2, zeN

a standard method for determining accessibility is to compute the accessibility distri-
bution. To do so, we define a sequence of distributions. Let

Ao =span{f,h1,..., hm}
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(the span taken over C* functions on N), and iteratively define
Ap = Bxs +span {[X, V]| X,V € Ay }

This is a nondecreasing sequence of distributions on N, and so terminates at some kg,
under certain regularity conditions. We will call Ay, the accessibility distribution,
and denote it by C:

C =AM = Ao

A standard result from nonlinear control theory (based on the Frobenius Theorem),
known as the Lie algebra rank condition (LARC), equates accessibility with the con-
dition C =T'N.

Theorem 1. (LARC) If dim C(2) = dimT,N for all z € N, then the system given
by eqn. (11) is locally accessible.

As a means of illustrating the calculations necessary to compute the accessibility
distribution, we include the following example from (Nijmeijer and Van der Schaft,
1990, Example 3.14).

Example 1. Let N = R?* with coordinates (21, 25). Consider the system

z1 0 1

,?.12 Z]2_ 0

) o)
-2 9 -2
f zl(%g’ 0z
9] d
[h’f} :2‘21-8_2—2‘, [ha [h’a f]] = 255

Thus, dimC(z) = dimR? = 2 for all (21,22) € N and so Theorem 1 implies that this
system is locally accessible. That is, the controls can always be used to reach an open
2-D subset of R?. Notice, however, that this system possesses a drift term so that
2y > 0 everywhere. Given a starting point, (z),23), the reachable sets will consist
only of points with 2z > 2§ and hence will not contain (z?,2z9) in their interior.

Therefore, this system is not STLC.

3. Review of Previous Work
3.1. The Principal Kinematic Case

Kelly and Murray (1995) have derived controllability results for the principal kine-
matic case. The kinematic case implies a driftless system; in this setting, accessibility
and controllability are equivalent. The conditions they give for controllability will be
useful in the present context for checking accessibility and controllability in systems
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where momentum terms drive the system. In the kinematic case, however, momenta
arising from symmetries are annihilated by the nonholonomic constraints. Therefore,
p =0, and the equations of motion reduce to
~lg = —A(r)7
979 (r) (20)
T=1u

Given specified control inputs, the local form of the connection, A(r), thus determines
the motion in the full configuration space.

By using the special structure provided by the Lie group symmetries, Kelly and
Murray were able to derive straightforward computational conditions for controlla-
bility and suggest methods for generating desired trajectories. In their paper, they
establish two important results that will be useful later. First, they observe that by
taking the appropriate derivatives, the controllability analysis can be performed on
the Lie algebra, i.e., at g = e. This is a very important point, as it implies that the
controllability analysis can be performed independent of the group variables. The
computational burden is thus dramatically reduced, and some of the challenges in
dealing with parameterizations of manifolds can be avoided. This fact is used in
our controllability tests—the special decoupled structure of the fiber equations makes
this possible, as is seen in the explicit calculations below. Furthermore, Kelly and
Murray show that the controllability of a kinematic system can be determined solely
from the local form of the connection, A, its curvature, and higher covariant deriva-
tives. The reader unfamiliar with exterior derivatives of differential forms is referred
to (Abraham et al., 1988).

Definition 4. Given a local connection form, A, on @, the local curvature form is
the 2-form DA determined by evaluating the exterior derivative of A on horizontal
vectors. In our setting, this implies

DA(X,Y) = dA(X,Y) + [A(X), A(Y)} (21)
where X,Y € X(M) are base (control) vector fields.
If we rewrite (20) as
qg= Xihui
with
—9A(e;)

(=

Xh =

2

(recall that e; is the vector in T, M with a 1 in the i-th row), then it is shown in
(Kelly and Murray, 1995) that each of the brackets in the accessibility distribution C
can be expressed in terms of derivatives of the connection. For example, the first order
brackets between control vector fields can be expressed in terms of the curvature:

—gDA(e;, e;)

[X.’I,Xj’.l] - o

1
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and the next higher order bracket in similar fashion:

(ot xt] = (Le DACei, €5) —O[A(ek),DA(ei,e,- )

Noting this, they construct a series of subspaces of g given by repeatedly taking
higher derivatives of the connection:

h1 = span {A(X) : X € TTM}
by = span {DA(X,Y) . X,Y € TrM}

hs = span {LZDA(X, Y) - [A(Z),DA(X, Y)], (22)

[DA(X, Y), DA(W, Z)] W, X,Y,Z € TTM}

hr = span {Lxﬁ— [A(Z),¢,[n, €] : X eT-M,f €1, nEDh & - @ bk—l}

Notice that in the above equations, the connection has been placed in the appro-
priate mathematical context as a Lie algebra valued one-form on M. Thus, derivatives
of A will take their values in g when evaluated along the appropriate vector fields
on M.

Next recall that for driftless systems local controllability and local accessibility
are equivalent, so that the results given below in terms of the accessibility distribution
apply equally to controllability for systems with purely kinematic constraints. Kelly
and Murray define two types of local controllability, adapted for problems of loco-
motion. Fiber controllability implies that we can use control inputs to move to any
position in the fiber, but without regards to the intermediate or final conditions of
the controlled variables. On the other hand, total controllability is a slightly stronger
condition, basically equivalent to STLC, which includes the ability to fully specify the
motion of the controlled variables.

Proposition 1. (Kelly and Murray, 1995) The system given by eqns. (20) is locally
fiber controllable at q € Q if and only if

g=h®heho---
and is locally totally controllable if and only if
g=h®h&---
The subspaces, hy C g, will be used below to give sufficient conditions for local

accessibility (and later controllability) of the general mixed case given by (12).

In order to illustrate the above definitions (and to make clearer the distinction
between fiber and total controllability), we include the example of the two-wheeled
- mobile robot, presented in (Kelly and Murray, 1995).
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Example 2. Two-wheeled Mobile Robot (cont.)

Recall the two-wheeled planar mobile robot described in Section 2. The config-
uration space is @ = G x M = SE(2) x (S x§), with coordinates ¢ = (z,y,8, ¢1, @2).
The constraints defining the no-slip condition can be written as in (20) so as to high-
light their Lie group structure:

p p
cosfd sinfd 0 T 5 5 ¢
—sinf cosf O v | =- 0 0 4.51
. p p 2

0 0 1 0 _— ——

2w 2w

From this, it is clear that the local form of the connection is given by

p p
2 2
Alr) = 0 0 (23)
P _P
2w 2w

Also, we note that it is easy to show that the base directions are controllable, in a
manner similar to that done with the snakeboard in (17) and (18) above.

The connection is used to define h; for the controllability calculations, and so

hl = span {(laoal)TJ <1>0)—l)’r}
w w

In order to compute the curvature, DA, we use the formula DA = dA + [A, A], for
which we will need the structure constants of the Lie algebra. A straightforward
calculation shows that for &,n € g,

&n® = &n?
[Enl =1 &n° &9
0
using the standard basis for se(2). If we write A using differential forms as
Lagy+Lds
A= 0
p p
—d¢; — —d
" ¢ " b2
then it is easy to see that dA = 0. Calculating the bracket, we get

0
2

DA =[AA] = - ;—wdqﬁl A Az
0
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Clearly, the Lie algebra element (0,1,0)T € by is in the span of DA, when applied
to the appropriate tangent vectors. Thus, the two-wheeled mobile robot is fiber
controllable, since f; + h2 = g. However, Kelly and Murray (1995) show that the
higher-order derivatives of A(r) will never lead to terms with nonzero elements in
the third slot (i.e., terms like (*,*,1)), and so the mobile robot in this example is not
totally controllable (since hs +hs + ... # g). This surprising result is related to the
geometric relationship between the two wheels, and the paths they must follow.

3.2. Unconstrained Systems with Symmetries

In the same manner as for the principal kinematic case above, Montgomery (1993)
showed that similar tests can be used to show controllability for an unconstrained
dynamical system with Lie group symmetries. His result applies to the case where
the spatial momentum g is zero (and hence the body momentum p = Ad ;u = 0), so
that all motion is horizontal. For this situation, we see that, since the momentum is
zero and constant (recall Noether’s theorem for unconstrained systems), the equations
reduce to those of the principal kinematic case (eqn. (20)),

g7 = —A(r)r
T=u

where A is again the mechanical connection. Using the same construction above, his
result states that if

g=ha®h3d---

then any two configurations go and ¢; can be connected by a horizontal path, i.e.,
one which satisfies the 4 = 0 constraint. In other words, even though we have a fully
dynamical system, it is possible to give simple controllability conditions based on the
connection. Notice, however, that for © # 0 this presents a drift term which implies
that controllability and accessibility are no longer equivalent, and so Chow’s theorem
(LARC) implies only accessibility. One of our goals in the following sections is to
derive tests for general systems with symmetries and constraints in order to establish
basic controllability results.

4. Local Accessibility

Having reviewed the previous results on each of the limiting cases—the principal
kinematic and unconstrained cases—we now turn towards deriving new results for
the more general case of mixed constraints and symmetries. In doing so, however, we
will attempt to build upon the structure used in these previous works. Let us begin
by examining a few of the lower order brackets in the accessibility distribution, C,
which play an important role in the accessibility and controllability analyses to follow.
Notice that we have chosen the control vector fields in such a manner that they are
mutually orthogonal, and such that

[hiahj]:()a V’i,jE{l,...,m}
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The remaining first order brackets (those in A;) will be of the form of a control
vector field bracketed with the drift vector field. A quick calculation shows that

—Ai(r)
(034)i 7 + (0pi)] )
e;

0

a; = [hi, f] =

At this point we direct the reader’s attention to the similarity between this set of
vector fields and those for the kinematic case. If one disregards the variables that are
eliminated in the kinematic case, i.e., the momentum and acceleration variables, then
the two sets of equations are identical. A loose mathematical interpretation of this
similarity is that the bracket operation pairing the drift and torque controls (given
by a; = [hs, f]) yields a vector field that is “equivalent” to having integrated the
input control torques, converting them to something approximating velocity controls.
Hence they take on a form reminiscent of the kinematic case, where the control inputs
are velocities. This, of course, is just a naive way of describing the similarities between
the brackets «; and the inputs in the principal kinematic case.

Moving to the second order brackets, an interesting thing happens when we
bracket h; with o;:

0
(04)ij
0
0

Bij = [hi,a;] = [hi, [hj,f]] =

Thus, the oy term, which is a cross-coupling term for the base variables, directly
affects the momentum variables via the §;; brackets. Viewing this coupling as a map,
it TM xTM — RP, then o;; being surjective implies that all of the momentum
directions can be generated via this second-order bracket. This mapping will be quite
useful for a variety of reasons, as detailed below.

Proposition 2. Assume that o+ is onto and that

g=ha+bhs+---

where the by ’s are defined as above (egns. (22)) using the local form of the connection
given in (12). Then the system given by (12) is locally accessible.

Proof. To show accessibility, we need to show that the distribution A, spans TN at
each point z. The assumption on ¢, implies that the bracket given by [k, [h;, f]]
will span the momentum directions, so it remains only to show that A, contains
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the fiber and base directions. To do this, we begin with A;. It will contain vectors
of the form

0 —Ai(r)

0 (05)is™ + (0p: )] P;
h; = , oy =

0 €;

b; 0

Thus, the base directions (velocity and acceleration vectors on M) will be contained
in A;. Next, we examine A,. It will contain the vectors, a;, and also vectors of the
form

Thus, for each z € N we can cancel off the terms in o; which act in the momentum
direction, and so define a new set of vector fields to operate on

—Ai(r)

Using these vector fields, we define
Ag := span {f, hi, Bij, @i}

and the subsequent distributions, Ag, similar to before. Then Ao C Ag. Asin
the kinematic case, higher-order bracketing of &; and &; will lead to higher order

derivatives of the connection, A(r). By the assumption that h =gy + g3 +..., we
have it that A, = T, N, for each z € N. The result follows since Ao D Ay =T, N.
|

The criterion given in Proposition 2 will be used in the following sections as a basis
for checking local controllability and for demonstrating accessibility and controllability
properties for the snakeboard example.

5. Local Controllability

Unfortunately, for nonlinear systems with drift we have seen above that local accessi-
bility may be quite different from local controllability. In order to provide a result for
controllability, we will need to show that certain of the higher-order brackets either
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vanish or can be written as a linear combination of lower order brackets. This result
is due to Sussman (1987), and is the strongest statement of local controllability for
nonlinear control systems with drift of which we are currently aware. For further
details on this construction, please refer to (Bloch et al., 1992; Sussman, 1987). In
order to use these results, we first need to develop a notion of degree of a Lie bracket.
This development can be done much more formally using the formalism of free Lie
algebras (Ostrowski, 1995; Serre, 1992), but instead we rely on common intuition to
provide the necessary understanding of what is meant by the two definitions of degree
developed here.

Let X = (Xp,...,Xm) be a finite set of vector fields (in Serre’s notation, this
would be a finite sequence of indeterminates). Then, denote by Br(X) the set of all
possible iterated Lie brackets involving Xg,..., Xm.

It should be clear now that we can use this free Lie algebra to define a notion

of degree for a Lie bracket. Let the set X = (Xy,...,X:n) be a finite sequence of
indeterminates.

Definition 5. Let the degree of B € Br(X) relative to X,, denoted by §*(B),
be the integer number of times that X, appears in the bracket B. The degree of
B € Br(X) is then given by

§(B) =Y _&%B) (24)

a=0

To illustrate this, suppose that m = 2. Then the degrees for
Y= [XO:[X17X2]: [XO,X1]] and Z = [Xy, Xs]

are §%(Y) =2,64(Y)=2,6%Y) =1 and 6°(Z) =0, 6(Z) = 1, 6°(Z) = 1, respec-
tively.

The degree, §, of a vector field should (hopefully) correspond to one’s intuitive
notion of the degree of a Lie bracket. There are several results on generating a
complete set (basis) of iterated Lie brackets, e.g., a Philip Hall basis (Murray and
Sastry, 1993; Serre, 1992). We use a result given in (Lewis, 1995):

Proposition 3. Every element of the free Lie algebra Lx can be written as a linear
combination of repeated brackets of the form

[Xk, [Xk_l,[...,[Xz,Xl]...]”
where X; € X,1=1,...,k.

Let ho := f so that Ay = span{ho = f,h1,...,hm}. We represent this set of
vector fields as X = (hg, h1,...,h,,) with the set of all possible Lie brackets given
by Br(X). Then, we have the following theorem due to Sussman (the version we
have written here is greatly simplified, but retains essentially all of the content of the
original theorem—more details can be found in (Sussman, 1987; Ostrowski, 1995)):
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Theorem 2. (Sussman, 1987) Given the system of (11), with ho(z) = f(2) =0 at
an equilibrium point zo € N, assume that X = (ho,...,hm) satisfies the LARC at
zo. Further, assume that whenever X € Br(X) is a bracket for which 6°(X) is odd
and 6 (X),...,6™(X) are all even, then there exist brackets Yi,...,Yr such that

X =o'y,
for some ot,...,a* € R, and
5(Y;) <6(X), i=1,...,m
Then the system defined by (11) is STLC from zg.

With this theorem in mind, we define a “bad” bracket to be those brackets for
which the drift term appears an odd number of times and for which the control vector
fields each appear an even number of times (including zero times). The sufficient
conditions for small-time local controllability, then, can be simply restated as requiring
that all “bad” brackets be expressible in terms of brackets of lower degree.

Proposition 4. Assume that the system defined by (12) is locally accessible, that
the map o+ is onto, and that (04+)i;i =0 for 1 =1,...,m (no summation over i).
Then this system is small-time locally controllable (STLC) from all equilibrium points,
Zo € N.

Proof. In order to show controllability, we begin by demonstrating that all “bad”
brackets as defined by Sussman will either be zero or be expressible in terms of lower
order “good” brackets (in fact, of order 3). This, along with the assumption that the
LARC is satisfied (using the results from the kinematic case), will give the result via
Theorem 2.

First, we restrict our attention to the point zp = (0,0,0,0) € Gr xRP x M x T M.
It is easy to show that the result will hold for all equilibrium points, z € N (of the
form z = (g,0,7,0)), by translating (12) appropriately. Also notice that f(z) = 0,
satisfying the first requirement of Theorem 2.

Next, recall the definition of the degree of a bracket and notice two important
facts that must be true of any bad bracket X: 1) §(X) must be odd, and 2) §°(X) #
o7, 6%X). These are both made true by virtue of there being exactly one odd
term in the summation of eqn. (24). The first condition implies that all even order
brackets are necessarily “good” brackets, while the second condition implies that for
bad brackets the quantity

Y(X) = 6%(X) = D 6 (X)
1=1

is always odd, and thus never zero.

More specific to the system of eqns. (12), let O(k) denote a function in
(2,2) which is a homogeneous polynomial of order k¥ in (7,p). Thus, f(z) =
(0(1),0(2),0(1),0). A straightforward set of calculations shows that for any bracket
involving the drift vector field, f, bracketing by f will increase the order of these
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functions by 1, and that bracketing by any of the h;’s will decrease the order of the
bracket by 1. Thus, we will find that for any bad bracket, X, (which by definition
must contain at least one X, in the bracket), it will evaluate to a vector field with
the form X = (O(y(X)), O(v(X) + 1), 0(v(X)), 0)!, or will be identically zero, e.g.,
any bracket involving [h1, he] = 0. Viewed this way, it is easy to see that all bad
brackets for which v(X) # —1 must have X =0 when evaluated at the equilibrium
points.

Thus, the only bad brackets that we need worry about are those with v(X) =
—1, for which X = (0,0(0),0,0). These are brackets which lie in the momentum
direction. But we have already assumed that the map o;; is onto, which means that
these directions are captured by a bracket of degree 3:

0
‘“(U'ﬁ)ij
0
0

Bij = [Xi’[Xj,Xo]] =

Unfortunately, brackets of the form [X;, [X;, Xo]] (¢ = j) are also bad brackets, which
explains the necessity of assuming that (o7;);; = 0. Given this, however, we see that

any bad bracket which is not zero at 2y can be rewritten in terms of brackets of the
form [h;, [hj, f]], where 1 #£j. =

A few remarks are in order. First, the reader should note that while the condition
that (0++)s =0 in Proposition 4 may appear slightly artificial, it is required in order
to satisfy Sussman’s criterion for controllability. In fact, research by Lewis and Murray
(1995) suggest that similar conditions may be needed for general mechanical systems.
They study accessibility and controllability for unconstrained mechanical systems,
and report similar conditions on these third-order brackets of the type [k, [f, h:]].
In their case, these brackets are allowed to be nonzero if they are contained in the
control input vector field; however, it is not difficult to show that for our purposes
these brackets must be identically zero.

Also, one of the main tenets driving this research is that the process of locomotion
can be described as a coupling of internal shape changes creating net external motion
and that this process can be modeled using a mathematical connection on a principal
fiber bundle. Naturally, there arises the question of what role the connection and its
derivatives really do play in describing the actual motion of the system. In particular,
what is the relationship between the connection and its derivatives and locomotive
gaits? We address this issue in the following section.

6. Locomotive Gaits

Let us briefly consider an important aspect of locomotion that is intricately related
to the study of control for these types of systems. A very common observation of

! 'We have allowed 7(X) to be negative, and so define O(k) = 0 for all k < 0.
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locomotion is that it is most often generated by cyclical shape changes (Collins and
Stewart, 1992; Hildebrand, 1965). The motion takes on a characteristic form, called
a gait.

Definition 6. A locomotive gaitis a specified cyclic pattern of internal shape changes
(inputs) which couple to produce a net motion.

One very interesting phenomenon that arises in the study of locomotion is the
presence of a very limited set of basic motion patterns. For each species, there usually
exist at most a handful of gaits, often tailored for specific needs or environments. For
instance, a human will walk or run, depending on the desired speed, but may also hop
or skip (though these two gaits do not seem to serve any evolutionary function). On
the other hand, snakes will generally move in a serpentine fashion, but can adapt to
other environments. For instance, on a slippery surface, a snake may push off the walls
of its environment and move in a concertina (inch-worm) gait. Alternatively, snakes
in the desert are known to use a sidewinding gait in order to minimize the amount of
time that body surfaces spend in contact with the hot sand, and maximize the time
that surfaces are off the ground and hence cooled by the air. What is interesting about
all of this is that there is a small set of gaits that are used, and almost universally
these gaits are based on a single frequency of oscillation. In studying locomotion, and
in particular when examining related control issues, it will be important to ask the
question of how our models and control laws reflect these naturally occurring patterns
of motion.

We provide here a brief discussion of the gaits that have been found for the
example of the snakeboard. Obviously, the analysis of gaits is intricately related to
issues of controllability for locomotion systems.

The Snakeboard. We return to the snakeboard example to investigate controlla-
bility and gait patterns. Obviously, the bracket of the control inputs, [hy,hg|, is
identically zero. The only other first order brackets are those mixing the drift vector
field with the control inputs:

. . _ .9
J,-sin 2¢ Jysin 2¢ sind, Jy sin qﬁ,
2ml 2ml ml?

. T
29J, cos? 4, 1, 0, 0, o)

Cay = [hy, f] = ( 0sf,

and
. T
o = [hs, f] = (0, 0, 0, 20, cos? ¢ — ptan g, 0, 1, 0, 0)

Notice that these vector fields have “1’s” in the appropriate velocity directions. As
mentioned above, this loosely corresponds to integrating the control torques to velocity
controls. Notice that this will also encode the information given by the local form of
the connection, A(r), since the connection relates input velocities to fiber velocities.

The vector fields above imply control of the base (assumed to be controllable). In
order to show accessibility and controllability (STLC), the first criteria to be satisfied
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are the conditions on o, given by the following third-order brackets. First, we
need the diagonal elements of ¢;; to be zero. This is seen to be true via a direct
calculation:

Bos = Byy =0

Then we look at off diagonal terms to show that oy, is onto (and hence that the
momentum direction is contained in the accessibility distribution). To see this, we
simply write down the necessary bracket:

Boy = [hy,ag] = (0, 0, 0, 2J, cos® ¢, 0, 0, 0, 0)"

which is nonzero for all ¢ # w/2.

Finally, to demonstrate that the snakeboard is controllable, we need to show that
g =h2+h3+. .., using the connection, A(r). We begin by computing [ag, ay], which
gives us the curvature of the connection, DA. This yields terms of the form:

T
Ir cos 2¢, 0, _ I sin2¢ | € by
ml 2

ml

Then, [ay,[aq, ay]] yields

2J, . 2J, ’
(— — sin 2¢, 0, o cos2¢> € b3

and [0, [ay, [ay, [ay, ag]]]] gives

2 T
(0, —2ic032¢, O> € hs

m2[3
Thus, g = b2 + h3 + b5, and the conditions for Proposition 4 are satisfied.

As an aside, we comment that the roller racer example in (Krishnaprasad and
Tsakiris, 1995) fails to satisfy these conditions (¢;; # 0), but also has been shown not
to be STLC (a general result on control systems with single inputs (Lewis, 1997)).
Finally, having shown that the snakeboard is controllable, we return to the question
of how these calculations relate to the gait patterns demonstrated by the snakeboard.
A major part of this issue, then, is asking the question, “what role do the connection
and its derivatives really play in describing the actual motion of the system?” In
particular, “what is the relationship between the connection and its derivatives and
locomotive gaits?” Although the results at present are only qualitative, they certainly
suggest that we are on the right track. Along with this, they provide some hints as
to what directions to follow in future research.

Extensive simulations of the snakeboard gaits can be found in (Ostrowski et al.,
1994), some of which are included here to provide a new perspective on how these
results fit into the present context. To date, there have been three basic gait patterns
studied for the snakeboard: the “drive” (or “serpentine”) gait, the “rotate” gait, and
the “parallel parking” gait. In each of these, we assume complete control of the base
variables, ¢ and 1, and specify their trajectories as sinusoidal inputs of the form:

¢ = ay sin{wyt), Y = ay sin(wyt)
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A gait will be referenced by an integer ratio of the form wy : wy, corresponding to the
ratio between wg and wy. For instance, a 3:2 gait (the parallel parking gait) would
correspond to wyg = 3 and wy = 2. For the simulations, the following parameters
were used:

m 1 6 kg

J : 0.06 kg-m?

Jy : 0.167 kg-m?
Ju : 0.00167 kg-m?
) :03m

These values roughly reflect the physical parameters used to build a working
prototype snakeboard (shown in Fig. 1).

The “drive” gait

The drive gait is characterized by a 1:1 frequency ratio, and demonstrates a forward,
serpentine motion resembling that of a snake. A simulation of this gait is shown in
Fig. 2, using the parameters: ag = 0.7rad, ay = —1rad, and wg = wy = Lrad/sec.
We remark that the scaling of the axes given in this figure and those to follow is chosen
50 as to maximize the visibility and spread of the data presented in these figures, and
so this must be taken into account when interpreting the results in terms of physical
quantities. Notice that in Fig. 2 the amplitude of the motion in the transverse or
y-direction steadily increases. This is due to the fact that momentum is continually
being built up by this gait. Human riders use feedback to control this effect, and are
visibly seen modifying their input patterns once a desired speed is reached.

0.3

0.2s intervals ——
0.2

0.1t

LN a

N

0.2+

y (m)

03 |

04 . . . ) . .
0 05 1 15 2 25 3 35
X (m)

Fig. 2. Position of the center of mass for the 1:1 (drive) gait.

In relationship to the Lie bracket calculations, we notice that the 1:1 frequency
ratio has a direct correspondence to the 1:1 bracket, [y, ay]. In fact, evaluated at
® =0 (the center of the wheels’ rotation), the bracket gives a Lie algebra element of
(Jr/ml, 0, 0)". This is written in the body frame of the board, and so corresponds
to forward motion, along the length of the board.
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Fig. 3. Position of the center of mass for the 2:1 (rotate) gait.

The “rotate” gait

The rotate gait uses a 2:1 frequency ratio, and generates a rotational motion (in 6)
that leaves the (z,y) position relatively unchanged in the mean. The input parame-
ters for the simulation shown in Fig. 3 were ag4 = 0.7rad, ay = 1rad, wy = 2rad/sec,
and wy = lrad/sec. The snakeboard moves steadily around a central point, while
undergoing large rotations—moving 7 radians, or one half rotation, in approximately
four cycles.

Again, we return to examine the correspondence of this motion with the Lie
bracket. We see that the necessary bracket direction, the §-direction, is given by a
2:1 Lie bracket. Namely, [ag, [a¢,a¢]]l¢:0 produces the element (0, 0, —2J,/mi?)~.

The “parking” gait

The final gait studied is the parallel parking gait, so called because its motion resem-
bles that of a car performing a parallel parking maneuver (see Fig. 4). It is based on
a 3:2 frequency ratio and generates a net lateral motion, transverse to the length of
the board. The parameters used in the simulation were ag = 0.7rad, ay = lrad,
wy = 3rad/sec, and w, = 2rad/sec.

The 3:2 bracket, [ag, (e, [0, [0, ap]]]], in which a, appears 3 times and
oy appears twice, gives (0, 2J,2/m2l®, 0)7. Other permutations of the fifth order,
3:2 bracket give Lie algebra elements that are either in the same direction or are
identically zero. The nonzero entry in the second position of the Lie algebra ele-
ment above corresponds directly to the direction transverse to the board, namely the
y-direction when the board is at 4 = 0.

7. Conclusion

This paper establishes easily computable controllability results for systems with Lie
group symmetries and external nonholonomic constraints. These types of systems
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Fig. 4. Position of the center of mass for the 3:2 (parking) gait.

are characterized by the existence of a connection, which relates the motion of the
system to motion in its control inputs. The connection has been discussed in its direct
implications for accessibility and controllability. Further, these types of systems will
very often include drift vector fields, in the form of momentum terms. This added
complexity makes the analysis slightly more difficult, but gives the additional possible
benefit of increased control over the system dynamics. Research has shown that many,
if not most, problems of locomotion can be formulated in terms of this dynamical
structure, and so motivate further analysis of the controllability of these types of
systems. We have presented an initial survey of the relationship between gaits (as
input patterns) and the Lie bracket directions generated in the controllability tests.
Future work will be concerned with further exploiting the geometric structure of
the problem, and in developing means for establishing results governing trajectory
generation and optimal control of locomotive gaits.
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