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TIME-OPTIMAL CONTROL OF REDUNDANT
MANIPULATORS

Mirostaw GALICKI*, GRZEGORZ PAJAK*, IwoNA PAJAK*

A method of finding optimal controls for both non-redundant and redundant
manipulators is considered. It is based on a strict convexifying of the original
control set with any desired accuracy in the Hausdorff sense. The optimal
controls thus obtained are shown to converge (weakly) to a bang-bang solution.
Furthermore, this method produces also controls which may be directly used
to provide nominal inputs in on-line manipulator control. A simple numerical
example involving a three-degree-of-freedom revolute kinematically redundant
manipulator is presented.

1. Introduction

The time-optimal planning of motions of kinematically redundant manipulators op-
erating in a manufacturing environment becomes very important to increase produc-
tivity. Several works have addressed this problem with hard constraints on controls.
Numerical iterative algorithms using Pontryagin’s maximum principle (Sakawa and
Shindo, 1980; Weinreb and Bryson, 1985) and a method of (Mayne and Polak, 1975)
have proposed strong variations based on the maximum principle to solve the time-
optimal control problem. Another iterative method is the slack-variable method
(Miele, 1975). It handles the inequality constraints as equality ones. This increas-
es the number of unknown functions to be found by introducing the slack-variables.
Another approach to minimum-time problems is to assume that the optimal controls
are bang-bang. Then they are parametrized by their switching times and parameter
optimization techniques are used to find them (Kahn and Roth, 1971; Vlassenbrok
and van Dooren, 1988). A method involving joint-space tessellation, a dynamic time-
scaling algorithm and a graph search has been used in (Sahar and Hollerbach, 1986)
to find an optimal solution.

Most of the above works find time-optimal trajectories which are typically (by
treating the torques/forces as the control variables) at the torque/force limit at least
for one joint. Therefore there is no flexibility to take care of disturbances or modelling
discrepancies. Moreover, such strategies are physically undesirable due to typical
discontinuities at switching times and non-negligible actuator dynamics.

There are several approaches eliminating some of the above drawbacks. Asada
and Slotine (1986) have reduced the assumed torque/force bounds to leave room
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for a closed-loop control action. In (Slotine and Spong, 1985) an on-line adjustment
scheme is proposed, where the trajectory is modified on-line by changing the reference
trajectory. The modified trajectory is executed at the same time as the reference one.
Alternatively, in (Chen and Desrochers, 1988; Sakawa and Shindo 1980; Shiller, 1994)
a quadratic energy term has been added to the performance index (or the Hamilto-
nian) to smooth the controls. However, modifying the Hamiltonian (or performance
index) may result in conservative solutions since the controls thus obtained lose their
bang-bang nature.

To avoid these shortcomings, a solution to the time-optimal control problem is
proposed in this study, where the optimal controls are continuous and leave room for
feedback actions. This involves strict convexifying the original control set with any
accuracy in the Hausdorff sense. The optimal controls obtained by means of Pon-
tryagin’s maximum principle are shown to converge weakly to a bang-bang solution,
as the above approximation approaches the original control set in the Hausdorff sense.

The paper is organized as follows. Section 2 formulates the problem of time-
optimal control. The application of Pontryagin’s maximum principle with a strictly
convex control set is described in Section 3. General transversality conditions are given
in Section 4, which reduces the considered control problem to a two-point boundary-
value problem. Section 5 provides a computer example involving a three-degree-of-
freedom planar manipulator.

2. Problem Formulation

Consider the following dynamic model of a redundant manipulator:

M(q)g+ F(q,q4) =u (1)
where g € R™ is the vector of generalized coordinates, n > 1, M(q) € R™*"
denotes the inertia matrix which is symmetric positive definite, F(q,q) stands for the
n-dimensional vector of Coriolis, centrifugal and gravity forces, v = (u1,ua, ..., un)7

is the n-dimensional vector of control inputs. Without loss of generality, the controls
being functions of time are bounded in magnitude:

~1<y; <1 (2)
where 1 =1,...,n.

The task of the manipulator is to transfer the end-effector in the m-dimensional
work space, where m < n, from the initial position

P(q(O)) - Po =0
q(0)=0

where P : R* — R™, P(q) is a kinematic model of the manipulator consisting of
m non-linear, scalar equations, Py, € R™ stands for a given initial position of the
end-effector in the work space, to the final position

P(q(T)) - Pr =0
a(T) =

(3)

(4)
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Pr € R™ being a given final location of the end-effector. Here T denotes the
unknown final time of task execution. The manipulator motion should be realized in
minimum time under constraints (2)—(4).

The above task may be expressed in state-space form as follows:
& = A(z) + B(z)u (5)

where z = (q )7 € R?,

Afe) - ? Ba)=| °
M7 (q)F(g,9) ) M~ (q)

with the boundary constraints

®(z(0)) =0, @®r(x(T)) =0 (6)
where

mue0) < [FOO)P0) g o (Plam) P

q(0) q(T)
The performance index to be minimized equals
T
I(u) = / 1dt (7)

0

The relations (2), (5)—(7) form a time-optimal control problem with hard control
bounds and terminal state constraints. Its solution is proposed in the next section.

3. Application of Pontryagin’s Maximum Principle

In order to find optimal controls for the problem defined by (2) and (5)—(7), the Pon-
tryagin maximum principle can be used. However, due to the weak convexity of the
control set (2), its direct application to find numerically the solution seems difficult.
The accurate controls thus obtained are of bang-bang type. As a consequence, they
leave no room for feedback actions to compensate for e.g. model errors and distur-
bances. On the other hand, the above controls are physically unrealizable due to
discontinuities at the switching points and non-negligible actuator dynamics. This
may then give rise to large tracking errors which lead to large trajectory deviations
in on-line control.

The aim of this section is to eliminate the above-mentioned drawbacks by means
of a strong convexifying of the control set (2). This is realized based on the following
dependence:

n
> uF-1<0 (8)
2=1
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where k is a fixed, positive integer. Note that the control set (8) may approximate
the accurate one (given by inequalities (2)) with any desired accuracy in the Hausdorff
sense.

The largest approximation error arises on the diameter of the n-dimensional
hypercube (2). After simple calculations, omitted herein, it equals € = 1 — n=1/2k,
Clearly, € — 0 as k — oo. The properties of that approximation become apparent
in conjunction with Pontryagin’s maximum principle. In order to apply it for the
control problem defined by (5)-(7), the Hamiltonian is introduced:

H=-14(A(x), %)+ Si(z, ¥)u; (9)
=1

where (S;(z,¥),(S2(z, ¥),...,(Sa(z,¥)T = BT(z)¥, Si(x,¥) is the i-th
switching function, ¥ denotes the 2n-dimensional vector of adjoint variables, ¥ =
(¥1,...,¥,,)T. The optimal control must maximize H while taking into account the
constraints (8). Due to the linearity with respect to w and the strong convexity of the
control set (8), a unique maximum of the Hamiltonian is attained on the boundary
of this set. Hence the problem to be solved is defined as follows:

max {H} (10)

(ul,uz,...,uu)

subject to the constraints

1-Y =0 (11)

=1
Introducing
H*:H+)\(1—Zufk) (12)
=1

where A is a Lagrange multiplier, yields the necessary condition for a maximum of
H in the form

H*
8811. =0
oH* 0 (13)
N

Applying the coordinate description and omitting for simplicity the terms = and ¥
in the switching functions lead to
n

Si—2kxuFt =0, 1-> uF=0 (14)

=1
where ¢ = 1...,n. Next, by using boundary constraints (11), the Lagrange multiplier
in (14) is eliminated. There exist two possible solutions for A, namely

2k—1 2k—-1

3 i n 2}‘2_1‘_1 2% B 1 n g,gl“sz %
>\_+2k(25i ) and A= %(Es,.

i=1
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It is easy to see that the Lagrange multiplier A with a positive sign maximizes the
Hamiltonian. Accordingly, the optimal controls may be expressed in the following
explicit form:

(15)

where 2 =1,...,n.

The results presented in (Sontag and Sussman, 1986) imply E( )2’~ T > 0.

Hence all the controls (15) are well-defined. The next property 1s that they are
continuous functions of time. This is a consequence of the fact that = and ¥ are
continuous mappings with respect to time. Due to strong convexity, the controls (15)
are also defined on singular arcs. It is interesting to consider the limit behaviour of
these controls. Without loss of generality, all the switching functions are assumed to
be non-zero for a fixed ¢ € [0,7]. If ¥ — oo, then (S; )ﬁ converges to sgn(S;).
In order to find the limit of the denominator, it is easier to take 1ts logarithm. Since

log(E(S )TRLT) T log(z |Si]), this implies that log(Z(S )ﬂ 1)/2k——>0 and
=1 =1

ﬁnally Ui sgn(S ). Hence the following result has been established.

Lemma 1. If k— oo, then the controls (15) retain the structure of the controls of the
original problem.

By the assumption of the non-zero switching functions for a fixed t € [0,T], the
following inequality results:

lu,-‘ <1

where ¢ = 1,...,n. Thus the optimal controls (15) leave room for feedback actions
to compensate for e.g. model errors and disturbances in on-line control. In order to
find a time-optimal trajectory of the redundant manipulator, the controls (15) are
substituted into the Hamiltonian (9). The necessary conditions for optimality result
in the complete system of differential equations:

a_:_BH
T

16
. on (16)
T Bz

It is well-defined when x(0), ¥(0) and T are known. Hence 4n + 1 scalar depen-
dencies relating these quantities are necessary in order to fully specify system (16).
They are given in the next section.
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4. Boundary and Transversality Conditions

As is known from Section 2, the boundary conditions (6) constitute 2(n +m) scalar
nonlinear equations. The aim is to obtain other 2(n—m)+1 scalar boundary depen-
dencies which, together with (6), will fully specify the system (16). The application
of the Hamiltonian results in one scalar equation

Hi—r =0 (17)

The use of the transversality conditions provides 2(n—m) dependencies. On account
of (6), the transversality conditions assume the following form:

(®(0),dz(0)) = 0

(18)
(‘I’(T),dm(T)) =0
where dz(0) and dz(T') are the vectors tangent to the hypersurfaces ®¢(z(0)) = 0
and ®7(z(T)) = 0, respectively. The variations of the boundary conditions (6) at
z(0) and z(T) equal

Jodz(0) =0

(19)
Jrdz(T) =0

where Jo = 0®q(xz(0))/0x¢, Jr = 0Pr(x(T))/Oz . The matrices Jo and Jr are
of dimensions (m +n) x 2n. Let Jo and J7 have full rank, i.e. rank(Jo) =m+4n =
rank(Jr). Hence it is possible to select from each of the above matrices m + n
linearly independent columns which are, without loss of generality, the first columns
of Jo and Jr, and to form respectively non-singular (m + n)x(m + n) matrices
J& and JE (otherwise another set of independent columns should be chosen). The
other columns of Jo and Jr constitute (m + n)x(m —n) matrices J& and JE,
respectively. Following the method presented in (Galicki, 1992), general transversality
conditions are derived in the form

[((J(’f‘)‘l 75T —In_m]‘I'(O):O
(20)
(@0 )"~ La]e@) =0

where I,_ ., denotes the (m — n)x(m — n) identity matrix. Taking into account
eqns. (6), (17) and (20), a system of 4n+1 independent boundary and transversality
conditions is obtained:

Ht:T = 0 (21)
[((I8)2I8) = Tnem| 2 (0)
[((IB)1I5) - L] w(T)
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Summarizing, optimal controls (15) result from solving the two-point boundary-value
problem specified by differential equations (16) and 4n 4+ 1 boundary transversality
conditions (21). A numerical procedure has been proposed in (Galicki, 1992) to
solve the system (21) in order to find its roots which uniquely determine the optimal
controls (15).

5. Computer Example

A planar kinematically redundant manipulator of n = 3 revolute kinematic pairs,
shown in Fig. 1 is considered. The data used in the numerical example are as follows:

link lenghts l]_ = 2.5, 12 = 2.0, 13 = 1.0;

link masses m; = 5.0, mo = 4.0, mg = 2.0;

coeflicients of friction ¢; = 1.0, t3 = 1.0, t3 = 1.0;

lower and upper control limits:
ul = —80.0, ul =80.0, v} =-90.0, u} =90.0, u}=-8.0, u¥=8.0.

The task is to transfer the end-effector from a given starting point P, = (1.0,1.0) to
a target one Py = (2.2,1.5).

AZ

o
o
w
(4]
o+
N
w
><V

Fig. 1. Scheme of the manipulator operating in a two-dimensional workspace
Op1p2 and the final end-effector location Pjy.

Figure 2 shows the results of computer simulation for ¥ = 1 and Fig. 3 for
k = 4. The time-optimal manipulator trajectory is depicted in Fig. 4 for k£ = 4. Let
us note that the optimal controls from Fig. 3 leave room for an on-line control of the
manipulator and retain a bang-bang structure. This result agrees with the theoretical
considerations presented in Section 3.
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Fig. 2. Time-optimal controls v. time
for k= 1.
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Fig. 3. Time-optimal controls v. time
for k= 4.
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Fig. 4. Optimal manipulator motion for k = 4.
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6. Conclusions

An application of the Pontryagin maximum principle to find time-optimal controls
from a strictly convex set is presented. This approach produces continuous optimal
controls which may be used to provide nominal inputs for an on-line manipulator con-
trol system. Furthermore, these controls leave room for closed-loop control actions.
In contrast to the methods with a penalized performance index, the method pre-
sented here retains the structure of optimal controls and is not conservative. It may
be directly applicable to very general mechanisms, including multiple manipulators
performing tasks in a three-dimensional workspace.

The drawback of this method is its heavy computational burden which excludes
its use in on-line control. But it can be used for planning long-term production cycles.
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