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MODELLING AND SIMULATION OF ASSEMBLY
PROCESSES WITH ROBOTS

THoMmas MEITINGER*, F. PFEIFFER*

This paper deals with planning assembly processes for a manipulator using nu-
merical simulations, so that the load on the parts and the dynamics of the robot
during the part insertion can be studied. Typical for mating processes is the
contact of the robot with its environment through the parts. The arising contact
forces influence the motion of the robot. For numerical simulations we have to
describe this operation by mechanical models. We present the dynamical model
of the manipulator and models for mounting processes. Various methods are
applied depending on the mechanical properties of the parts. With compliant
mating parts, the forces and moments are only dependent on the relative po-
sition and the velocity of the robot’s gripper with respect to the environment.
If the mating parts are very stiff, the dynamics of the robot is characterized
by closed loops, which requires special mathematical treatment. Numerical and
experimental results illustrate our approaches.

1. Introduction

Small tolerances between the mating parts are often characteristic for mounting tasks.
During the automatic assembly with a robot, the parts will contact each other due to
uncertainties in the manipulator’s position and in the parts’ geometry. Undesirably
high strains on the workpieces or even the unfeasibility of the task, e.g. due to jam-
ming, may result. A well-known example for parts mating is the peg-in-hole problem.
Many assembly processes can be reduced to this example. Thus the effects mentioned
above can be studied.

There are three different approaches to handle these problems. One solution
is the development of special passive compliant mechanisms, based on the Remote
Centre of Compliance (RCC). Through this measure the area where no problems
during the assembly might occur is enlarged. Such mechanisms were first developed
for the peg-in-hole problem in two dimensions. In (Whitney, 1982) the analysis for
designing the RCC was made quasistatically, whereas in (Asada and Kakumoto, 1988)
the dynamics of the peg and the supporting mechanism were also taken into account.
An extension to three dimensions can be found in (Strip, 1989). The same problem
is considered in (Sturges, and Laowattana, 1994), where the principle of the Spatial
Remote Centre of Compliance (SRCC) is used for the analysis.
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A second solution is the additional use of sensor information. Nearly all au-
thors follow the same principle: First an initial contact state has to be identified.
A new method for this step was introduced in (Farahat et al., 1995). Various con-
tact topologies in the presence of sensing and control uncertainties are tested. The
method succeeds, even if the contact forces are statically indefinite. Then the peg
has to be moved towards the hole. This phase can be called peg-on-hole (Bruyninckx
et al., 1995). Afterwards, the peg is aligned and inserted into the hole. Therefore, a
two-point contact, which might lead to jamming, has to be avoided. For this phase
in (Wapenhans et al., 1992) an optimized controller is presented. If the operation
fails due to sensing, model or control errors, the method of error detection and re-
covery is applied in order to complete the given task (Gottschlich and Kak, 1988;
Jennings et al., 1989; Steinle, 1996). In (McCarragher and Asada, 1992) all possible
contact sequences are modelled as a discrete-event system using Petri nets. As new
control methods appeared, they were also applied to the peg-in-hole problem, like
fuzzy control (Park et al., 1992) or neural networks (Park and Cho, 1995). In more
recent investigations (Bergqvist et al., 1994) additional sensors are utilized for not
only detecting the contact state, but additionally finding out manufacturing defects
like burrs and ruts.

The third approach is theoretical investigation. The insertion task is described
by geometrical and mechanical models, where uncertainties from the robot’s position,
the robot’s trajectory and the parts’ geometry can also be taken into account. If
the problem is solved by geometrical considerations and simple assumptions for the
contact forces, one talks of fine motion planning (Lozano-Pérez et al., 1984). In (Xiao
and Zhang, 1995) an algorithm is presented which finds all possible contact points
between polygonal-shaped objects in the presence of uncertainties. More insight into
the peg-in-hole insertion is gained when additionally the stiffness of the supporting
mechanism is considered and all contact forces are modelled. In (Whitney, 1982) for
the two-dimensional case the area is calculated, where jamming and wedging might
occur. In (Caine et al., 1989) similar considerations are made for the same problem
including three dimensions. The dynamics of the complete parts-mating process in-
cluding a complete dynamic model of the manipulator is presented in (Seyfferth and
Pfeiffer 1992). Every contact point is there closing a kinematical loop between the
manipulator and the environment. For an efficient numerical implementation, the
contact laws and transitions between the different contact states (no contact, sticking
or sliding) are formulated as a Linear Complementarity Problem (LCP). The same
method is applied to the three-dimensional peg-in-hole problem in (Meitinger and
Pfeiffer, 1995a).

Different questions arise when regarding flexible workpieces. Through the com-
pliance of the parts, effects like jamming and wedging are not likely to occur. In this
case the forces and moments arising during the mating process are more interesting
in order to evaluate the stresses and strains on the mating parts. For example, in
(Meitinger and Pfeiffer, 1994) we have investigated the insertion of a piston with an
elastic ring into a cylindrical hole. A widespread fixture in automated assembly are
snap fasteners. In (Seyfferth and Pfeiffer, 1992) the unsteady force vs. distance graph
is shown for the mating of a single snap joint under ideal conditions. A very detailed
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three-dimensional model of snap-fasteners was presented in (Meitinger and Pfeiffer,
1995b), where a good correspondence between measurement and calculation of the
forces arising during the mating process was achieved. An algorithm for the predic-
tion of the motion of rigid parts interconnected by torsional springs was developed
in (Donald and Pai, 1990). This theory was applied to the design of snap fasteners.
In (Villarreal and Asada, 1991) more general considerations are made. A buffer zone
is introduced to quantify the distributed compliance of the workpiece. The buffer
zone indicates the permissible positional errors in a certain direction. However, the
elasticity of the parts is modelled using as a simple force law: F' = Kz. This theory
is then applied to the assembly of a box with hinges and snap fasteners. The design
of chamfers (the counterparts the compliant fixtures come in contact with) is inves-
tigated in (Whitney et al., 1983). Various criteria, e.g. minimum insertion work, are
used to calculate the shape of the chamfers. In this paper, we present the modelling
of assembly processes which are executed by a manipulator. Thus we need on the one
hand, a dynamical model of the robot which has to be coupled with the model of the
parts-mating process.

In the next section, we will first introduce the dynamic model of the manipulator.
An important section is the following one which concerns the determination of the
contact points between the parts. Up to this point only the geometry plays a role.
We will then describe both elastic and rigid parts. As examples for compliant work
pieces we investigate snap joints and O-rings. When mating these parts together, the
robot and the environment are nearly decoupled due to the compliance in the parts.
Therefore quasistatic considerations are sufficient to describe the contact forces. Our
examples for rigid parts are then a rectangular and a round peg put into the corre-
sponding hole. If these bodies come into contact, the coupling with the environment
is very stiff, so that we have additional constraints on the robot’s dynamic. Depend-
ing on the number of contact points, the number of degrees of freedom in the system
changes. The constraint equations between arbitrarily shaped parts are derived, as
well as the contact laws and the conditions for the transition between different contact
states. All our approaches are verified through a comparison of the calculated and
measured forces acting on the robot’s gripper during the insertion.

2. Robot Model

Before describing the models, we have to introduce the notation which we shall use in
the following. Vectors are denoted by lower-case, bold-face characters (e.g. a,b,...),
matrices by upper-case bold-face characters (e.g. A4, B,...). Indices on the left refer
to the coordinate system in which a vector is defined (e.g. aa, ab,...).

The industrial robot, here a PUMA 560, possesses six axes and is modelled
as a tree-like multibody system with rigid bodies and ideal links. As generalized
coordinates we take the relative angles between the bodies

T
Ya = (VA1,742, 743, VA4, VA5,V A6) € R® (1)

as shown in Fig. 1(a). Since the natural frequencies of oscillations due to the stiffness
in the first three joints are in the range of interest, an elastic joint model is introduced.
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Fig. 1. The industrial robot PUMA 560 (a) and its joint model (b).

A link-joint unit consists of two bodies, the drive and the arm segment (Fig. 1(b)).
They are coupled by a gear model

TA:c<fy_—M—’)’A)+d(M—’}'A) (2)
G G

which is composed of the physical elements stiffness ¢ and damping d. Thus three
additional degrees of freedom are introduced between motor shafts and arm segments:
T
)

Y = (Ym1, VM2, VM3 eR  (3)

In the remaining links no joint model is necessary, because there the stiffness is
high compared with the acting forces and the elasticity of these joints does not affect
. the system dynamics under consideration. Thus we have altogether nine degrees of
freedom < for our PUMA,

v=ava) €R (4)

The theory for derivation of the equations of motion for multibody systems like
robots has existed for many years. As an example see (Johanni, 1987), where even
elastic bodies are treated. For our PUMA we obtain a set of nine differential equations
in the form

M)y +h(v,¥)=Bu €R (5)

with the inertia matrix M € R®®, centrifugal, Coriolois and gravitational forces
summarized in the vector h € R® and the control input Bu.
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Since most mating tasks are limited to a small area of workpiece interaction, the
robot motion will be slow and centrifugal and Coriolis forces in (5) may be neglected
compared with gravitational and inertia forces. Hence the robot dynamics can be
linearized around a working point <y, where v, = 0. The vector

qa=v-7 = (qm1,qm2, 903,01, 92,93, 04,95, 96)° € R (6)

denotes the deviation from this working point. We obtain the following equations of
motion:

Mg+P3g+Qq=h+Bu ¢cR (7

with the inertia matrix M, the damping matrix P and the stiffness matrix Q. The
vector h contains the remaining gravitational forces. Bwu regards the influence of
the controller. For PD position control we have the typical form of the vector u:

w=—Kp (BTq - qD) ~Kp (BTq - qD) € R° (8)

The matrices Kp and Kp contain the positional and velocity feedback gains.
Through changing the desired positions and velocities ¢, and ¢p the motion of the
manipulator along a trajectory is realized. Integrating the equations of motion (5)
or (7), we obtain for every time step the position and orientation of the gripper
( G-frame) with respect to the inertial fixed system ( I-frame), as well as its transla-
tional and rotational velocity:

rig, Arg, vg, Q¢ (9)
S——— N——
position and orientation translational and angular velocity

which form the interface for the assembly process models.

3. Assembly Process with a Manipulator

Assembly tasks performed by a manipulator are characterized by the contact with the
environment through the mating parts. Additional loads act on the robot’s gripper
and thus influence the motion of the manipulator. For numerical simulation, the
dynamic model of the robot and the assembly process models have to be coupled.

Depending on the part’s properties, there are two basic approaches to describe
these loads. To illustrate this, we show in Figs. 2 and 3 a very simple example: a peg
touching a flat surface with one point, where we shall demonstrate the basic ideas
for both methods. If we deal with compliant workpieces, typically made of rubber
or plastics, the coupling between the robot and the environment is weak. This is
indicated in Fig. 2 on the left side through the small spring with stiffness c¢. In
general, the forces f and moments m due to parts’ deformation depend only on
the position and the velocity of the gripper relative to the environment, i.e. the
generalized coordinates ¢ and their first time derivative g:

f=15qq), m=m(q,q) (10)
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Fig. 2. Basic approach for compliant mating parts.

In the simple example of Fig. 2 we have only two contact forces fy and fr.
The normal contact force depends on the relative displacement gy in this direction
in the case of contact gy < 0 with a spring-like characteristic. In the tangential
direction Coulomb’s law is applied, however with a friction coefficient p depending
on the relative sliding velocity such that there is no jump at v,e; = 0. From this simple
example the basic property of compliant mating parts can be recognized, namely there
is always a functional relationship between the contact forces and kinematical values.
The loads f and m are then imposed on the right-hand sides of the equations of
motion (7):

M@+Pq+Qq:Bu+(J§|J£)( ! ) (11)

through a projection with the translational and rotational Jacobians J1 and Jg of
the reference point at the gripper into the generalized coordinates of the system.

This basic approach is also possible for very stiff workpieces, e.g. made of alu-
minum or steel, but causes numerical problems. In our simple example, the stiffness ¢
in the contact point becomes extremely high. With only small displacements very big
reaction forces arise, which results in stiff differential equations. The contact forces
have here a strong influence on the accelerations in the system §. Therefore another
method is applied. The parts are regarded as rigid, which means also for our example
in Fig. 3 that ¢ — co. Every contact point constrains the mobility of the robot. Two
points coming into contact close a kinematical loop and thus reduce the number of
degrees of freedom of the manipulator. The constraints g; are unilateral:

9:(q) 2 0 (12)

which means e.g. in the normal direction that the parts do not penetrate each other,
if g; = g~ is the relative distance between two possible contact points. In the
tangential direction unilateral constraints describe the unsteady character of friction
and sliding. These two phenomena are also shown in Fig. 3 on the right. The equations
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of motion (7) then additionally have to fulfil the constraint equations summarized in
the vector g. This represents a system of differential-algebraic equations (DAE):

M{+ Pq+Qq=Bu+ WX\

g(g) >0, ¢g(g,9)>0, §(q,4,9) >0

where the vector A contains the constraint forces. The matrix W is the constraint
matrix which projects the constraint forces onto the degrees of freedom of the robot.
The geometrical constraints g are needed on the acceleration level in order to combine
them with the equations of motion, also describing accelerations.

(13)
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Fig. 3. Basic approach for stiff mating parts.

4. Contact Kinematics

In general the workpieces to be mounted are composed of surfaces ¥. Two patches
of such mating parts which are not in contact yet are shown in Fig. 4. For their
description we introduce additional frames. Fixed to the G-frame of the gripper,
but with relative offset 74 and relative orientation Ag4, the A-system is defined,
in which the upper mating part is lying. Thus it is moving with translational and
angular velocities vg and Qg, respectively. The lower part is inertially fixed to the -
B-frame, which does not move, but has a relative distance and orientation to the
inertial system of the robot r;5 and Arp, respectively. All considerations will be
made for the spatial case, which includes of course the planar description of the bodies
in a plane. For the description of a surface we choose the vector form:

T
’I'E('LL,’U) = (z(u,v),y(u,v),z(u,v)) (14)
which is dependent on two parameters v and v. A curve for the planar case is only

dependent on one parameter u. For example, a sphere (for the spatial case) and a
circle (for the planar case) have the following parametrization:

Rcosvcosu Rcosu
sphere: ry = Rcosvsinu |, circle: 7z =| Rsinu (15)

Rsinv 0
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Fig. 4. Two patches of a surface with one potential contact point.

where R stands for the radius. The values of 7rx(u,v), where ug = const or
vg = const make a family of curves on the surface. Together they form a net of
parameter lines, which can be also seen in Fig. 4. The partial derivatives of the vec-
tor rs with respect to the parameters u and v are the tangent vectors u and v,
respectively. They point along the parameter lines and span the tangent plane:

u(w)__ar_z ors
T B’ v

From these basic vectors the fundamental magnitudes of the first order are calculated:

v(u,v) = (16)

E=uTu, F=uTv, G=vTv 17)
The normalized normal vector n is perpendicular to the tangent plane and points
outwards the body:

n = _ uxv (18)

VEG —F?
We further need the fundamental magnitudes of the second order:
Ors Ory ’rs,
M=n"—2 =n' :
ou?’ ™ uow’ e

For the determination of the contact points and later for the constraint equation
we will need the partial derivatives of the normal n/du, dn/dv and the tangents

L=n"

(19)
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du/du, du/dv, Ov/Ou, Ov/ov. With the formulae of Weingarten and Gauss this
derivatives can be expressed in terms of the basic vectors:

on FM-GL FL-EM on FN-GM FM - EN

w-Ee-FP 't Ee-P” w-Ee-F T e "
a 5 o k]

@—F1u+F2v+Ln 6—u—F1u+F2v+Mn (21)

8U_ 11 11 ’ 81)'_ 12 12

ov 1 2 v 1 2

5;=F12U+F12”+Mna P nu+ Ipv+Nn (22)

o

The definition of the Christoffel symbols Faﬁ, a,f,0 = 1,2, can be found e.g. in
(Bronstein and Semendjajew, 1985).

In the following, we have to introduce additional indices because we regard two
surfaces which might get in contact. The upper part held in the gripper of the
manipulator is denoted by the index 1 (-);, and the lower part connected to the
environment by the index 2 (-)2. For a potential contact point we demand that the
normal vector of body 1 (n;) and the distance vector rp be perpendicular to the
tangent vectors of body 2 (w2 and wvy). Then the two tangent planes on the surfaces
are parallel and the contact points are lying just opposite each other, as shown in
Fig. 4. Thus we obtain four non-linear equations:

F(@) = (nTuslnd valrBualrFva) ", @ = (usforfualvs)” (23)
for four unknown parameters wu;, v1, ug, vz denoting the contact point. This non-
linear problem has to be solved at every time step of the numerical integration. For
better convergence of the root finder it is convenient to use the analytic derivates
O0f(x)/0x which are defined through the partial derivatives (20)—(22) as

uj (ur + fro1) uf (Qqui +piv1)  —Lo —Ma
of (x) _ vd (a1ur + f1v1) vT (ajur + Biv1) —M; -N; (24)
oz uluy u vy —E; +gnLy —F>+gnMo
v1u, viv -F> +gvM2 —G2+gnNo

One problem that has to be mentioned at this point is the variety of solutions. If
one thinks e.g. of two spheres, there is an infinite number of solutions because of the
periodicity of the sin and cos functions in the parametrization. Additional geometric
considerations help here to find the correct point with shortest distance between the
two bodies.

When the correct solution is found, the distance gn between the possible contact
points can be calculated as

T, _ T _
gN =MjTp=-NyTp, Tp=TIG+TGAa+Tx1 —TIB—Tx2 (25)
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The quantity gn is then used as an indicator for the contact state. Its value is positive
for ‘no contact’ and negative for penetration. We assume a point on surface 1 to be in
contact with a corresponding point on surface 2, if their relative distance is smaller
than a very small tolerance ¢, gy < €.

5. Compliant Mating Parts

In this section we shall present two examples. The first one is an O-ring mounted
on a piston to be inserted into a corresponding hole. The other are snap fasteners,
which play an important role in automated assembly. The task is to find the correct
relationship between the displacement and r;¢ orientation Ajg of the gripper with
respect to the environment and the forces f and moments m acting due to the
deformation of the parts. For this purpose, we have to introduce an additional local
frame L which is necessary to describe the deformation of the workpiece.

5.1. O-Ring

Figure 5 shows an elastic ring, mounted in a groove of a piston. It is inserted into
a hole with a rounded chamfer at the beginning and at the end. This is a typical
application of O-rings in hydraulic cylinders or pneumatic valves. In the hole there
might be notches serving as an entrance or an outlet.

7

elastic ring

— hole

chamfer 2

Fig. 5. O-ring in a groove on a piston.

An analytical solution for the stresses and strains in the elastic ring using ap-
proaches arising from continuum mechanics is not possible because the displacements
and, in some instances, the material law are non-linear. Therefore we use a simplified
approach, assuming the outer contour of the ring to be circular and rigid, so that
there is a line contact between the ring and the hole. The only compliance taken into
account is the radial stiffness of the O-ring, indicated by the small spring in Fig. 5.
It is however not discrete, but continuously distributed over the circumference. Its



Modelling and simulation of assembly processes with robots 353

characteristics is supposed to be quadratic. The line load representing the elastic
deformation of the ring is p;. A further assumption is that the ring does not tilt in
the hole, because orientational errors of industrial robots are generally small. Accord-
ing to the special geometry of the elastic ring in the groove, we use two contact line
loads: one between the ring and hole p, and one between the ring and groove p,.
Frictional loads p,,r and p,,r act perpendicularly to this normal loads and opposite
the direction of relative motion in the contact line.

All further considerations are made in the L-frame which is placed at the height
of the ring. It has a radial eccentricity e and a rotation ¢pr with respect to the
B-frame. Its orientation is chosen such that its z-axis is parallel to the B-frame:
z1 || zp (because tilting is not regarded), and the zr-axis coincides with the shortest
stretch between the piston and hole. The eccentricity e, angle ¢p; and transforma-
tion matrix Ap; are defined as

BTBL,y
e= BTZBL,:IZ +BT%L ppy = arctan ———=<
BTBL,s
cosppr singpr 0 (26)
Apr=| —sinppr cosppr O
0 0 1

Through this special choice all further considerations can be made in two modelling
planes, the xp-yr-plane shown in Fig. 6 on the left and the xp-z7-plane shown on
the right. In the left part of the figure the line load p, between the ring and the hole
is drawn. The non-uniform distribution of the load can be clearly recognized.

The detection of the contact area is performed in the zy-zp-plane, where we
then have to calculate the contact point between two circles, if the ring is entering or
leaving the hole and touching one of the chamfers, or between a circle and a straight
line, if the ring is inside the hole. For clarity, we have drawn the line loads acting
between the bodies in the right modelling plane in Fig. 6.

If Aa is the deformation of the O-ring at the zp-axis, then the deformation
around the circumference a(py) is

a(pr) = Aa—e+ecospyr (27)
The line load representing the radial elasticity of the ring has the form:

pi(pr) = cra(pr) + c20® (1) (28)

where the coefficients ¢; and ¢y are the spring constants. They can be determined
with a FEM calculation, where the cross-section of the elastic ring is radially deformed.
From the resulting force-displacement-diagram the two coefficients are found by curve
fitting. Inserting (27) in (28) yields

pi(ior) = ko + k1 cosor, + kz cos® o, (29)
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O-ring
(non deformed)

O-ring
(deformed)

xr-yr-plane xr-z;-plane

Fig. 6. Two modelling planes for description of the mounting task with the O-ring.

with k‘g =C (Aa - %)‘}‘Cg (Aa — —;—)2, kl = 01§+626 (Aa - %) 5 k;g = Cy (%)2. With
this line load p; and the other loads pa, pa,r, Po and p, g the force equilibrium
at an infinitesimal ring segment is formulated. Solving the equilibrium for the outer
load p, yields

ko + ki cospr + ko cos?
= e

Pa(L) (30)
if the ring is in the hole. Here u is the coefficient of friction between rubber and
steel. For the contact with the chamfers the equations are slightly different, because
the changing direction of the loads has additionally to be taken into account. This
load is split into three Cartesian directions of the L-frame:

px(r) = —palpr) coswr, py(or) = —palor)singr, p.(vr) = ppaler) (31)

The resulting forces and moments acting on the origin of the L-frame are found
through integration of p., p, and p. over the circumference of the ring:

™

-2 fpa((pL)COS YLTo d(pL

o 24 [ palpr)rs cospr oy

f=| —2[palor)sinprroder |, m= oL (32)
O 24 [ palprL)rg dor
21 [ pa(ipr)ro der 0

0

where 7o is the radius of the bolt inside the groove. These two loads are then
transformed into the gripper system (G-frame), in order to combine the assembly
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process with the robot model:

cf - Agy of (33)

agm tm+rrerxf

To verify our model we present a comparison between the measurement and
calculation. In the experiment a piston with a rubber ring 20x3.15 (¢ 20 mm of
the ring, ¢ 3.15 mm of the cross-section) was inserted into a hole of the diameter of
26mm. For the specific material the spring constants are ¢; = 16.0 [N/mm?] and
¢z = 43.0[N/mm?®]. This special experiment was conducted on a force measurement
machine, which is very stiff, in order to avoid any disturbances from the manipulator.
Thus we can assume ideal conditions. The force-distance graphs are shown in Fig. 7.
The left diagram contains the measurement, and the right the calculations. The
correspondence between both curves is very good. The maximum of the mating force
arises when the ring is entering the hole. Inside the cylinder the load is constant.

measurement

calculation

T T T T B
0 2 4  z[mm]

Fig. 7. Force-distance graph for O-ring insertion.

5.2. Snap Fastener

Snap fasteners are wide-spread fixtures in automated assembly. They consist of three
different characteristic parts: the snap hook, the elastic support for the hook and
the counterpart or chamfer. These parts can be seen in Fig. 8. The support consists
of a beam (like in the figure), a plate or an even more complicated structure. We
make the assumption that the snap hook and the chamfer are rigid and only the
compliant support is flexible. We have to introduce a local L-frame, fixed to the
snap hook, to describe the elasticity in the system. The deformations should be
linear elastic, so that the vector a7rar = (wz,wy,wz)T contains the displacement
and the vector 4@ 47 = (P2, Py, ¥z)T represents the orientation between the A- and
L-systems, expressed in the A-frame. With this description the compliance in the
support can be reduced to a stiffness matrix K between the A- and the L-frame.
This is symbolized by the spring in Fig. 8. Generally, the stiffness matrix K has
dimension 6 x 6. The relationship between the linear deformations and the linear
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compliant support (elastic) counterpart (rigid)

®

snap hook (rigid)

Fig. 8. Basic structure of a snap fastener.

1) comer-surface 2) edge-edge 3) surface-corner

Fig. 9. Three different types of contact points between the snap hook and chamfer.
elastic reaction forces has the following form:

’ T
af _ k| ATar c &S (34)

Am APAL

where 4f is the vector of the forces and 4m is the vector of the torques acting at
the origin of the L-frame when the deformations 4741 and a¢,; are imposed.

The description of the geometry is easy for the snap fasteners under consideration.
The counterpart is a simple cuboid and the hook is a polygonal part with six corners.
Thus there are three basic possibilities of contact points between the snap hook and
counterpart as indicated in Fig. 9: corner-surface (type 1), edge-edge (type 2), and
surface-corner (type 3). A contact between the flexible part and the counterpart is
not taken into consideration. The location of a contact point is always indicated by
two parameters » and v, which will be needed later in the equations of the force
equilibrium.

When the snap hook and the counterpart get in contact, the parts will slide on
each other and the hook will be displaced and twisted. In order to determine this
movement and the necessary forces, we have to calculate the equilibrium position
between these two parts. There is a force equilibrium between the elastic forces 4 f
and g4m on the one side and the contact forces fy and . f g on the other side.
The normal contact force f, acts on the touching point. Its direction depends on
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the type of the contact. For type 1 and 3 (corner-surface) rf, is normal to the
plane, for type 2 (edge-edge) rfy is parallel to the cross product of the two lines.
The friction force fp acts perpendicularly to rfy and opposite the direction of
motion. For the formulation of the equilibrium, the forces have to be transformed
into the same coordinate system, here the L-frame:

Apsa O Af _ 1fn+L fr (35)

0 Apa Am tripx(fn+1 Fr)

where prrp is the vector from the origin of the L-frame to the actual contact point P.
Ar 4 is the transformation matrix between the A- and L-frame:

1 Yz Py
ALA: — Pz 1 2 (36)

oy —pz 1
Substituting (34) into (35) we obtain a system of six non-linear equations

A 0 T ' +
LA x| ATar | _ tfn+r fr (37)

0 Ara AP AL wrrpx(tfy +1r fr)

The equations are rather complicated because of the multiplication by the transfor-
mation matrix. For the formulation we use the computer-algebra system MAPLE V.
From the contact condition we obtain three additional equations, so that we have a set
of nine non-linear algebraic equations. The unknowns are the six parameters for the
position and the orientation of the hook: wg, wy, ws, ¥z, @y, @.; two parameters
for the contact between the parts: u, v; and the magnitude of the normal contact
force | f y|- Determining the mating forces has been described for one single contact.
The problem can be solved for up to three touching points. For every additional con-
tact we obtain three more equations from geometry and three additional unknowns:
u;, v; and | fuyli;. The system of non-linear equations has then dimension RS*3"
where m is the number of contacts, » = 1,2 or 3. The transformation into the
gripper system is again comparatively simple:

cf - Agy Lfn+rFr (38)

em rrepx(Lfn+L Fr)

What is still missing is the determination of the stiffness matrix K representing
the compliance in the parts. The elastic support can consist of a beam (Figs. 8 and 10)
or a plate (Fig. 12). We apply beam and plate theory, respectively. We first regard
the snap fastener from Fig. 10.
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Fig. 10. Snap fastener with a beam as elastic support.

According to the picture the displacement in the 4 (w.) and y4 (w,) directions
and the twist around the z4 (v.) and za (¢.) axies are constrained. The stiffness
in these directions would be very high compared with the other elements of K,
therefore resulting in zeros in the first, second, fourth and sixth rows and columns.
From beam theory (BERNOULLI-beam) the deflection curve is derived from the
following differential equation:

= I%(a+ %(b—a))Bc (39)

The parameters a, b, ¢ and ! can be seen in Fig. 10 and E is the modulus of
elasticity. Integrating (39) three times and using the boundary conditions w,(0) = 0,
w,(0) =0 and EI,(l)w!(l) = —M,, yields a relationship between the displacement
w,, twisting ¢, (@, = —w(l)) of the beam, force F, and moment M,. With
a=5mm, b=2.7mm, ¢=20mm, [ =40mm and E = 2700N/mm? we obtain the
following stiffness relationship:

EL(z)w! (z) = - F,, I(z)

z

F, 00 0 0O ©0 O W,
F, 00 0 0 0 0 wy
F, 0 0 455 0 6388 0 w,
= (40)
M, 00 0 0 0 0 ©u
M, 0 0 638.8 0 142854 0 ©y
M, 00 0o 0 0 0 ©s

Our model is again verified through a comparison between the measurement and
calculation. Measurements were also made using the single axis force measurement
machine. Figure 11 shows the force v. distance graph for the insertion of the upper
half of the snap fastener from Fig. 10. F, is the force in the direction of insertion
and F. acts perpendicularly. When mating the complete fitting with both parts, Fj
becomes twice as large and F, disappears because of the symmetry.

Our second example is a snap fastener with a plate as elastic support from Fig. 12.
Here the displacement in the z4 (w;) and y4 (w,) direction and the twist around
the z4 (yp.) axis are constrained. Therefore K contains zeros in the first, second
and sixth rows and columns. We assume a KIRCHHOFF plate. The bending is
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Fig. 11. Force v. distance graph of snap fastener insertion.

Fig. 12 Snap fastener with a plate as elastic support.

approximated by a Ritz-series w,(z,y) = ¢¥w(z,y), with coordinates g and shape
functions w. As shape functions we use piecewise-defined cubic splines which satisfy
the boundary conditions. The coordinates g of the shape functions are found by
minimizing the potential II = W; — W,. We then have to solve the variational

problem: (8I1/8q)" = 0, when W; is the elastic energy in the plate:

'4

a b 1 v 0
1
Wi=§DqT//WT v 1 0 Wdydz q
$ 00 0 0 2(1-v)
ER3 T
| P=may W el

(

41)

In the equations a, b and h describe the geometry of the plate according to Fig. 12,
E is the modulus of elasticity and v is Poisson’s ratio. W, is the work done by
the loads F,, M, and M,. Let z; and y; be the coordinates of the origin of the

L-frame:

wT(-'L'L;?/L)
Wo = [FoIMo|My] | wZ(zp,y1) |4

—w:";(xL,yL)

(

42)
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After differentiating the potential with respect to g, we get a system of linear equa-
tions. Let g be its solution. The dimension of the system depends on the number
of shape functions we use. We then calculate the deformation of the point zp, vz
using

W, wT(xL,yL)
oo | =| wh(zr,yz) |7 (43)
Py —w? (zr,y1)

When a = 32mm, b = 66mm, h = 3mm, F = 2700N/mm?, v = 0.3 and z; =
27mm, yr =48 mm, K is

F, 00 0 0 0 0 u
F, 00 0 0 0 0 v
F, 00 1685 —455.8 2105.1 0 w
= (44)
M, 0 0 —455.8 26794.7 —1443.3 0 a
M, 0 0 2105.1 —1443.3 37700.4 0 8
M, 00 0 0 0 0 v

In Fig. 13 the results from the experiment and calculation are shown, for the insertion
of the snap fastener from Fig. 12.

measurement calculation

—
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Fig. 13. Force v. distance graph of snap fastener insertion.

Altogether, we recognize a good correspondence between the theory and exper-
iment for both cases. The force v. distance graphs show an unsteady shape because
of the non-smooth contour of the snap hooks. It is also observed that the jumps in
the mating force are sharper in the calculation than in the measurement. This results
from local deformations of the snap hook especially when the contact forces become
very high, e.g. at about 25 mm in Fig. 13.

6. Rigid Mating Parts

As regards rigid workpieces, where the deformation during assembly is very small,
every contact point represents a constraint on the robot dynamics, which we shall
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derive in the following. A constraint in the normal direction is the relative distance
between two possible contact points. Its time derivative gy is also needed:
gv=nfrp = gn=nirp+niip (45)

If we use the definitions from eqns. (25) and (20), we obtain:
gn = (¢ xn1) + (ou + po)iy + (v + ﬂ'v)i)l)T'r'D

+nT (716 +Q6 x (rga +751) Furiy +v191 — ustiy — vaby) (46)
A [ E—
Vg Tcc1

This equation can be simplified if the conditions for a contact point in (23) are con-
sidered. All terms in the first line and most of the terms in the second line become
then zero, and thus a simple expression remains:

gn =nlve, vo1 =vg + Qe xTeo1 (47)

The normal constraint is active if gy = 0. Here wgi is the velocity of the
potential contact point on the upper body, which is connected to the gripper (see
Fig. 4). In the two tangential directions a constraint is active if sticking occurs, which
means that the relative sliding velocities gy and ¢y at a contact point are vanishing:
gu =0, gv =0, where gy and gy are defined as the projections of vg; on the two
tangents w; and wv;, respectively:

gv =uTvor,  gv=vivor (48)

In order to combine these constraint equations with the equations of motion of the
manipulator, they are required on the acceleration level. Differentiating (45) and (48)
once with respect to time yields

. . .T
gn =nfvcr +niver

v . . T

qu = ur{'uC;L + uj vel (49)
. . LT

gv =vToc1 + 9] ver

The time derivatives of the normal n; and the tangents ;, ¥; are defined as

) ony . on .
n; =g xng + —lul -+ —1-'01
3u1 (9’01
. 8’11,1 . 8u1
uy = Qg xu + —uy + —7 50
1 Gxul By U1 e 1 ( )
. Ov . ovy .
v, = Qg xv + —111,1 + —11)1
6u1 81)1

where the partial derivatives On;/0u;, Oni/dvi, Oui/Bui, Oui/dvi, Ovy/duq,
0v1/dv; are known from eqns. (20)—(22). The velocity v¢1 and thus its time deriva-
tive ¥¢1 can be expressed depending on the generalized coordinates of the manip-
ulator g, ¢, because the body on which the point C1 is lying, is connected to the
robot’s gripper:

vor=vg+ Qe xrge1 =Jrq —Tec1Jrd = J 14 (51)
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with J; being the translational Jacobian with respect to the contact point C1. The
matrix Tgey substitutes the cross-product: Tgc1Q¢ = rge1 x Q¢. Differentiating
this equation yields

Vo1 = Vg + QG xTae1 + Qe xveor + Qo x (wrtg +v191)

=(Jr—-7gc1Jr) G+ (JT —?GCJR) q
—

N /

Jeou o
+ Q¢ xver + Q¢ x (g + v1901) (52)

With the help of (50) and (6) we can rewrite (49) in the form

gN = n’{(.’cﬂ]' + 71+ Qe xver + Qg x (urug + 'Ul’i)l))
+ 08, (Qe xny) + v ((01ur + Brvr)is + (fuy + Bivi)in)

gu = UT(J(H&I' +Jo1 +Qaxver + Qg x (w1 + ’01’01))

1 2 .
+ 05, (R xur) + ”51((F11,1u1 + I 101+ Ling) iy

(53)
+ (]1112’1’11.1 + F122,1'”1 + Mlnl) 1)1)

@]'V = ’l}:lr(Jclé +jC’1 + QG xvc1 + QG X (uldl +’01’l')1))
1 2 ,
+ "’gl(QG xv1) + v ((F12,1u1 + F12,1'U1 + Ming) iy
1 2 .
+ (I 1u1 + Iy 101 + Nimy) 01)

A simplification is possible if we substitute the constraints on the velocity level gy,
gu and gy from eqns. (45) and (48) for the scalar products v%;ni, vZ,u; and
vglvl. We also know that ¢y disappears when the normal constraint is active. The
relative sliding velocities gy and ¢y vanish if the tangential constraints are active
(stiction). The constraint equations have then the final form

in=n{Jc1q
——

T
wN

+nlior +n] (Qa x (wriy +v191)) + guartn + ayo1) + gv(Bris + BLi1)

wy
QU =uTJ01Q+ufj01 —{—'u,? (QG xvl)’l')l (54)
S — N ~ _
’LU’[I]' wy

§V ppecd 'UTJC'I q + ’UTjCl + ’U’{ (QG xul) '1'1.1
N Vs ~ v

—

T
ws, wy
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Fig. 14. Motion of the contact point on the surfaces.

The terms linearly dependent on the generalized accelerations ¢ are summarized in
the constraint vectors wy in the normal and wy, wy in the tangential direction.
The remaining parts are abbreviated by using the scalar values wy, wy, wy.

The only unknowns in (54) are the time derivatives of the parameters #;, ¥,

19, ¥z, which describe how the location of the contact point is moving on the two
surfaces during the simulation. This situation is depicted in Fig. 14. To evaluate
these derivatives we demand that the equations specifing the contact point eqn. (23)
always have to be fulfilled. Their time derivatives have to disappear:

d r d o d o d r

— (n7uz) =0, — (n =0 — {(rpug) =0 — (rpv2) =0 55

dt(l 2) dt( 1'172) ) dt(D2) ’ dt(Dz) ( )
We conclude from (55) a system of equations which are linear in the derivatives of
the contour parameters:

ul(oquy + Biv1) ud(uy +Bivy) Ly Mo\ [ —Qf(uz xTq)

vf (ru + fro1) vf(qur+Biv) My Naf |0 | | —Qf(vaxm) (56)
—uluy ~ufu, E, F, Ug - ulve,
—’U;%"Ug _u’ier Fy, Gy Vg vg'vcl

This linear problem has to be solved at every time step of numerical integration.
More than one sliding or sticking contact point between mating parts, may exist

so that a variable number of constraints is active during the simulation. Let n, be
the number of contact points and nr the number of sticking contact points. Then
the constraint equations in vector form are

P T.. ~

gy =Wyg+wn

gy = Wi§ + @y (57)

gy = Wii+ iy
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where
Wy =(WNn1, .., WNny) ERI™Y | Ty = (Bng,..., BN ny)T € RN
Wy = (Wui,-. , Wumg) €ERVT . @y = (@ya,. .., 00n)" € R
Wy =Wy, Wyne) € R, Gy = (Dyy,..., Tymg)” € BT

They are combined with the equations of motion and thus form a system of differential-
algebraic equations

Mé:i\L+(WN+WF)AN+WUAU+WVAV (58)
gn W% wN
iv | =1 Wi la+| vy (59)
an W€ wy
g wr w

with h = h + Bu — Pq — Qq. The components of the vectors Ay =
(/\N,I; “aay AN,nN)T, AU = (/\U,la ey AU‘HT )T and )\V = (/\V,ly ey /\V,nT)T corre-
spond to the unknown constraint forces normal and tangential to the respective tan-
gent plane. The term W pAx considers frictional forces in all contact points where
sliding occurs. The direction is given by the velocity of the contact point vz shown
in Fig. 15, and the magnitude by tlie normal contact force Ay. The vector v, can
be split into two tangential directions, which are assumed to be perpendicular:

T T : : o2 n2
uy v vy v
1vc1 1VC1 qu qv 9 9y
vl = 1 V] == Vo1 = /U + —v; Vol = == 4+ == (60
ulu,; vTv, E; Gy 7’ vl B, G (60)

The vector of the friction force fy at a sliding contact point is then defined as
(see also Fig. 15)

—uUgu ~ugv A
fr=-— vci LAN = uy HJUAN +, HIV AN
|1’01| 52 52 -2 -2
E g—U+—g—V— Gy g—U+g—V
E G E G
. . —u
= (UI%—U+U12—V) __HAN (61)
1 1 ﬁ g%/
E G

The projection of fr onto the generalized coordinates is realized through the multi-
plication by the Jacobian with respect to the contact point Jo:

. , —u . . — L\
wEp = ng (ulg—U-i—’Ulg—V) —BAN = (ng—U +wvg—v) _HAN (62)
E, Gy PR E; G 2 o
+ g g_U+_gl

v v
B Gy B Gy
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contact point

tangent plane

Fig. 15. Direction of the sliding forces fp in the tangential plane between two
contact points.

The matrix Wy is then composed of the sliding constraint vectors wp defined
above. At the contact point where friction occurs the elements wg are zero:

Wr=(wgr1, ., WRny) € RI™Y (63)

The systems of differential-algebraic equations (58) and (59) can be easily solved
if all active constraints are known and do not change, i.e. § = 0. We solve eqn. (58)
for the accelerations g and insert them into the algebraic equation (59):

AN
WIM Y (Wx+WR)WulWy) | Ay | +W M Th+@=0 (64)
N ~ ’ R e
A Ay b

This system of linear equations has to be solved at every time step of numerical inte-
gration to evaluate the constraint forces. They are then inserted into the constrained
equations of motion (58) to simulate the robot in contact with the environment.

Special treatment is necessary if the constraints are changing during the insertion.
For this purpose, we have defined special indicators that notify a transition in the
state of a the contact points. The resulting sliding velocity in the tangential plane at
the contact point is gr = |ve1| = /(65 /E) + (¢ /G). A summary of all indicators
and possible transitions is shown in the following table:

constraint I change I indicator | typ of indicator

no contact — contact gy =0

tti ti . . kinemati
gELHING active sliding — sticking gr =0 e

contact — no contact | gn >0

tti i R - - . kineti
getling passive sticking — sliding gr>0 et
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A change in the topology of the system due to a change in the constraints causes
the velocity, acceleration and constraint force in the specific contact point to be un-
steady, especially if stick-slip phenomena or impacts occur. One method for finding a
solution consistent with the dynamic constraints is a combinatorial search, where all
combinations of constraints have to be tested. With an increasing number of possible
contact points the combinatorial approach, however, is very time-consuming in com-
putation. More effective methods are the application of an iterative algorithm in the
general spatial case, or the formulation of the contact laws as a Linear Complemen-
tarity Problem (LCP) in the planar case. The iterative method is described in detail
in (Pfeiffer and Glocker, 1996; Wé&sle and Pfeiffer, 1996). The definition of the LCP
for assembly processes can be found in (Pfeiffer and Glocker, 1996; Seyfferth, 1993).

6.1. Round Peg and Hole

The experimental setup with PUMA, environment and sensors is shown in Fig. 16.
The force-torque sensor between the last joint of the manipulator and the gripper
is used to measure the mating forces. The six laser sensors are utilized to observe
the position and orientation of the gripper. In this setup the peg was cylindrical
with a diameter of ¢ 39.9mm and a round chamfer of the radius r; = 4 mm, shown
in Fig. 17. The hole had a diameter of 2 40mm and also a round chamfer of the
radius 72 = 6 mm. Thus the clearance between the peg and the hole is only 0.1 mm.
Mathematically, the peg and the hole are cylinders, each chamfer is modelled as a
torus. The parametrization of the peg is e.g.

Ry cosuy (R1 +ri(cosvy — 1)) cosuy
cylinder: 7s1 =| Rysinw; |, torus: rg; = (R1 +r1(cosvy — 1))sinuy | (65)
U1 sin v;

where R; = 19.95mm and r; = 4.0mm. The description of the hole is the same,
we only have to replace the index (-); by the index (-)2, where Ry = 20.0mm and
72 = 6.0mm. Between the two mating partners three potential contact points exist:

number peg hole
1 torus 1 — torus 2
2 cylinder 1  «— torus 2
3 torus 1 +«— cylinder 2

The position of the robot for the insertion task was 7, = (—8.4°,—152.8°,
17.9°,0.0°, —44.9°, —8.4°)T. The initial displacement of the robot with respect to
the axis of the hole was 2.1 mm in the zg-direction and 1.3 mm in the ya-direction
(see G-frame in Fig. 16 for detailed explanation). The mating trajectory was 80 mm
along the zg-axis. In Fig. 17 we see the first results from the insertion. The peg
and hole are displayed from two sides. A trace of contact points can be seen on
the parts. On the left we recognize the point of the first contact between the two
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Fig. 16. Experimental setup for mating experiments.
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Fig. 17. Trace of the contact points on the mating parts.

chamfers, due to the initial displacement. The workpieces are then sliding along the
chamfers, until there is a transition of the contact point to the cylinder of the peg.
In this situation, the peg touches the chamfer along a straight line, as long as only
one point is in contact. After about 5cm of insertion, a second contact point arises
on the other side, shown in Fig. 17 on the right. Through this additional constraint
the peg is moving in such a way that both contact points are moving to the middle
of the peg with respect to the displayed viewpoint. In Fig. 18 we have demonstrated
the constraint forces of the three possible contact-point combinations, which prevent
the parts from penetrating each other. In the left diagram we recognize that the
force between the two chamfers is relatively small. As the two chamfers lose contact,
the force is transferred by the next constraint between cylinder; and torus;. When
the second contact point arises, at about 1.3s, the load starts rising. As the peg
moves deeper into the hole, two opposing forces are acting at different sides of the
peg, achieving values of more than 100N. In Fig. 19 we finally present the mating
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Fig. 18. Constraint forces between the contact points.
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Fig. 19. Mating force f. in direction of insertion.

force in the direction of insertion. Here we can show both the measurement and
calculation. Even though the contact forces reach very large values, the mating forces
remain on a lower level. At the beginning we see clearly a peak when the two cham-
fers get in contact. As only one constraint is active, the load is low afterwards. The
largest values appear again in the two-point contact situation. But they do not rise to
such a high level as the contact forces themselves, because the latter act in different
directions. This part of the insertion is mainly governed by friction between the parts.
Concluding we can summarize that the correspondence between the calculation and
measurement is good, as shown in Fig. 19.

6.2. Rectangular Peg and Hole

Finally, we consider a rectangular peg with a chamfer inserted into a rectangular hole,
where the geometry is shown in Fig. 20 on the left. If we introduce four modelling
planes, we can reduce this spatial example to a planar description, which makes the
computation faster due to another algorithm (LCP). On every side of the peg one
such plane is introduced, which is displayed in Fig. 20 on the right. Two sides are
situated within the zy-plane, and two in the zz-plane. There are two different types
of contact points: point-plane and edge-edge. Let the letters a,b,c,d in Fig. 20(b)
denote points and the numbers 1,2’ 3',4',5' denote planes. Then there are four
possible contact points of the type point-plane: a —2', b—1', ¢ —5', d — 4'. For
the type edge-edge the numbers 1,2,3,4,5 denote edges on the peg and the letters
a’,b" denote edges of the hole. There exist six potential contacts of this type: 1—a/,
2—a',3-d,3-V, 4V, 5—b'. Thus we have altogether 40 potential constraints
between the peg and the hole with the sketched geometry in the spatial case.
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Fig. 21. Position of the manipulator for the insertion of the rectangular peg.

Measurements were again conducted with the PUMA 560 manipulator inserting
the rectangular peg with the chamfer into the rectangular hole. The starting position
of the manipulator was v, = (4.6°, —157.2°, 27.5°, 0.0°, —50.3°, 4.6°)T, which is
shown in Fig. 21 from two sides. The equations of motion of the robot were linearized
around this working point. The mating parts can be seen in Fig. 20, where the peg
had the measures a = 45.2mm, b = 45.4mm with a chamfer 45° x4mm and the
hole had the dimensions a' = 46.0mm, b’ = 45.8 mm. The robot’s path during the
mating task was 80 mm in the positive z 4-direction. We show here the results of four
experiments compared with numerical simulations. The initial lateral displacement
between the peg and the hole was set to 4mm in the two Cartesian directions y4
and z4.

Displacement in the y-direction

Let us consider first the experiments, where the displacement was Ays = £4mm.
In Fig. 22 the gripper forces during insertion F, and F, are shown. The upper plots
are measurements, the lower plots are the calculated results for the same starting
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a) displacement Ay, = 4mm b) displacement Ay, = -4mm
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Fig. 22. Mating forces for displacement in the y4 direction (top: measurements,
bottom: calculations).

configuration. In both cases there is a peak of F, versus the manipulator motion,
when the chamfer of the peg comes in contact with the upper edge of the hole (see
Fig. 20 on the right, contact points of type 4 — b’ in the case of the positive or
2 —a' in the case of the negative displacement). After having passed the edge, it
is sliding downwards, having contact with one side of the hole (see Fig. 20, contact
points of type 5 — &' in the case of the positive or 1 — a’ in the case of the negative
displacement). The force F, due to this contact acts towards the centre of the hole.

Displacement in the z-direction

More interesting are the experiments, where the displacement was varied in the z4-
direction: (a) Azq = +4mm, (b) Azg = —4mm. Here the behaviour of the manipu-
lator is different for both cases, see Fig. 23 (top: measurement, bottom: calculation).
If there is a displacement Azs = +4mm, there is again a force peak in F, at the
first contact (contact points of type 4 —b'), when the chamfer slides at the upper edge
of the hole. The peg is then sliding into the hole, having contact with the upper edge
(5 —1'), as is the case in the first two experiments. A completely different behaviour
can be observed when the lateral displacement is Azy = —4mm. Here only the
beginning of the insertion is similar to the other cases (2 —a' and 1 —a'). But as the
peg proceeds deeper into the hole, there are additional contact points (of type d —4')
inside the hole after about 2.7s. The contact forces and thus the mating forces F,
and F. become very large because jamming occurs. The insertion finally succeeds
on account of the fact that drive torques are increased by the controller.

The reason for the unsymmetric behaviour of the robot in cases (a) and (b) can
be found in the robot’s starting configuration shown in Fig. 21. If a force in the
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Fig. 23. Mating forces for displacement in the z4-direction (top: measurements,
bottom: calculations).

negative z4-direction is applied, the manipulator is not only displaced in the same
direction (—z4), but also in the negative zs-direction because of couplings in the
stiffness matrix. This means for the example with the initial displacement Azy =
+4mm (Fig. 23(a)) that the gripper is moved towards the centre of the hole, when
the peg is in contact with the hole. Therefore the contact forces are reduced. The
opposite happens if the lateral displacement is Azy = —4mm. As mating forces
act on the gripper, the gripper moves away from the hole, whereas the mating forces
additionally increase.

7. Combined Assembly Process

Finally, we investigate a combined assembly process, consisting of a flexible part on
one side and a rigid body on the other side. As can be seen in Fig. 24, two bolts, one
rectangular bolt and the other round with an O-ring mounted on it, were inserted into
the corresponding holes. The experiment was made for two different positions shown
in Fig. 24, which are called Position 1 and Position 2. For each insertion numerical
simulations were made.

Figure 25 contains measured and calculated results for both positions, on the left
for Position 1, and on the right for Position 2. The first two curves on both sides are
the measured and calculated mating forces. They have nearly the same values for both
positions. Great differences for the two locations can be observed in the last three
curves which show the Cartesian velocity of the gripper in the direction of insertion.
As a basic characteristic, the trapozoid velocity profile from the VAL II controller can
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position 1 : position 2

Fig. 24. Two locations for the experiment with a combined assembly task.
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Fig. 25. Measurement and calculation of the mating force and Cartesian velocity
for both positions.
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be noticed. Additionally, oscillations can be seen very well on the velocity plot. For
both locations, the velocity of the gripper decreases when the magnitude of the mating
force reaches its maximum, due to the deformation of the O-ring, when entering the
cylindrical hole. Once the O-ring is in the hole, the load decreases drastically. The
manipulator is excited to an overshot, which is however larger for Position 1. When
the ring is leaving the hole, similar effects occur. They are not so strong, because
the changes in the force characteristic are smaller. We can conclude that Position 2
is much more suitable for this mating process, because the manipulator deviates less
from the ideal velocity at this location. The insertion proceeds more smoothly.

Another phenomenon is the influence of impacts. In both simulations impacts
occurred when the rectangular peg had the first contact with the corresponding hole
(at about 0.35s). The effect of the impact is stronger for Position 2 because the
robot is stiffer here. The resulting oscillation however is very short and of a smaller
amplitude than that caused by the mating forces.

8. Conclusion

A method was presented to model a robot performing an assembly task, where both
the robot dynamics and contact mechanics between the mating parts are considered.
The workpieces might be elastic or rigid, which requires different approaches. The
comparison between measured and calculated results shows that our methods are
capable of describing mating tasks with flexible and rigid workpieces executed by
a robot. All important effects that show up in the experiment are covered by the
simulation. Thus we are capable of predicting the behaviour of the robot as well as
the load on the parts by numerical simulations. The aim is to recognize and avoid
problems with the automated part-mating process in advance and thus save time and
money.
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