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PARAMETER IDENTIFICATION IN ROBOT CONTROL'

CARSTEN SCHMIDT*, MarTIN PRUFER*

This paper discusses practical problems of robot dynamics identification. The
problems as well as possible solutions are illustrated by records from an ex-
perimental direct drive arm and a geared industrial robot. Questions regard-
ing measurement noise, biased estimates, poor identifiability conditions, and
the concepts of on-line and off-line identification are also discussed. The main
contributions of the paper are a computationally cheap procedure for on-line
identifiability supervision and a scheme which permits to reduce the bias of the
least-squares estimator.

1. Introduction
1.1. Identification in Robot Control

A large majority of more sophisticated robot control algorithms require knowledge of
a mathematical model of the robot’s dynamics. Since these algorithms usually assume
a particular model structure, it is not necessary to identify the structure of the model
but it is sufficient to adapt some model parameters z to the actual robot.

The models usually are used to compute the course of torques (resp. forces) z(t)
necessary to achieve a desired movement g _(t). (See notation in Fig. 1.) The demand
of a close match between the computed torques and the actually necessary torques
provides a criterion for parameter adjustment. Figure 2 shows an application in robot
control.

1.2. Peculiarities of Robot Dynamics Identification

The most common application of parameter identification in control engineering is
to use it with linearized models of the behaviour of some nonlinear system around
a slowly time-varying operation point. This enables one to adjust exactly a linear
controller, which would not be possible for the global (nonlinear) model. Furthermore,
there is a wealth of theory on identification of linear models available. Since robot
dynamics are nonlinear, it is reasonable to use the linearized model depending on the
comparatively slowly changing joint positions and velocities in robot control as well.

¥ Parts of this paper appeared in Proc. 3-rd Int. Symp. Methods and Models in Automation and
Robotics (Prifer and Schmidt, 1996). The present paper provides a comprehensive view.

* Institute for Robotics and Process Control, Technical University of Braunschweig, Hamburger
StraBe 267, 38114 Braunschweig, Germany, e-mail: M.Pruefer@tu-bs.de.
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¢ = angular joint position
7 = applied torque

Fig. 1. Example notation for a robot with two rotary joints.

18

Control

Fig. 2. Application of robot dynamics identification within robot control; 7 =
flz, 4,4,4) represents the mathematical model of the robot dynamics,
z is a vector of model parameters which are identified and transferred
to the controller.

This approach, however, turns out to be difficult since parameter changes are
as fast as the setpoint changes which permit to observe the dynamical behaviour to
be identified. Therefore it is impossible to gather enough linear independent data
to calculate parameter estimates before the parameters change again. This problem
cannot be solved by simply increasing the rate of data acquisition because the addi-
tional data will contain redundant information only. The usual approach of adding
small high-frequency disturbances will not work because the dynamical behaviour of
the system is quite different at frequencies above the frequency range of interest: the
actuators would not permit to generate the necessary high frequency torque changes.

Therefore, the usual approach in robot control is to use the full nonlinear model
of the robot dynamics. The unknown parameters which appear in these equations
are inertial and friction properties of the mechanical structure which may be con-
sidered to be constant (as compared with the parameters of the linearized model)
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(Koztowski and Priifer, 1992). This is a great advantage because of two consequences:

1. Since we know in advance—from physical considerations—that parameters do not
change, it is possible to predict their values based on previously measured data.

2. The assumed constancy of the parameters provides a means to distinguish them
from other effects, in particular setpoint changes, measurement noise and mod-
elling errors. The familiar demand of ‘exciting trajectories’ only makes sense on
this assumption of constant parameters. Otherwise, if parameters were known to
change permanently and rapidly, one would try to keep constant everything else,
such that the parameter changes could be observed without interference of other
effects. The essential requirement is not that of exciting trajectories but that of
maximum difference of the frequency range of the parameters as compared with
everything else.

But this advantage has to be paid for by the fact that the model is no longer
linear. Fortunately, this does not mean that parameters have to be found by some
searching algorithm. The model of robot dynamics actually is linear in the parameters
which means that the set of optimal parameters can be found in one step by solving a
system of linear equations instead of searching a multidimensional parameter space.
Still, the fact that there appear nonlinear functions of the measured data in the model
equations causes problems which will also be discussed in this paper.

From a theoretical point of view, three properties of robot dynamics are of special
importance to the identification:

1. (Nearly) constant parameters.
2. The model is linear in the parameters.

3. The data values in general are nonlinear functions of the measured values.

2. Basic Considerations
2.1. On-line versus Off-line Identification

Because of the first of the above mentioned properties—the constancy of
parameters—it is self suggesting to perform the identification off-line and to adjust
the robot control before operation accordingly. This approach is frequently taken and
has the merit that one can avoid many of the problems of identifiability of parameters,
since a series of experiments can be carefully designed, such that single properties are
clearly observable in each experiment, until all interesting parameters can be accu--
rately inferred from the accumulated information (Seeger and Leonhard, 1989).

Although this seems quite reasonable and in- spite of the apparent simplicity of
this approach we abandon it and choose to tackle the problems that are implied with
on-line identification. This decision is justified by

e the observation that the dynamic parameters actually are not constant,

o the fact that the problems of on-line identification can be solved, and
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o the fact that an on-line identification scheme finally presents a more general ap-
proach which can be easily specialized also to the task of off-line identification;
thus, we do not necessarily give up the advantages of the off-line identification
approach.

2.1.1. Simplicity of Adjustment

It is obvious that some mass parameters of a robot may change, e.g. when tools
are changed. The repetition of the above-mentioned series of experiments after each
configuration change, including data acquisition, analysis of the data and finally trans-
ferring the results to the control system, seems to be highly impractical in real appli-
cations. Furthermore, this procedure has to be repeated regularly to verify the values
of the parameters.

Parameter changes may also occur when objects are grabbed, moved and released.
Finally, friction may change with time, due to aging lubricants.

2.1.2. Temperature Dependence of Friction

Unexpected drastical changes of friction can be observed with geared industrial robots
(e.g. Manutec 12,r15) when the temperature of the joints is changing (Priifer and
Wahl, 1994). Figure 3 shows the velocity-dependent friction as a function of the
actuator temperature. It should be pointed out that the temperature range shown in
the diagram was the result of changes in the speed of robot operation.
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Fig. 3. Motor current v. temperature and velocity.

In order to deal with these changes by off-line identification, it is necessary to
model these temperature dependencies and to identify them along with the other
parameters of the robot dynamics (Priifer and Wahl, 1994). This means that tem-
perature sensors have to be placed at each joint at positions with a high correlation
between temperature and friction changes.

On-line identification of the friction parameters, on the other hand, could be
accomplished easily because the temperature changes are very slow. This would avoid
the placement of temperature sensors and the mathematical model would be simpler.
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2.2. Parameter Estimator

It has already been pointed out that the linearity of the model in the parameters
has the consequence that the parameters can be found by solving a system of linear
equations rather than searching the parameter space. This is the reason why on-line
identification is feasible at all: it permits to process the measured data at the high
rates necessary on account of the relatively rapid movements of robots (Fig. 4).

model

mlmrmze (TI——d Tz)?
T

solve equation system

[ZMF]Fng

estimator

Fig. 4. On-line identification is realized as a pipeline of the model and the LS-estimator.

In order to represent this linearity, the model equation for one joint shall be
written in the form

T3 =.d_(q:(1,Q)T£ (1)

where 4 is the index of sample instant, ¢, ¢, § denote the vector of measured joint
positions and its derivatives, respectively, T is the steered torque that is output to
the driver, d(gi, 4 gi) stands for the vector of model functions of the joint applied to
the measured values from sample instant t;, d; is the abbreviation for ‘d‘(qi’ii’gi)’
and z denotes the vector of model parameters to be estimated. a

The equation error e;, resulting from mismatched parameters and from measure-
ment noise or modeling errors, is

ei=ni—dz (2)

The criterion for parameter adjustment is the minimization of the sum of squared
equation errors:

el = 3 (n-diz) = mi
. m
T

7

(3)

=]
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It should be noted that the equation errors of all equations (one per joint) have to be
summed up. The distinction between the different model equations is not necessary
for the following discussion. Hence, for the benefit of simpler expressions, we write
them only in index 4, assuming that ¢ is used to distinguish between sample instants
as well as between model equations.

The minimum of this sum can be found by setting its derivatives with respect to
the unknown parameters to zero, which yields the system of equations

I’Zdidﬂ &=Zdiﬁ (4)

3. Practical Problems

Since commercial robots usually are equipped with position sensors only, it is common
to restrict the identification input to position values (and to the torques that are
output to the actuators). In this way, the general problem of disturbed measurement
becomes a special problem with robot dynamics since the necessary acceleration signal
has to be derived numerically from the position values (Fig. 5).
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Fig. 5. Acceleration signal (right) derived numerically from the measured joint
positions (left).

3.1. Measurement Noise

The consequence of the disturbed acceleration signal might be surprising if one expects
to see disturbed estimates and slower convergence during data acquisition. Figure 6

shows! recursive least squares estimates (UD-Covariance filter (Bierman, 1977)) in
- comparison with a reference method, which—in this case—gives optimal estimates.

! Experimental details: Each diagram shows six repetitions of the same identification experiment
to visualize the reproducibility. Identification starts at time zero with no information. The
sample interval is one millisecond. If not specified, a two-link direct drive arm is used. Joint 1
performs the movement from Fig. 5 (0.8 Hz). Joint 2 performs a similar movement at 1.1 Hz.
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Fig. 6. Convergence of least-squares parameter estimates (RLS, left) in com-
parison with an optimal reference method (right).

The stable and reproducible convergence may be misleading. Only comparison
with other methods reveals that the estimates are biased up to 100 %. In fact, the
least-squares method takes the measurement noise to some extent as an information
signal.

This can be seen when representing the model function values d as the sum of

‘true’ values d, and the measurement noise ng4, and similarly the steered torques 7
as the sum of the effective values 79 and the difference n, that results from imperfect
actuators:

d=dy+ny, T=T0+7s (5)

With this decomposition, the sum of squared errors (3) becomes

2
Ze? = E (Tm' + Tirs — (do; +1q:)" (20 + AE)) (6)
;

1

where the set of parameter estimates z is composed of the ‘true’ set z,, for which

the model 7o = dj z, is valid, and of the estimation error Agz.

Application of the relationship 75 = gngo gives

2 _ T T 2
Yo=Y (nri-njz— doAz ) (7)
p 2 h—v—/ N~
error noise parameter
mismatch

If the noise signals m, and n, are uncorrelated, have zero mean values and are
statistically independent from the information signals d;, and 7y, then the expectation
of the sum of squared errors is

E{Ze?} = > B(n2) + B{(wfo)’} + B{ (¢ As)?} ®)
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E{(d¥ Az)?} becomes minimal if the estimation error Ag is zero. This explains, why
minimization of this sum has been chosen as an estimation criterion. The first term,
E{n2}, increases the minimal value of the sum, but it does not shift the position of
the minimum within the parameter space—unlike the second term E{(nTz)?} which
generally becomes minimal if the parameter values are zero. Hence the parameter
estimates are shifted closer to zero (Fig. 6).2

The most common way to avoid bias (which is to impose a relationship between
the components of n such that the term E{(n”z)?} becomes zero when z = z;)
is possible only if the components of n are time-shifted values of the same signal.
This is not the case with robot dynamics, however, and hence this approach is not
applicable.

Since in robot dynamics identification the problem is mainly caused by the ac-
celeration signals, it would be self-suggesting to rearrange the model equation such
that the acceleration signals appear in the position of the torques

Z (fii - f(l'_iagi,g'i,g))z = ?ﬁlg (9)

In this way, the noise of § appears in place of n, in (8) and would not contribute
to the displacement of the minimum within the parameter space. Yet, f in eqn. (9)
would not be linear in the parameters any more because it results from inverting the
inertia matrix of the robot dynamics equation. As pointed out in Section 2.2, this
would require employing a minimum-searching algorithm and, thus, computation in
real time would not be possible any more.

Other measures against bias can be read from the expectation of the linear equa-
tion system yielding the parameter estimates:

E{Zdid;}ﬁzE{ZdiTi} (10)

The expectation of the information matrix on the left-hand side decomposes into

E{Zm?} = 3 [B{do &'} + B{dy nf +nad]'} + B{ngn}] (11)

2

while the right-hand side of the equation system is

E{Zdﬂi} ZZ[E{QOTO}-FE{ﬁdTo +donr+ﬁdnr}] (12)

1

If 70, nr, dy and n, are statistically independent of each other and if the noise
signals m, and n; have zero mean values, then the covariance terms vanish and

2 Of course, the point in the parameter space where E{Z1 e?} becomes minimal does not
permit to conclude anything about the statistical properties of the parameter estimates, in
particular about the expectation E{z}. But it can be shown that E{z} approaches this point
asymptotically with data acquisition because the parameter estimates finally become constants.
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the variance of the vector of measurement noise n, appears to account for biased
parameter estimates:

> E{dyd} + E{ngng}| 2 =3 F{doro} (13)

Again the disturbance n, does not contribute to any bias because it only appears in
the covariance terms. This suggests that something similar should be accomplished
with the noise signal n,. If e.g. one of the d-vectors in the expression for the informa-
tion matrix 3, d; d? could be replaced by a vector of signals d* which also contains
the information signals d, but a different vector of noise signals, ny instead of ng,
which is not correlated with n,, then there would be no variance terms left. This is
the basic idea of the instrumental-variable method.

3.1.1. Instrumental-Variable Method

The instrumental-variable method (Séderstrém and Stoica, 1983) uses a modified
version of eqn. (4):

[E d: 4?] z=Ydin (14)

where the instrumental variable d* has to satisfy

d" = dy+1ny
E{nz} =0 (15)

E{n;3nl} = zero matrix

The problem of this method is to find such instrumental variables. The most common
approach is to simulate the system based on already identified parameters and to
use the signals from the simulation as instrumental variables. There are usually
convergence problems with this approach if the initial parameter values are not in the
vicinity of the ‘true’ values z,. A simple alternative would be to use the control loop
input to derive the instrumental variables. In robot control applications one would
apply the functions d(g,q,§) to the desired valies of ¢, ¢ and ¢ (instead of their

measured values) to obtain the instrumental variables d*.

In this way, the variance term in (11), E{n,nl}, can be avoided:

E {Zdé‘ d?} = Y [Eldodl} + B{don] +13d5} + B{ning}|  (16)
Unfortunately, this does not mean that bias can be entirely eliminated. The model
functions d(gq,¢,§) are non-linear functions of the measured g, ¢, and ¢, which
means that the measurement noise of ¢, ¢, and § and the information signals have

passed the generally non-linear model functions d(q, 4, §) together such that the error
noise n, is not completely uncorrelated with the information signal dy. Hence the
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covariance term E{dyn} + n4dl} does not vanish. This theoretical consideration
is the main reason why the problem of bias has not been addressed previously in
robot dynamics identification. Nevertheless, there will be an improvement because
the bias is dominantly caused by the variance terms. In order to get an idea of
the magnitude of the difference, we calculated estimates of E{(d — d*)(d — d*)T} =
E{(ng — n3)(ng — )T} and compared them with estimates of E{(d — d*)d*"} =
E{(ng—n%)(dy+n3)T}. The dominant elements of the first expression which contains
E{n,;nY} appear to be of about two orders of magnitude higher than the elements of
the second expression, which contains E{n,d3 } instead (with a factor of 65 to 300).

Figure 7 shows that the parameter estimates produced by the instrumental vari-
able method behave in a way which one would expect: the disturbances of the accel-
eration signal (Fig. 5) are not taken as part of the information signal and hence cause
the expected disturbances of the parameter estimates. On the other hand, it can be
seen that the bias from Fig. 6 disappeared.
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Fig. 7. The Recursive Instrumental-Variable (RIV) method (left) in compari-
son with an optimal reference identification (right).

There is still something to be done regarding the disturbances of the parameter
estimates. This leads to filtering.

3.1.2. Data Filtering

It is a relative simple task to reject the noise of the acceleration signals by low-pass
filtering because it results from the numerical derivation and, hence, is by its very
nature a high-frequency noise (depending on the sample rate, Fig. 8 and 9).

It should be pointed out, however, that simply filtering the acceleration signal
represents a change in the model equation. It yields an equation which is, in a
mathematical sense, not equivalent to the original model equation. Although, at a
first glance, this seems to be a minor change, it can be shown that it affects the
parameter estimates in a clearly recognizable way. The correct method would be to
apply the low-pass filter to the complete model (Fig. 10 and 11). Figure 12 shows
the model functions with filtering of the input data and with filtering of the model
equations. Figure 13 shows one of the resulting parameters with both methods.



Parameter identification in robot control 387

acc. [rad/s*2] filtered acc. [rad/s"2]
150 ' ' 150 ' ' '
100 100
50 g 50
0 0 Pl ™ Mg g
-50 | -50
-100 -100
-150 ] -150
0 1 2 3 0 1 2 3
time [s] time [s]

Fig. 8. Unfiltered and filtered acceleration signal.
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Fig. 9. Estimation with filtered acceleration signal (left) in comparison with
a reference identification (right).
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Fig. 10. Input filtering.
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Fig. 11. Model filtering.
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Fig. 12. Model] function values of a simple one-link model: acceleration (inertia),

velocity (dynamic friction) and sign of velocity (static friction). For this
experiment a geared industrial robot (I'15) has been used.
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Fig. 13. Parameter estimates (inertia) of a simple one-link model with filter-
ing of measured data (left) and with filtering of model function values
(right).
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3.1.3. Integral Model

Another approach to avoid the problems caused by noisy acceleration signals has
been proposed in the literature on robot dynamics identification (Gautier and Khalil,
1989). It has been suggested to use a model of the mechanical energy of the robot’s
dynamical state (Fig. 14). The parameters are identical with those of (1):

1;

/ rTidt=d(g,4,)" = (17)
0

Like the model from eqn. (1), this model is linear in the parameters. But the vector of

model functions d does not depend on the disturbed acceleration signal. As a result,

the parameter estimates (Fig. 15) are much less biased than the parameter estimates

from the ‘differential’ model (Fig. 6).

— lyi=[rg.dt

4,4, 4; .
_i. di = d(g,"gi)

model estimator

Fig. 14. Identification based on the integral model.
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Fig. 15. Estimation based on the integral model (left), which does not depend
on the acceleration signal, in comparison with a reference identification
(right).

Yet, the integration by which the integral model can be derived from the differ-
ential model equations enhances low-frequency signals and attenuates high-frequency
signals. By this integration the acceleration signal is eliminated. However, this shift
of the frequency range of the model function signals to the lower frequencies reduces
the frequency distance to the parameters. As already pointed out (Section 1.2), the
parameters can be identified and distinguished from disturbances only because of their
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constancy or slowly changing behaviour as compared with the supposed rapid changes
of measurement or modeling errors. Figure 16 shows extremely slow parameter drift,
which is caused by very low-frequency disturbances, to which the integral model is
especially sensitive (Priifer et al., 1994).

integral model, longtime observation

0 100 200 300 400 500
time [s]
Fig. 16. Observation of two frictional parameters during 10 minutes of data
acquistion. Identification with the integral model is affected by low-

frequency disturbances. The algorithm has difficulties in distinguishing
two frictional parameters.

3.2. Identifiability

So far, we have only discussed problems that are common to both on-line and off-line
identification. It has already been mentioned that the advantage of off-line identifi-
cation is that one can easily design series of experiments that allow for observation of
individual dynamical parameters. The complete model can then be calculated from
the observed parameters.

With on-line identification, in contrast, all parameters of the complete model
have to be identifiable at once. A lot of work has been carried out to find trajectories
that meet this requirement (‘exciting trajectories’ in (Armstrong, 1988; Gautier and
Khalil, 1992; Kozlowski, 1996)).

This is a problem because we do not intend to use on-line identification during
specially designed test movements only but also during normal operation (see Sec-
tion 2.1). Thus, it cannot be assumed that identifiability conditions will always be
optimal. It is, on the contrary, much more likely that good identifiability conditions
for all parameters will be an exception during normal operation.

However, the lack of identifiability during robot operation is not the core of
the problem: the reason why a parameter cannot be identified is that changes in
the parameter do not affect the computed torque (which means that there is no
criterion for the parameter’s adjustment). This, of course, means that the parameter
is not required to compute the correct torques and hence its identification can be
abandoned at the moment. A problem arises when the parameter becomes identifiable
again and thus regains influence on the computed torque. It will take some time to
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readjust the parameter, and, depending on how far it has been drifting off, it will
cause disturbances or even instability of the control system.

Our requirement therefore would be that poor identifiability conditions should be

recognized automatically and parameters preserved, e.g. by turning the identification
off.

An even harder requirement could be that not only unidentifiable parameters be
preserved but that the available information be exploited as far as possible. This can
be achieved e.g. by restricting the identification to an identifiable parameter subset
rather than turning it completely off.

If it is possible to meet this requirement, then we are also able to take advantage of
the off-line identification approach: we could simply execute a series of test movements
designed for off-line identification. The on-line identification process should be able
to detect automatically which parameters are identifiable and adjust them one after
another, as we step from one test movement to the next. Having initialized estimates
of all parameters in this way, they are used during robot operation and updated
whenever a deviation from the actual values becomes evident. (In case an actual
deviation is not evident, it will not harm the quality of control.)

In the following it is shown that it is possible to meet these requirements (and
maybe even more demanding ones). First, we have to turn to the reason behind poor
identifiability conditions.

3.2.1. Poor Identifiability Conditions

It has been mentioned that poor identifiability conditions arise when any parameter
looses influence on the computed torque because in this case there is no criterion for
the parameter’s adjustment. The ‘computed torque’ is a linear combination of the
model functions di(g,d, §) z1 + d2(g, 4, §) z2 + - - - that is compared with the observed
torque 7 in order to adjust the parameters (Flg 17, compare with eqn. (1)).

l‘

T = ‘LQJQ)‘\ + d2 gg x .. g:g:g

observed ~

]

\I

torque computed torque

Fig. 17. Principle of parameter identification.

In general, poor identifiability conditions occur when there are linear combina-
tions of parameters which do not contribute to the computed torque (see e.g. Figs. 18
and 19). Any multiple of such linear combination z_, can be added to or removed
from a set of parameter estimates z without changing the computed torque:

dl (gi)g-i;_qi) Tlpun + dZ(givgi7 g_,‘) ZTonun + 0 = Oa for each 1 (18)
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Fig. 18.

Fig. 19.
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Poor identifiability of one parameter z; because the corresponding
model function d; is permanently zero during first eight seconds. When

the model function starts changing values, the parameter estimate stops
drifting and settles at its actual value.
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Poor identifiability of a linear combination of two parameters zg and
Tg: a change in one parameter estimate can be compensated for by
a change in the other, because the model functions d¢ and dg are

not linear independent of each other. (Such model functions can be
observed with the integral model (17).)

Thus, in order to judge the identifiability conditions, we have to discover each non-
trivial z_,, that satisfies (18).

The same ambiguities turn up when the system of eqns. (4) is solved to find the

parameter estimates z: each z_,, that satisfies

[Z d; df:l Zoan =0 (19)
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can be added to or removed from z without rendering (4) invalid. Thus (4) yields
no criterion for adjustment of z in direction of z, ;. Furthermore, each z.,, that
satisfies (19) also satisfies (18) and vice versa.® Hence, it is not necessary to analyse
the system of equations of (18), which may have thousands of equations and is growing
with each new sample, but it is sufficient to analyse (19), which has only as many
equations as there are parameters.

3.2.2. Recognition of Poor Identifiability

In order to determine the null-space defined in (19), we can evaluate eigenvectors and
eigenvalues of the information matrix (as suggested in (Posten and Munack, 1990)),
which is a standard task in numerical analysis. If any eigenvalue A is zero, then
the corresponding eigenvector v lies within the null-space of 3, d;d¥. (Compare the

definition [Y,d;d7]v = Av with (19).) Since the information matrix is symmetric,
we know that all eigenvalues and eigenvectors exist. Thus the eigenvectors form a
complete orthogonal basis of the parameter space, and all z,,;, which satisfy (19) are

discovered.

However, since the eigenvectors form an orthogonal basis, we can use them as
coordinate vectors. After transformation into this coordinate system, the infomation
matrix becomes a diagonal matrix which has the eigenvalues as diagonal elements. If
we transform eqn. (4) into this coordinate system, we get a set of decoupled equations:

/\1x1‘ = y{, )\2.’1,‘; = y;, )\311?; = y;, e (20)

where ) is one of the eigenvalues of the information matrix 3, d;d] of (4); =* is one
element of the transformed parameter vector KTQ , KT being the transformation
matrix (see below); y* stands for one element of the transformed right-hand side
of 4), VT[S, d;7); V. denotes the matrix composed of the normalized eigenvectors
as column vectors. Multiplication by VT transformes into the coordinate system
which renders the information matrix diagonal, and multiplication by V. transforms
back into the original parameter space. This representation of (4) clearly suggests
how to proceed when parameter estimates have to be calculated in the presence of
poor identifiability conditions:

We calculate each z* from y*/X if the corresponding eigenvalue is well above
the noise level, otherwise we leave z* at a value from some previous successfull
identification. The resulting vector z* is then transformed back into the original
parameter space.

In order to decide whether an eigenvalue A is ‘well above the noise level’, we have
to compare it with some threshold. This threshold can be determined by exploiting

3 Rewrite (18) as matrix equation Dz, = 0, where row 7 of matrix D is made up of 4?
Likewise, (19) can be rewritten as QTQQMH = 0. From (19) we have QTQ_x_nuu =0 =
QEHHQTQQD‘IH =Dz, ) D2yl =0 = Dz =0, which is another notation for (18).
On the other hand, starting from (18) we have Dz, =0 = DT[Dz, ] = 0, which is
another notation for (19). Thus (18) and (19) are equivalent.
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the fact that the information matrix provides an estimate of the covariance matrix of
the estimation error. More precisely,

cov{z} = E { [g - E{z}] [1 - E{z}]T} =0’ FE { [Eid_iiﬂ “1} (21)

where o2 denotes the variance of the equation error, which can be estimated by

1
2 2
0% = ]—V-Zei (22)

N being the number of samples.* Inverting ZididiT after transformation is espe-
cially easy: we get 02/) as an estimate of the variance o2, of one component of the
transformed estimation error [z* — E{z*}], and all covariances are zero. We can spec-
ify a threshold o4+ max for the standard deviation of each element of the transformed
parameter vector, say 10% of the nominal values from some initial identification (e.g.

o =0.1z%;,). If a A is greater than its threshold

2z*,max “£init

0.2

A> (23)

O+ ,nax

then the corresponding z* will be calculated from y* /), otherwise z* will be left at
some previous value.

For the purpose of any reasonable on-line application, we have to provide for
the capability to follow parameter changes. This means that we do not start the
identification together with robot operation and let it accumulate ever more and more
information. We would rather specify a kind of observation window. Afterwards
this puts a more precise meaning to ‘the value z* from some previous successful
identification’. With on-line identification we observe those values of A which result
from the data within the window. They will be rising and dropping according to the
data entering and leaving the window. The last successfully identified value of z* is
the value it had at the last time, when the corresponding A was above the threshold.

4 The proof is taken from (Isermann, 1992). If we subtract [21 gﬂg?] E{z} from both sides
of (4), we get an equation for the current estimation error [Z; d-dT] [z— E{z}] = Zi d.[ri—

—1=1

_d_?E{_:l_c}] Rewrite this as the matrix equation DT D [z — E{z}] = DTe, where row i of matrix
D is made up of Q?, and element i of vector e contains [r; — _d_ITE{g}], which is that part of
the equation error which results from measurement and modelling noise but not from parameter
mismatch. With this equation for [z — E{z}], the covariance matrix can be written in form
cov{z} = E{[QTQ]_IQTQQTQ[QTQ]”l}. If we assume that e and D are uncorrelated and
that e contains only a time-invariant white-noise signal such that eeT is a diagonal matrix
with o2 as diagonal elements, then we can simplify this to cov{z} = o2 E{[DT D]~1}, which is
another notation for (21). This expression is not strictly true since ¢ and D contain the same
noise signal n; and hence are not entirely uncorrelated (see eqn. (5)). The smaller the noise
signal n, in comparison with the information signal d,, the better the estimate for cov{z}.
The estimates are also biased because we do not have E{z} for calculating an estimate of o2
but must use the current estimate of z instead.
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3.2.3. Realization of Identifiability Supervision

Unfortunately, the computational cost of calculating eigenvalues and eigenvectors is
much higher than that of inverting a matrix. With n being the number of parameters,
we have about O(n®)/3 floating-point operations for the solution of (4) by Cholesky
factorization (Golub and Van Loan, 1989). Furthermore, we are using recursive algo-
rithms which require only 30(n?) floating-point operations for updating the inverse
of ¥,d,d7 with each new sample and for calculating a new estimate of z (UD-
factorization in (Bierman, 1977)). A divide-and-conquer algorithm for calculating
eigenvalues and eigenvectors, in contrast, requires 9 O(n?) floating-point operations
(Golub and Van Loan, 1989).

If such reduction of data throughput is not acceptable,® we can bpt for a less effi-
cient scheme, which excludes parameters from identification more often than actually
would be necessary, thus sacrificing some of the information present in the data.

The means available to judge identifiability conditions without recurring to éom—_
putation of eigenvalues and eigenvectors are as follows:

o The sum of diagonal elements of the information matrix ), d;dT  (the trace of
the matrix) is invariant with respect to orthogonal transformations (coordinate
transformations) and hence it is equal to the sum of eigenvalues.

o The determinant of the information matrix is equal to the product of all eigen-
values. Most factorization methods for recursive estimation update triangular
factors of the information matrix, which allows for calculation of the determinant
by multiplying the diagonal elements of those triangular matrices.

e We can calculate an estimate of the condition number, which is the ratio of the
largest to the smallest eigenvalue. The most common way to do this is to calculate
the infinity norm condition number instead of the 2-norm condition. Any condition
number requires to evaluate a matrix norm of the matrix and of its inverse. If
we use an identification algorithm in covariance form, like the Kalman algorithm,
which updates the inverse of the information matrix (or factors of the inverse of
the information matrix), then we can avoid explicitly inverting the information
matrix, which would be computationally too expensive.

e We can test for certain special cases of poor identifiability conditions, in particular
the case of a single model function being permanently zero (or close to zero) and
the case of linear dependencies among pairs of model functions.

A scheme that we have adopted for experiments comprises the following steps:

1. A test for special cases of poor identifiablility is performed by comparing the norm
of each column of the information matrix with some threshold and the angle be-
tween pairs of column vectors with another threshold. The information from this
test is then used to exclude single parameters from identification. (This feature

5 The greater the density of samples that are entering the identification process, the more infor-
mation can be accumulated in short periods, which permits the reduction of the temporal size
of the observation window accordingly. The lower limit of the size of the observation window
depends on the speed of the movement. But even if this limit is reached, higher sample rates
still can reduce the effects of measurement noise.
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can easily be added to existing recursive estimation algorithms by manipulating
the information matrix.) If the norm of any column is too small, then the cor-
responding parameter is excluded. If the angle between any two columns of the
information matrix is too small, then the parameter corresponding to the column
with the largest off-diagonal elements is excluded.

2. The resulting reduced information matrix is then tested for its trace and its condi-
tion number. If either of them lies beyond some bounds, identification is suspended
completely because this means that there are linear dependencies present in the
matrix which were not discovered in the first step.

The trace of the information matrix, which is proportional to the average value
of all eigenvalues, is used to detect the case when no parameter at all can be
identified. The condition number, on the other hand, which can only show the
ratio between the largest and smallest eigenvalue, is used to make sure that all
remaining parameters are of comparable identifiability. Testing the trace of the
information matrix can be omitted since the case of no identifiable parameter
would be discovered in the first step of the algorithm.

Sripada and Fisher (1987) propose a modified version of suspending identifica-
tion. They change the size of the observation window in order to keep the trace
of the inverse of the information matrix constant. (The inverse of the information
matrix, the covariance matrix according to (21), is available with all recursive algo-
rithms in covariance form.) Only when the condition number passes some threshold,
identification is completely turned off.

The loss of information implied by this procedure should now be compared with
the loss of information that results from reducing the rate of data throughput on
account of calculating eigenvalues and eigenvectors. If the temporal size of the ob-
servation window is taken to be constant, a decrease in the sample rate will result
in a general deterioration of all estimates throughout the experiment. Equation (21)
suggests that the variance of the parameter estimates will be reciprocally proportional
to the number of samples d; that fall into the window. This means that calculating
eigenvalues and eigenvectors will increase the variance of parameter estimates at least
by factor 30(n) (n denotes the number of parameters).

The implemented procedure will give rise to any increased variance of parameter
estimates only in some special cases. This might occur when two column vectors of
the information matrix are almost parallel such that one of the two corresponding
parameters has to be excluded from identification. It would be optimal to adjust
the vector of parameter estimates in the direction of these two column vectors while
keeping the position in an orthogonal direction. Yet, only coordinate directions can
be choosen for keeping or adjusting the parameter vector, and there will be an angle
of maximum @max = arccos(1//n) between the direction of actual and optimal
adjustment. In the worst case, the variance of parameter estimates is thus increased
by factor 1/ cos?(amax) = n.

The main loss of information, however, takes place when there remain unrec-
ognized singularities such that the identification is completely suspended. Thus the
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efficiency of this algorithm is more unevenly distributed over time than the efficiency
of an algorithm that calculates eigenvalues and eigenvectors.

The question of the temporal size of the observation window can be settled inde-
pendently from the question of the efficiency: if the variance of parameter estimates
is generally too large, then the size of the observation window can be increased. This
reduces the variances of parameter estimates at the expense of a slower adjustment
of estimates.® Note that this does not change the efficiency, which, in the case of
on-line identification, has to be a time-related quantity. The suggestion of Sripada
and Fisher to keep the trace of the inverse of the information matrix constant means
that the average parameter variances are kept constant.

3.2.4. Significance of the Shown Realization

The implemented procedure shows that the goal set at the beginning of this section
can be met. Even more efficient ways of exploiting observed data can be expected.
For the last three decades the knowledge in numerical analysis has made a signifi-
cant step. The proof of singular-value decomposition shows that the requirement of
a rectangular symmetric matrix is not necessary to apply considerations similar to
those of Section 3.2.2. Furthermore, there are building blocks available (Housholder
Reflections and Jacobi Rotations) which allow us to design fast updating algorithms
for a wide range of purposes (Golub and Van Loan, 1989). It should be possible to
construct algorithms which work at data rates comparable with existing recursive al-
gorithms and which are nevertheless able to detect all singularities (singular values),
not only those special cases of the procedure shown. Furthermore, it should be pos-
sible to design algorithms which allow us to exclude any direction from identification
(not only coordinate directions) at only slightly higher computational expense. This
is a subject of future work.

There still remains one advantage of the off-line identification approach: in gene-
ral, the model is changed arbitrarily, when proceeding from one experiment to another,
while with the methods treated in this paper, only the dimension of a linear model
is changed. It might be considered to increase the efficiency of the identification by
employing different sets of model equations and detecting circumstances for which a
particular set of equations is more appropriate than others.

4. Summary

The main ideas of this paper can be summarized as follows:

On-line identification provides a means to make model-based control strategies
feasible in practice because it automatically performs the necessary supervision and
adjustment of the model.

6 The kind of observation window is actually exponential, owing to the simplicity of introducing
an exponential weighting into any recursive estimation algorithm. The manipulation of the
size of the window proposed by Sripada and Fisher is in fact a manipulation of the exponent,
or rather of the factor by which all previously observed data are reduced relative to the most
recent observation.



398 C. Schmidt and M. Priifer

Yet, the available recursive estimation algorithms are not well-suited to handle
ill-conditioned estimation tasks, while they will be certain during common robot op-
eration. The paper shows how to discover and treat poor identifiablility conditions
and supplies, for comparison purposes, the notion of theoretically optimal behaviour
of an estimation algorithm.

The paper also demonstrates that despite the non-linearity of robot dynamics it
is possible to reduce the bias of the least-squares method.
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