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NEW NEURAL TRANSFER FUNCTIONS'

Wtobpzist.aw DUCH*, NORBERT JANKOWSKI*

The choice of transfer functions in neural networks is of crucial importance to
their performance. Although sigmoidal transfer functions are the most common,
there is no a-priori reason why they should be optimal in all cases. In this article,
advantages of various neural transfer functions are discussed and several new
types of functions are introduced. Universal transfer functions, parameterized
to change from a localized to a delocalized type, are of greatest interest. Biradial
functions are formed from products or linear combinations of two sigmoids.
Products of N biradial functions in an /N-dimensional input space give densities
of arbitrary shapes, offering great flexibility in modelling the probability density
of the input vectors. Extensions of biradial functions, offering a good trade-
off between the complexity of transfer functions and flexibility of the densities
they are able to represent, are proposed. Biradial functions can be used as
transfer functions in many types of neural networks, such as RBF, RAN, FSM
and IncNet. Using such functions and going into the hard limit (steep slopes)
facilitates logical interpretation of the network performance, i.e. extraction of
logical rules from the training data.

1. Introduction

Adaptive systems of the Artificial Neural Network (ANN) type (Haykin, 1994) were
initially motivated by the parallel-processing capabilities of the real brain, but the
processing elements and the architectures used in artificial neural networks have lit-
tle in common with biological structures. ANNs are networks of simple processing
elements (usually called neurons) with internal adjustable parameters W. Modifica-
tion of these adjustable parameters allows the network to learn an arbitrary vector
mapping from the space of inputs X to the space of outputs ¥ = Ay (X). From a
probabilistic point of view, adaptive systems should approximate the density of the
joint probability p(X,Y) or the posterior probability p(Y|X). Flexible estimation
of densities is thus of primary importance.

ANNSs are adaptive systems with the power of a universal computer, i.e. they
can realize an arbitrary mapping (association) of one vector space (inputs) to anoth-
er vector space (outputs). They differ in many respects, one of the most important
characteristics being the transfer functions performed by each neuron. The first at-
tempts at modelling neural networks were made using logical networks (McCulloch
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and Pitts, 1943), or threshold devices performing step functions. These step functions
were generalized in a natural way to functions of sigmoidal shape. Single-layer neu-
ral networks with sigmoidal functions are universal approximators (Cybenko, 1989;
Hornik et al., 1989), i.e. they can approximate an arbitrary continuous function on a
compact domain with arbitrary precision given a sufficient number of neurons. The
same result holds for the networks with neurons that give Gaussian outputs instead
of sigmoidal outputs (Hartman et al, 1990; Park and Sandberg, 1991). A new type
of transfer functions, called Gaussian bars, has been proposed by Hartman and Keel-
er (1991). In the functional-link networks of Pao (1989) a combination of various
functions, such as polynomial, periodic, sigmoidal and Gaussian functions are used.
Rational transfer functions were used by Haykin and Leung with very good results
(Haykin, 1994). In the conic-section function networks Dorffner (1994) introduced
functions that change smoothly from sigmoidal to Gaussian-like. Lorentzian trans-
fer functions, which may be treated as simplified Gaussian functions, were used by

Giraud et al. (1995). Non-monotonic transfer functions have been recently used by
Morita (1996).

There is a growing understanding that the choice of transfer functions is at least
as important as the network architecture and learning algorithm. Neural networks are
used either to approximate a-posteriori probabilities for classification or to approxi-
mate probability densities of the training data (Ripley, 1996). None of the functions
mentioned above is flexible enough to describe an arbitrarily shaped density distri-
bution of a multidimensional input space. Viewing the problem of learning from a
geometrical point of view, the purpose of the transfer functions performed by the
neural-network nodes is to enable the tessellation of the parameter space in the most
flexible way using the lowest number of adaptive parameters. Implications of this fact
have not yet been fully understood by many researchers.

In this paper we investigate various functions suitable as transfer functions for
neural networks. Systematic investigation of transfer functions is a fruitful task.
Since information about various transfer functions is scattered in the literature and
has not been reviewed so far, we have collected and commented upon a number of
transfer functions alternative to sigmoidal functions. To keep the paper rather short,
nonmonotonic transfer functions have been omitted here, although they may actually
be more faithful to neurobiology and may help to avoid the local minima of neural-
network error functions (Duch and Ludwiczewski, 1997; Morita, 1996). In the next
section, a few non-local transfer functions are described and their simplified versions
are discussed. In the third section, the description of local and semi-local process-
ing functions is presented and biradial transfer functions are introduced. Section 4
presents results obtained using different transfer functions in several RBF-type of
networks. A short discussion concludes this paper.

2. Non-Local Transfer Functions

Two functions determine the way signals are processed by neurons. The activation
function determines the total signal which a neuron receives. In this section, a fan-
in function, i.e. a linear combination of incoming signals, is used. For neuron i
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connected to neurons j (for j = 1,...,N) sending signals z; with the strength of
the connections W;;, the total activation I; is

N
Il(m) = ZW,‘J{L’]’ (1)
=1

The second function determining the neuron’s signal processing is the output
function o(I). These two functions determine the values of the neuron outgoing
signals. The total neuron processing function acts in an N-dimensional input space,
also called the parameter space. The composite of these two functions is called the
transfer function o(I(xz)). The activation and output functions of the input and a
output layers may be of different type than those of the hidden layers. In particular,
linear functions are frequently used for inputs and outputs, and non-linear transfer
functions for hidden layers.

The first neural-network models proposed in the 1940s by McCulloch and Pitts
(1943) were based on the logical processing elements. The output function of the
logical elements is of the step-function type, and is also known as the Heaviside
O©(I—6) function: it is 0 below the threshold value 6 and 1 above it. The use of such
threshold functions was motivated by the logical analysis of computing circuits and
the metaphor (very popular in the early days of computers) of brains seen as networks
of logical switching elements. In principle, one can perform arbitrary computations
using logical neurons. Real values should be quantized and the logical neurons used
to learn the bits. The greatest advantage of using logical elements is the high speed
of computations and the possibility to realize relatively easily some functions in the
hardware. Classification regions of the logical networks are of the hyperplane type
rotated by the W;; coefficients.

Multi-step functions are an intermediate type of functions between the step and
semi-linear functions. They have a number of thresholds, ¢(I) = y; if 6, < T < ;4.
To avoid evaluation of the logical IF conditions for a constant difference 6 = 6; — 6,1,
the multi-step functions are efficiently implemented using auxiliary step vectors v
and integer arithmetics to convert rescaled input values to arbitrary output values:
v [0 (1+Int [(I — 61)/6])], where 6; is the first threshold.

Instead of the step functions, semi-linear functions are also used, s;(I;6,,6;) =
{0for I < 6y, (I —61)/(62—61)for6; < I < 6 and1forl > 6;}. These func-
tions were later generalized to the sigmoidal functions, leading to the graded-response
neurons, used most often in the literature:

1

o) = T

(2)

The constant s determines the slope of the sigmoidal function around the linear
part. It is commonly believed that the activity of biological neurons follows such a
sigmoidal transfer function, but this is not the reason why the sigmoidal functions
became so popular. These functions are smooth and it is easy to calculate their
derivatives, equal to o(I)' = ¢(1)(1—o(I)). Sigmoidal functions may also be replaced
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by the arc tangent or hyperbolic tangent functions:

1—e 1/
tanh(I/s) = m 3)
tanh'(I/s) = sech®(I/s)/s = 3(6*1/5i6+-’/s)2 (4)

Since calculation of exponents is much slower than simple arithmetic operations,
other functions of sigmoidal shape may be useful to speed up computations:

N I I _sgn(I)I—s
silis) = 0D~ -~ 0(-Dy—=I"p " ()
sI sI
I;s) = = 6
28 = T AT eE T Thg (©)

where ©(I) is the unit-step function and ¢ = +/1 + s2I2. The derivatives of these
functions are also easy to compute:

1T, — S_ —S = °

s1(l;s) = (I+5)2®(I)+(1_5)26(_I)_W @
! . — ._—_—__.__s

52(‘[75) - q(l‘l‘q) (8)

The shapes of these functions! are compared in Fig. 1. The sigmoidal and
hyperbolic-tangent functions are hard to distinguish in this figure, while the arc tan-
gent and the functions s;, s; change asymptotically reaching saturation for larger
activation values more slowly. All these functions are very similar and therefore one
may recommend the use of s; or sy functions since their computational costs are
the lowest—in practical computations avoiding calculation of exponential factors, one
can gain a factor of 2-3.

Sigmoidal functions exhibit non-local behaviour, i.e. they are non-zero in an
infinite domain. The classification decision regions of neural networks based on these
functions are formed by cutting the input space with hyperplanes (Fig. 2). The
system pretends that it knows everything—this may be quite improper, especially
far from the sample data regions where hyperplanes, extending to infinity, enforce
arbitrary classifications. The sigmoidal output functions smooth out many shallow
local minima, in the total output functions of the network. For classification problems
this is very desirable, but for general mappings it limits the precision of an adaptive
system.

For sigmoidal functions powerful mathematical results exist showing that a
universal approximator may be built from only a single layer of processing elements
(Cybenko, 1989; Hornik et al., 1989). Another class of powerful functions used in ap-
proximation theory (Powell, 1987; Dyn, 1989; Franke, 1982) is called the radial basis
functions (RBFs). Some of these functions are non-local, while most are localized.
RBF networks are also universal approximators (Hartman et al., 1990; Park and

1 All these functions are linearly transformed to obtain outputs between —1 and 1; their slope
parameters s are chosen to make them as similar to each other as possible.
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Fig. 1. Comparison of non-local transfer functions.

Fig. 2. Decision regions formed using sigmoidal processing functions.

Sandberg, 1991). If processing units of the sigma-pi type higher-order products of
inputs are taken into account then the approximating function becomes a product of
various powers of input signals (Durbin and Rumelhart, 1989).

For approximation problems, Allison (1993) recommends simple multiquadratic
functions, similar to the sy(I;s) function:

sm[;4) =/T2 + A%, s (I;A) = ﬁf_[) ©)

where A is the smoothness parameter.
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3. Local and Semi-Local Transfer Functions

Non-local transfer functions used in neural networks divide the total input space
into regions corresponding to different classes or values of the output vector. A
single adaptive parameter may change the output of the network at all points of
the input space. Therefore the learning process must always change all adaptive
parameters in a correlated way. Such transfer functions are used in multi-layered per-
ceptrons (MLPs) for discrimination and approximation. Localized transfer functions
use adaptive parameters that have only a local influence on the network output, i.e.
the output is changed only in the localized regions of the input space. Such functions
are used in Gaussian-based radial-basis-function (RBF) networks, where classification
and approximation are based on prototypes rather than discriminant functions. In
such networks the activation function is usually changed from the fan-in function to
a distance function:

Di(z) = d(z,t:) = ||z — & (10)

where t; is the center of the ¢-th unit, an adaptive parameter around which the
activation has large values. In practice, the Euclidean distance is used most often
for real-valued inputs and the Hamming distance is frequently used for binary in-
puts. Additional adaptive parameters may be introduced as scaling factors in each
dimension (N parameters), or as one common scaling factor for each centre. For the
Euclidean distance, 2N adaptive parameters are defined:

D?(x;t,V) :ZVi(ii —t;)? (11)

A few attempts were made to use localized functions in adaptive systems. Some of
them may be traced back to the older work on pattern recognition (Fukunaga, 1972).
Moody and Darken (1989) used locally-tuned processing units to learn real-valued
mappings and classifications in a learning method combining self-organization and
supervised learning. They have selected locally-tuned units to speed up the learning
process of backpropagation networks. Bottou and Vapnik (1992) have shown the pow-
er of local training algorithms in a more general way. According to Kadirkamanathan
and Niranjan (1993), smoothness conditions for adding new units in constructive
neural networks are satisfied only by strongly local units.

Although the processing power of neural networks based on non-local processing
units does not depend strongly on the type of neuron processing functions, this is
not the case for localized units. Gaussian functions e=2®” are perhaps the simplest
but not the least expensive to compute. Simple quadratic and quartic functions
approximate roughly the shape of a Gaussian function:

6:(D(e) = ez Gh(D) = ~2DGA(D) (12)
Gi(D@) = ——r—,  G4(D) = —4D’G}(D) (13)

1+ Di(z)’
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3.1. Radial Basis Functions (RBFs)

Radial Basis Functions are used as transfer functions in many neural-network simu-
lators. These types of functions have been explored in approximation theory (Powell,
1987; Dyn, 1989; Franke, 1982) and in pattern recognition under different names for
many years (cf. the potential-function approach in (Fukunaga, 1972)). A very good
introduction to RBF and more general regularization networks was given by Poggio
and Girosi (1990) (see also Bishop, 1991; Broomhead and Lowe, 1988; Dorffner, 1994;
Haykin, 1994; Lowe, 1989; 1991; 1993; Park and Sandberg, 1991). Several types of
localized radial basis functions exist. They all treat the activation value as a radial
coordinate r = ||z — t;||. Among them Gaussian functions (eqn. (14)) are unique,
since for the Euclidean distance functions (and other distance functions that may be
presented as a sum of independent components) they are separable. Other exam-
ples of the Radial Basis Functions include the nonlocal radial coordinates, general
multiquadratics, and thin-plate spline functions:

ha(z;t,b) = ell=—t?/¥ (14)

hao(z;t) = |l — | (15)
h(z;t,b) = (B> +lz—t)*)™, a>0 (16)
ha(a;t,b) = (6% + |l — ¢)|2)”, 0<B<1 (17)
hs(w;t,b) = (bllz — ¢])”In (bl — ¢ (18)

The simplest approach, used in the RBF networks, is to set a number of radial
functions G;(x) with predetermined parameters b and positions ¢ (e.g. positions
are set by k-means clustering and dispersions to be twice as large as the nearest-
neighbour distance) and to determine the linear coefficients W; in the approximation
function:

M M
Fla; W,b,t) = S WiGi(e,bit) = > Wie el /2! (19)
i=1 =1

In the regularization networks, the centres ¢; of each of the radial units are also
optimized (Poggio and Girosi, 1990), allowing for reduction of the number of basis
functions in the presence of noisy data (corresponding to the regularization of an
approximating function). Thus in an N-dimensional case, a centre is described by
N coordinates ¢; and one parameter b; (dispersion for Gaussians). A straightforward
generalization of the radial units of Gaussian type with Euclidean distance function is
to allow different dispersions for different dimensions, giving 2V adaptive parameters,
or centres and dispersions, per each neural unit.

3.2. Gaussian and Sigmoidal Bar Functions

The problem of noisy dimensions in RBF networks, i.e. irrelevant inputs that do not
contribute to the determination of the output values, has been addressed by Hartman
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Fig. 3. Comparison of several localized functions fitted to a Gaussian.

and Keeler (1991) and by Park and Sandberg (1991). Instead of multidimensional
Gaussian functions, these authors advocate a combination of one-dimensional Gaus-
sians:

Gy(z;t,b,v) Zv e~ (wimti)* /b (20)

In this case, the activation and output functions are non-separable. 3N ad-
justable parameters are needed per one processing unit. These functions are called
the Gaussian bar functions because (except for a single maximum around the centre
t in N dimensions) they include Gaussians in (N — 1)-dimensional subspaces. For
a large number of dimensions N, these bars have values v; that may be much lower
than the sum of N weights v; around t. To smooth the network output and remove
small maxima in the output layer, sigmoidal functions are used.

Gaussian bars eliminate irrelevant input variables, i.e. they perform a dimension-
ality reduction, which is easier than in the multidimensional Gaussian case. Variable
dispersions should also permit to reduce some of the dimensions to zero (cf. the ex-
ample of a quadratic logistic mapping given by Moody and Darken (1989)). Another
advantage of using the bar functions follows from the very existence of these bars.
A single maximum or a few separated maxima are described by a small number of
Gaussian functions with only N + 1 parameters for each of them and require the
same number of Gaussian bar functions with almost three times as many parame-
ters. However, if there are k regularly spaced input clusters in each dimension in
an N-dimensional hypercube, kN clusters are formed and each of them should be



New neural transfer functions 647

represented by a separate multivariate Gaussian. On the other hand, kN Gaussian
bar functions are sufficient to describe such a case.

A similar combination of sigmoidal functions will create the sigmoidal bar func-
tion:

N

V;
O'b(m;t; W,'U) Z 1+e Wi (wi—t;)2 /b2 (21)

These functions, similarly to Gaussian bars, give surfaces of constant densities that
cannot easily be rotated, which is clearly a disadvantage. Sigmoidal bar functions
should not be used to represent data clustered around a few points only, because
each cluster requires 2V sigmoidal functions, while one Gaussian function may be
sufficient to model a cluster. However, if the data clusters are regularly-spaced on a
quadratic mesh, each of the k? clusters should be represented by a separate Gaussian,
while 2 x 2k = 4k sigmoidal bars in the input space are sufficient to represent such
data.

3.3. Ellipsoidal Density Functions

The multivariate Gaussian functions give hyperellipsoidal output densities:
N
Gy(a;t,b) = e D (@it = T e~(@iw)?/¥ (22)

Dispersions b; may be interpreted as scaling factors in the distance function:
(z;t, V) ZV ; (23)

with V; = 1/bZ. A similar result is obtained by combining the sigmoidal output
function (or any other logistic function) with the quadratic distance function, e.g.

Ggs(z;t,b) = 2(1—J(D2(m;t,b)))

~ 2 B 2 24)
1+ 1Y elamt)r /e T 1 4 D ith) (

For an N-dimensional input space, each ellipsoidal unit uses 2N adaptive pa-
rameters. Taking the Mahalanobis distance function

D (@;t) = ) (x: — t:)S7 (& — t:) (25)

3
where ¥ is the (symmetric) covariance matrix of  —¢, a rotation of hyperellipsoids is
introduced. Treating the elements of this covariance matrix as adaptive paraméters is
equivalent to the use of a general metric tensor in the distance function: Di(x; G;t) =
2> Gij(zi —t:;)(xi —t;). The total number of parameters per each function becomes
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N(N +3)/2 and the constant density surfaces are given by general quadratic forms,
i.e. they are ellipsoidal, parabolic or hyperbolic.

A single unit may also provide more complex densities if more general distance
functions are used, but one should avoid too many parameters per one neural node.
Simpler units giving approximately ellipsoidal densities are also useful, e.g.

N
1
Golait0) = || s

=1

(26)

This formula cannot be easily expressed in terms of an overall distance func-
tion. Using linear approximation for G5 (instead of a product), the squared distance
function appears in the denominator:

1 1

G3(x;t,b) = _ 97
ot 1+ 20 (2 —t:)2/62 1+ D*(=;t,b) (27)

These functions give hyperellipsoidal densities. Giraud et al. (1995) used a fan-in
function to create the Lorentzian response functions:
1 1
L{z; W) = = = (28)
g . N p)
1+1 (:L‘, W, 9) 1+ (Ei:l Wix; — 9))

Although Gg and L functions look similar, they are in fact quite different:
the Lorentzian functions are not ellipsoidal, and the surfaces of constant density
are in their case a window-type non-localized function, with the half-width equal to
1S, WE.

A number of local training algorithms have been devised for local transfer func-
tions, combining the k-means clustering for initial placements of ellipsoids in a self-
organizing fashion, followed by growing and pruning the new ellipsoidal units in a
supervised algorithm. In particular, if the training algorithm localizes a neuron pro-
cessing function in a region far from the given data points, the unit may be removed
without any loss of information.

An interesting feature? of Gaussian functions G, (22) is that after a simple
renormalization (eqn. (29)) they become non-local and are equivalent to sigmoidal
functions o(x;p), where p; = b2 /4i;:

Gy(x;t,b) 1

Gr(@;t,b) = = 2
R(:E, ) ) Gg(lﬂ,t,b)+Gg(w,_t7b) 1+ew42?=1:z,;ti/b? ( 9)

3.4. Universal Transfer Functions

Linear terms used to calculate I(x; W ,8) activations and quadratic terms used in
Euclidean distance measures combined together create functions that for some pa-
rameters give localized, and for other parameters non-localized densities. Several

2 W.D. is indebted to Igor Grabiec for pointing this out in a private discussion.



New neural transfer functions ' 649

functions of such kind have been proposed recently. Ridella et al. (1997) use circular
units in their Circular Backpropagation Networks. The output function is a standard
sigmoid while the activation function contains one extra term:

N N
If(z, W) = W, + Z Wizi + Wyt Z z (30)

1=1 =1

and may also be presented in form of a distance function with

I(2; W) = do(@; ) = (|2 = > = 6) Wi (31)

1 (L w?
i = —Wi/2Wny, 0= — =W
0= (S )

Ridella et al. (1997) obtained very good results using these units in the standard
backpropagation network and proved that in many ways circular units provide an
optimal solution in classification problems. A different type of circular units has been
used by Kirby and Miranda (1996). In their implementation two sigmoidal units are
coupled together and their output is restricted to lie on a unit circle.

Dorffner (1994) proposed conic-section transfer functions as a unified framework
for MLP and RBF networks. The straight lines and ellipses are special cases of conic
sections. Based on geometrical considerations, Dorffner proposes a combination of
fan-in and distance activation functions:

Clz; W,t,w) = I(x—t; W) + wD(x — t)

N+1
Z Wi(Xs —t:) +w
=1

(32)

This activation is then composed with the standard sigmoidal function to produce a
conical transfer function. From our previous discussion it should be clear that many
other combinations of fan-in and distance functions could also serve as universal
transfer functions. For example, exp(al? — BD?) or the approximated Gaussian
combined with the Lorentzian function also provide an interesting universal transfer
function:

1
1+ al?(xz; W,0) + BD?(x;t)

CGL(w;Wytaaae) = (33)

For simplicity, we may assume that 8 =1~ a. The parameter o scales the relative
importance of the linear, non-localized terms. The number of adaptive parameters in
this case is equal to 2N + 1 (no scaling factors in the distance function) or 3N +
1 (separate distance scaling factors for each dimension). Unfortunately, universal
functions are non-separable.
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Fig. 4. A few shapes of biradial functions in one dimension.

3.5. Biradial Functions

Sigmoidal functions may be combined into a ‘window’-type localized functions in
several ways. Perhaps the simplest approach is to take the difference of two sigmoids,
o(z) — o(z — 6). One may also use products of pairs of sigmoidal functions o(z)(1 —
o(z)) for each dimension. This type of transfer functions is very flexible, producing
decision regions with convex shapes, suitable for classification. The product of N
pairs of sigmoids has the following general form:

Bi(z;t, b, s) Ha( —ti+eb‘i))(1—a(esi(a:i—ti—eb"'))) (34)

where o(z) = 1/(1 +e~"). The first sigmoidal factor in the product is growing for
the increasing input z; while the second is decreasing, localizing the function around
t;. Shape adaptation of the density Bi(z;t,b,s) is possible by shifting centres ¢,
rescaling b and s. Radial basis functions are deﬁned relatively to only one centre
||z — t||. Here two centres are used, ¢; +e% and t; — e, therefore we call these func-
tions blradlal The product form leads to well- locahzed convex densities of biradial
functions.

The number of adjustable parameters per processing unit is in this case 3N.
A dimensionality reduction is possible as in the Gaussian bar case, but more flexi-
ble density shapes are obtained, thus reducing the number of adaptive units in the
network. Exponentials e® and eb are used instead of s; and b; parameters, respec-
tively, to prevent oscillations during the learning procedure (learning becomes more
stable).
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Localized biradial functions may be extended to semi-localized universal transfer
functions by adding two parameters:

SBi((z;t,b, s) :INI(a +o(e(z —ti + eb“'))>(1 — Bo(e* (z; — t; — € ))) (35)

=1

The above function does not vanish for large |z|, and for & =0, 8 =1 it is identical
to biradial localized functions while for & = # = 0 each component under the product
turns into a usual sigmoidal function. For each unit, semi-local functions SBi have
3N + 2 parameters or 5N parameters (if different o; and 3; are used in each
dimension).

4. Neural Networks with Biradial Transfer Functions

As far as we know, biradial functions as well as universal functions Cgr (33) have
never been tested before in the neural-network context. We have performed tests
of biradial transfer functions for classification and approximation problems with two
different neural-network architectures. To test the difference in performance between
the standard sigmoidal and biradial transfer functions for classification, we have used
the modified Stuttgart Neural Networks Simulator (SNNS, 1997). Backpropagation
formulae for the biradial transfer functions were derived and implemented in the
RBF package. We have also modified RBF to work not only with radial, but also
with sigmoidal transfer function.

The two-spiral classification benchmark?® is a difficult test frequently used for
backpropagation networks. The number of data points used for training is 196. These
points are divided into two classes (represented by the dark and light areas in Fig. 5).
Three RBF-type networks of identical structure were trained using the two-spiral
data. The same initialization procedure was used with the Gaussian, sigmoidal and
biradial transfer functions. The number of network nodes was set to 100 (about half
of the number of the training vectors) and each network was trained for 2000 epochs.

In Fig. 6 the convergence of errors during training the RBF network using Gaus-
sian transfer functions (eqn. (14), with the same dispersion in each dimension, but
optimized for each node), sigmoidal functions (eqn. (2), with the same dispersion and
slope in each dimension, also optimized for each node) and biradial transfer func-
tions (eqn. (34), all dispersions and slopes optimized by the learning procedure) is
presented. The network based on biradial transfer functions not only learns faster
(Fig. 6) but also generalizes better (Fig. 5). It is interesting to note that the sig-
moidal functions used in the RBF type of networks performed much better than the
Gaussian functions. The two-spiral problem is easy for the Gaussian RBF network
if the number of nodes is equal to the number of training vectors. If the number of
nodes is restricted, the Gaussian functions are not flexible enough to represent the
density accurately.

3 These benchmark data are stored at http://www.cs.cmu.edu/afs/cs/project/connect/bench/.
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Fig. 5. Results for the two-spiral classification problem solved with the Gaus-
sian (upper figure) and biradial (lower figure) transfer functions.
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Fig. 6. Comparison of the summed squared errors for different transfer func-
tions: Gaussian (eqn. (14)), sigmoidal (eqn. (2)) and biradial function
(eqn. (34)) used in the same RBF net during 2000 epochs.

Our second benchmark problem concerns approximation rather than classifica-
tion. Approximation of the Sugeno function (Sugeno and Kang, 1988) f(z,y,z2) =
(14+2%5 4y~ 14271%)2 was attempted using Gaussian and biradial transfer functions.
Although this function is frequently used for testing the approximation capabilities of
adaptive systems, there is no standard procedure to select the training points and thus
the results are rather hard to compare. Here 216 points for training from the interval
[1,6] and 125 points for testing from the interval [1.5, 5.5] were randomly chosen.
Since our goal is to test the usefulness of biradial functions, the results of computa-
tions-made by the IncNet neural network (Kadirkamanathan and Jankowski, 1997)
with Gaussian and biradial functions are compared. The IncNet is a network with
statistical control of growing and pruning of neurons in the hidden layer in a RBF-like
structure network. All tests were performed using the same initial parameters.

Two learning processes were pursued for 4000 iterations.* Although it is possible
to obtain a smaller RMS error by increasing the number of iterations and changing
other parameters used in control of learning, it will not change the qualitative differ-
ence of our results. The change in RMS errors in the training process is presented in
Fig. 7. Learning using Gaussian functions is unstable and the network is unable to
build a suitable landscape to approximate the function. Clearly, the IncNet network
gives better results using biradial transfer functions than Gaussian functions.

5. Discussion and Possible Extensions

We have presented an overview of various transfer functions used in neural net-
work models and presented several new functions suitable for this purpose. From
the geometrical point of view, learning requires approximation of complicated prob-
ability densities. In the process of density estimation by neural networks, flexible
transfer functions are as important as good architectures and learning procedures.

4 One iteration is a single update of parameters in which only one pattern is presented for learning.
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Fig. 7. Comparison of RMS errors obtained by the IncNet network using bira-
dial (solid line) and Gaussian (dash-dot line) functions.

A small number of network parameters should allow for maximum flexibility. Uni-
versal (semi-localized) functions, such as the circular, conical, biradial or simplified
Lorentzian/Gaussian functions, lead to more compact networks that learn faster.
These functions unify the distance-based, localized paradigm using terms quadratic
in inputs, with the non-local approximations based on discriminant functions that use
only the linear terms.

An important advantage of the biradial functions comes from their separability.
The sigmoidal functions are not separable and among the radial basis functions only
Gaussians are separable. Separability enables an analysis of each dimension or a
subspace of the input data independently. In other words, one can forget some of
the input features and work in the remaining subspace. This is very important in
classification when some of the features are missing.

Biradial transfer functions may also be used for logical rule extraction using an
FSM density estimation network. Logical interpretation of the function realized by a
neural network is possible if, instead of hyperellipsoidal densities, cuboidal densities
are used. In the case of sigmoidal and biradial transfer functions, sufficiently large
values of the slopes are needed, changing the graded sigmoidal functions into step
functions and the biradial functions into cuboidal (rectangular) functions. There are
several ways to enforce large slopes of the transfer functions. The network may be
trained with a modified error function, e.g.

1
Enew = Lold +7 Z '8—2 (36)
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The modification of the error function may also be done after completion of the
training process, with subsequent retraining to maximize the slopes with the minimal
change in the network parameters. The ‘window’ for irrelevant inputs becomes broad
and when it covers all the data the links to these inputs are removed. Using these

ideas we have obtained very good results in applications to rule extraction from data
(Duch et al., 1997).

The biradial functions proposed and tested in this paper contain 3N parameters
per one unit and are quite flexible in representing various probability densities. Semi-
biradial functions provide local and non-local units in one network. The next step
towards even a greater flexibility requires an individual rotation of densities provided
by each unit. Of course, one can introduce a rotation matrix operating on the inputs
Rz, but in practice it is very hard to parameterize this N x N matrix with N — 1
independent angles (e.g. Euler’s angles) and calculate the derivatives necessary for the
backpropagation procedure. We have found two ways to obtain rotated densities in all
dimensions using transfer functions with just N additional parameters per neuron.
In the first approach, a product form of the combination of sigmoids is used:

Cow;t,t, R) = [] (o(Riw +t:) — o(Riw + 1)) (37)

SCp(z;t,t',p,7,R) = H (pia(Ria: +t;) +rio(Rix + t:))
where R; is the i-th row of the rotation matrix R with the following structure:

s1 a; O 0

0 89 (6] 0

SN—-1 QN-1

_0 0 SN

If p; =1 and r; = —1, then the SCp function is localized and gives similar den-
sities as the biradial functions (except for rotation). Choosing other values for the
parameters p; and 7;, non-local transfer functions are created.

In the other approach, the density is created by the sum of a ‘window-type’
combinations of sigmoids L(z;¢,¢') = o(z +t) —o(z +t') in N —1 dimensions and
a combination rotated by a vector K:

N-1
C(z;t,t,W,K) = > WiL(zi,t;,t}) + WyL(Kw,t,t') (39)
i=1

The last density is perpendicular to the vector K. Treating Ck(-) as an acti-
vation function and using a sigmoidal output function with a proper threshold leaves
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only the densities in the direction perpendicular to K. An alternative is to use the
product form

N-1
Cpi(x;t,t', K) = L(Kz,t,t'") [[ L=, ti, 1)) (40)

=1

as the transfer function (the output sigmoid is not needed in this case). Rotation
adds only N — 1 parameters for Cp(-) and N parameters for Cg(-).

So far, we have not seen any adaptive systems using such generalized transfer
functions. There is an obvious trade-off between the flexibility of the processing
units increasing with the number of adjustable parameters and the complexity of the
training process of the whole network. Biradial and rotated transfer functions (Cp(-),
Cs(+)) are flexible, but still rather simple, therefore we intend to use them also in
the FSM (Duch and Diercksen, 1994) and other networks.

Although the importance of the density estimation seems rather obvious, the
value of research on the transfer functions is frequently overlooked. We believe that
the point of view presented in this paper is very fruitful and should be pursued.
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