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SOME ISSUES IN THE DESIGN
OF PREDICTIVE CONTROLLERS'

LAaLo MAGNI*, GiuseprpE DE NICOLAO*
Riccarpo SCATTOLINI*

In the paper, we discuss how to design a predictive controller capable of ad-
dressing a number of important issues ranging from nominal stability to the
model identification /controller design interplay. Nominal stability is ensured by
resorting to Constrained Receding Horizon Predictive Control. As for robust
stability, the connections between the frequency weighting P-polynomial in the
cost function and the achievable robustness against multiplicative uncertainty
are investigated. Then, a two-step design procedure is proposed in order to
enhance the closed-loop robustness and obtain nominal performances. A corre-
lation technique is also proposed as a tool to estimate uncertainty bounds to be
used in controller design. Finally, the control and identification procedures are
put together to form an iterative identification/control design methodology. A
simulation example is reported to illustrate the approach.

Keywords: predictive control, robust control, two degree of freedom regulation,
identification for control.

1. Introduction

Model Based Predictive Control (MBPC) has gained wide acceptance in the indus-
trial environment due to its ability to obtain good performances starting from simple
models and rather intuitive design principles (Clarke, 1994). Some of the reasons
behind this success are the possibility of including explicit constraints on the future
outputs and inputs and the flexibility allowed by a number of design knobs such as the
control weights and the control and prediction horizons. Furthermore, experience has
shown that reasonably good performances are usually obtained also when the design
parameters are tuned according to more or less heuristic recipes.

At the same time, recent years have witnessed many theoretical developments
in control theory which can be used to provide more systematic foundations to the
design of predictive controllers. From a practical point of view any control design
method should address the following issues:
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Nominal stability: For many years most of the stability results of MBPC algo-
rithms have been asymptotic, i.e. they have held only for sufficiently large prediction
horizons (Clarke et al.,, 1987; Soeterboek, 1992), whereas in practice small horizons
are used in order to save computations. Only in recent years, it has been shown that
MBPC algorithms with guaranteed stability can be designed by introducing input and
output terminal constraints (Clarke and Scattolini, 1991; Kouvaritakis et al, 1992;
Mosca and Zhang, 1992; Rawlings and Muske, 1993).

Robust stability: Traditionally (Clarke et al., 1991; McIntosh et al., 1991; Mo-
htadi, 1988; Robinson and Clarke, 1994), the robustness properties of MBPC algo-
rithms have been improved by suitably tuning the available “design knobs”, such as
the control and prediction horizons, the output and control weighting functions (the
so-called P and @ polynomials), or the observer polynomial (the 7-polynomial).
However, since the predictive approach mainly relies on Hs (rather than H,) argu-
ments, robust stability with respect to model uncertainty is not guaranteed in general.
Other ways to handle uncertainty in predictive control include those based on a con-
traction mapping property (Morari, 1994; Zafiriou, 1990), or the use of a linear cost
function (Genceli and Nikolau, 1993; Zheng and Morari, 1993). Recently, systematic
approaches to the robustification of MBPC with respect to unstructured perturba-
tions have been developed by means of the Youla parametrization so as to achieve
robustness while maintaining the servo dynamics of the nominal controller (Hrissagis
et al., 1995; Kouvaritakis et al, 1992). Although this procedure is elegant and effec-
tive in addressing the robustness problem, it can be computationally demanding in
some contexts, e.g. in adaptive control. Thus, there is still some interest in improving
robustness of classical MBPC by a suitable choice of the standard design parameters
(Ansay et al.,, 1998; Yoon and Clarke, 1995).

Performance: The robustification of a predictive controller, motivated e.g. by the
presence of high-frequency model uncertainty, can go to the detriment of the closed-
loop performance even in nominal conditions. This is an emerging topic which has
received attention only recently (De Nicolao et al., 1996; Kouvaritakis et al., 1992;
Yoon and Clarke, 1995).

Interplay between controller design and model identification: The design of robust
controllers calls for the identification of uncertainty bounds for the nominal system.
Traditionally, the identification phase has been viewed as preliminary and separate
with respect to the control design phase. A recent stream of research, however, has
pointed out possible benefits coming from a joint design of identification and control
(Gevers, 1993; Hjalmarsson et al., 1996; Lee et al., 1993; Schrama, 1992; Schrama
and Bosgra, 1993; Van den Hof et al,, 1995). Again there is interest in incorporating
these ideas in the MBPC design.

The aim of the present paper is to show how to design a predictive controller tak-
ing into account the above issues. The emphasis here is not on developing ultimate
and optimal answers to the single questions but rather on outlining an overall design
procedure. Specifically, the nominal stability issue is ipso facto solved by considering
the Constrained Receding Horizon Predictive Control (CRHPC) algorithm (Clarke
and Scattolini, 1991). As for robust stability, we provide some insight into the use of
the classical method based on the P-polynomial. With respect to the performance is-



Some issues in the design of predictive controllers 11

sue, we observe that the intrinsic two-degrees-of-freedom structure of MBPC schemes
has not been fully exploited so far. Therefore, we suggest a two-step design procedure
where, after designing a feedback regulator ensuring robust stability, performance
recovery is obtained by means of a suitable feedforward compensator (of predictive
type, as well). Finally, we propose a joint control/identification scheme hinging on
the iteration of a two-step procedure. In the identification step, input-output data
collected from a closed-loop experiment are suitably filtered and used to identify a
nominal plant model together with its uncertainty bounds. In the other step, the
nominal plant model and the uncertainty bounds are used to design a controller to be
used in the subsequent identification step. The effectiveness of the proposed approach
is demonstrated through a simulated benchmark problem (Lee et al., 1993).

Nowadays it is well recognized that the success of predictive control lies in its
capability to handle difficult control problems for highly constrained MIMO systems.
However, in order to simplify the presentation and to focus on some basic aspects
concerning the choice of the design parameters, we will restrict the attention to the
simpler case of unconstrained SISO systems.

2. System Under Control and CRHPC Control Law

The system under control is described by the SISO linear, discrete, time-invariant
nominal model:

Alg™")y(t) = B(g™)u(t) (1)

where ¢~' is the backward shift operator, » and y are the input and the out-
put signals respectively, while A(g~') and B(gq™!) are polynomials of order n with
B(0) = 0. In the following z will represent the argument for Z-transforms (in oper-
ational terms ¢~! = z7!); polynomials and transfer functions will be either defined

in terms of ¢! or z depending on the context.

-1

Assuming that system (1) does not contain derivative terms, i.e. B(1) # 0,
an integral action can be inserted to guarantee asymptotic zero error regulation for
constant reference signals and load disturbances. Then, by letting

oY) =1-¢*
du(t) = u(t) —u(t —1) = 8(g"")u(t)
the system to be controlled is:

Ag™Hé(g " y(t) = B(g™") du(t) (2)

The CRHPC control law for system (2) is obtained by solving at any time ¢ the
following optimization problem:

N

2
D,,0 ; 2 :
N S ZAP[ y(t+i) = Pye(t +1)] FL A+ (3)
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subject to (2) and
P(gHy(t+ N + )

Py(t+N), >0

, (4)
du(t+ N+j) = 0, j>0

and by applying only the first computed control variation du(t) according to the
receding horizon strategy.

In problem (3)—(4) the reference signal 3° is known in advance, Ap > 0, A, > 0,
P = P(1), while P(q~!) represents a suitable frequency weighting transfer function,
of order n,, which must be selected in order to improve the closed-loop characteristics.
Although the P-polynomial has a long-standing history in predictive control (Clarke
and Gawthrop, 1975), its design is still generally performed on the basis of empirical
considerations.

The receding horizon control law obtained by solving problem (3)—(4) takes the
form (De Nicolao and Scattolini, 1994):

G(g ") du(t) = H(g Myt + N) + F(gHy(t) (5)

where G, H, F are suitable polynomials.

Concerning the control law (5), some comments are in order. First, it is easy to
prove with Lyapunov-type arguments that, when P(¢!) = 1, the closed-loop sys-
tem (2)—(5) is asymptotically stable (De Nicolao and Scattolini, 1994) provided that
Ap 2 0, N >n+1. Second, when y° = 0, eqn. (5) can be viewed as the solution
to a suitably defined infinite-horizon L@ control problem (De Nicolao and Scattolini,
1994). Furthermore, when N is sufficiently large, the CRHPC solution tends to the
corresponding infinite horizon L) one. Hence, the connection between predictive
techniques and H; control theory is well established. Finally, it is apparent that
CRHPC has a two-degree-of-freedom structure since a feedback regulator (polynomi-
als G(¢7') and F(g™')) and a feedforward compensator (polynomial H(g™!)) are
synthesized. However, the potentialities of a two-degree-of-freedom scheme are not
fully exploited, since the optimization problem (3)—(4) does not allow us to specify
different requirements simultaneously, such as robust stability and nominal perfor-
mances.

3. Improving Robustness with P-Polynomial

For many years, the P-polynomial has been used to accommodate the controller
design for the presence of a high-frequency model uncertainty. The aim of this section
is to give an assessment of its use for robustness enhancement.

For this purpose it is useful to recall some basic facts concerning robustness.
Specifically, let G,(z) and G(z) be the nominal and the true system transfer function,
and consider a multiplicative model uncertainty description:

G(2) = Gn(2) (1 + Am(2)) (6)

Now, assume that y° =0 and let R(z) be the feedback regulator transfer function,
i.e. U(2) = —=R(2)Y (2). The corresponding closed-loop scheme is reported in Fig. 1.
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Fig. 1. Closed-loop system with multiplicative uncertainty.

By a standard H, argument (Doyle et al, 1992), robust stability is achieved by
imposing

IT()AnE?)| <1,  6€l0,]

where T'(z) is the complementary sensitivity function.

A main difficulty in guaranteeing robustness of predictive controllers is that they
rely on an Hs-type cost functional, rather than an H,, one. In the general H,
setting, one aims at solving the problem

min | T(e?)W ()0, = min||W (e)y|2, 6 €[0,7] (7)
where W (z) is a user-defined weight, v(¢) = imp(t) and y(t) is the nominal closed-
loop response to an impulse reference signal (Morari and Zafiriou, 1989). Now, con-
sider the performance index (3)-(4) of CRHPC, and for ease of reasoning, assume that
Ay =+ 0, and N is sufficiently large. Then, CRHPC is substantially equivalent to an
Hj controller, where P plays the same role as W in (7). In most cases, minimizing
the average magnitude (the Hy norm) of TW will have some beneficial effect on its
peak value (the Ho, norm) as well. For this reason, the following (heuristic) criterion
for choosing P is expected to improve robustness:

Whenever an estimate A, (e7%) of the multiplicative model uncertainty descrip-
tion A (e7%) is available, use a P-polynomial such that |P(e??)] ~ ’Am(eﬁ)
6 € [0, ].

It is interesting to note that this rule of thumb is in accordance with the classical
selection of the P-polynomial as a high-pass filter in the presence of high-frequency
model uncertainty. In the particular case of the Clarke-Gawthrop one-step-ahead

self-tuning controller with no weight on the control effort, P~ is actually the com-
plementary sensitivity function of the closed-loop system (Gawthrop, 1977).

?

4. Two-Degree-of-Freedom Predictive Controller

The use of the P-polynomial to enhance robustness can lead to a very conservative
design with a severe deterioration of the reference tracking performance. In order to
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Fig. 2. Closed-loop system resulting from the first phase.

face this problem, we split the design into two phases. First, P is selected according
to the guidelines given in the previous section and the optimization problem (3)—(4)
with y° = 0 is solved. This leads to the feedback control law:

F(g My(t) = Glg™) du(?)
In the second phase, as described below, a feedforward compensator for the reference
signal is synthesized, again with the aid of the predictive approach.

Observe that, if the feedback regulator R(z) = F(z)/G(z) (of order n,) is
stabilizing, the closed-loop system depicted in Fig. 2 is stable and described by

Bla ) W= et @
AqG(a e ) + Bl DF(g ) l

=1

y(t) =

where the last term is an M-th order FIR approximation.

With reference to the FIR. approximation (8), it is possible to solve, at any time
instant ¢, the auxiliary optimization problem:

N N

e ; Nyt +o) — v+ + ; M -7 @
subject to (8) and

yE+N+7) =y°t+N)=g, Vj>0 (10)

r(t+ N+j) =7, Vi>0 v (11)

with A\, >0 and 7 = F(1)§. Again, a receding horizon approach is adopted so that,
at any time only the first computed value r(t) is applied. The solution to (9)—(11),
requires some remarks. First, it is easy to show that, if the F'IR representation (8)
is used, the resulting control law is open-loop:

r(t) = H(g ")y°(t+ N)

Second, provided that N > n+1+4n,, the control law is stabilizing, since the transfer
function H(q™') is asymptotically stable. Third, the constraint (11) guarantees zero-
error steady-state regulation, i.e. yo, = y°, for any constant reference signal y°.
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o

Fig. 3. The identification scheme for multiplicative uncertainty.

It is apparent that the second phase of the suggested procedure aims at obtaining
a nominal performance (no uncertainty description is considered in this phase), while
the first one takes care of robust stability.

The idea of splitting the stabilization problem from the need of performance
enhancement by generating the reference trajectory in a receding horizon way has
also been considered in other approaches which recently appeared in the literature,
see e.g. (Bemporad and Mosca, 1996; Bemporad et al., 1997). Notably, in these
papers the so-called reference governor is determined also by considering the presence
of input saturations.

5. Model Uncertainty Estimation and Iterative Identifica-
tion/Controller Design Procedure

In recent years, several techniques have been proposed for the estimation of the model
uncertainty, see (Banerjee and Shah, 1995; Hjalmarsson et al., 1996; Van den Hof et
al., 1995) and references cited therein. In particular, the use of signal processing
methods appears to be promising for evaluating the model/plant mismatch in the
frequency range of interest. The scope of this section is to give some guidelines for
the identification of the term A,,(2) appearing in (6). To this end, consider the
scheme of Fig. 3, where y; denotes the true output and the nominal system output
y can be obtained by simulation, so that the error e(t) = y:(t) —y(t) can be assumed
as known. Now suppose that y° is a stochastic process and let @eye (6) and ¢yy-(6)
be the cross spectral densities of the pair (e(t), ¥°(¢)) and (y(t), y°(t)), respectively.
Simple computations lead to

3 30y — G, (ed _

This will be typically done by means of F'FT algorithms complemented with suitable
windowing techniques in order to reduce the variance of the estimates (Oppenheim
and Schafer, 1975).
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In view of the above result, it is now possible to develop an iterative identifica-
tion/control synthesis procedure in order to progressively enlarge the bandwidth of
the closed-loop system until the limits imposed by the adopted model structure are
reached.

The estimation of the parameters a; and b; of the system polynomials A(g™!)
and B(q™!) can be performed by means of the Least Squares method, i.e. by solving
the following optimization problem:

2

(as,b;) = argmin Z (L(g™")e(®))

where t; is the number of available data and the filter L(¢™!) is used to focus the
modelling procedure on a particular frequency band (Ljung, 1987). If, for example, a
good model fit is required at low frequency (8 < ), L(¢™!) is chosen as a low-pass
filter with cut-off frequency 6.

Note that the choice of # is critical when, as usually happens, the identified
plant underestimates the order of the true plant. Due to this underestimation, a
substantial frequency response mismatch between the true and the identified plant is
inevitable. The main problem however is how the mismatch is distributed along the
frequency axis. By a proper choice of 8, it is possible to ensure accurate frequency
response identification at low frequency so that the high-frequency uncertainty can

be successfully coped with by means of robust control design techniques.

Since the data are collected in closed-loop, the consequent implicit frequency
weighting guarantees a satisfactory identification only within the bandwidth. In some
sense, the choice of 8 is bounded by the bandwidth, whereas the achievable bandwidth
is limited by the availability of a model which is accurate over a sufficiently large
frequency range. This kind of considerations have motivated the development of
iterative identification/control procedures progressively enlarging the bandwidth of
the control system (Gevers, 1993; Lee et al, 1993; Schrama, 1992; Schrama and
Bosgra, 1993).

In the context of our predictive control design scheme, a possible iterative iden-
tification/control procedure consists of the following steps:

o Step 0: let iteration# = 0; initialize G,(z) and select P according to the
presumed model uncertainty. Typically one assumes a large high-frequency
multiplicative uncertainty, and selects P as a stable high-pass filter with cut-off
frequency ,. Then design a regulator possibly according to the two-degree-of-
freedom synthesis procedure of Section 4.

e Step 1: iteration# = iteration# + 1; collect input-output data by means of a
closed-loop experiment under a suitable reference signal y° (in particular y°
should have sufficient energy in all over the frequency range of interest).

¢ Step 2: from the nominal closed-loop bandwidth determine the cut-off fre-
quency 0;4 of the filter L(z). Estimate a new nominal model G,(z) with the
adopted identification algorithm. The corresponding model uncertainty descrip-
tion A, (z) is obtained through (12). '
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e Step 3: determine a new cut-off frequency 6, of the high-pass filter P(z)
according to the estimated uncertainty A,,(z) and synthesize a new CRHPC
regulator possibly according to the two-degree-of-freedom synthesis procedure
of Section 4.

e Step 4: iterate Steps 1+ 3 until convergence of ;4 and @, is reached.

6. Simulation Example

In this section, the control/identification algorithm is applied to the following bench-
mark plant (Lee et al., 1993):

9
" (s+1)(s? +0.065 +9)

G(s)

Assume that the true transfer function of the plant is not known and consider the
following nominal transfer function:

9
s+ 10

Gn(s) =
In this case the multiplicative uncertainty is:

_ G(s) = Gn(s) _ —9s® —9.545% — 72.545 +9
T Ga(s) 953 +9.54s? + 81.54s + 81

Am(s) (13)

whose frequency response, discretised with sampling time 7 = 0.1, is shown in Fig. 4.

If the nominal transfer function is used to synthesize the controller according to
(3)—(4), with P =1, the CRHPC law applied to G(s) yields an unstable closed-loop
system. On the contrary, if a P-polynomial (Fig. 5) reflecting the multiplicative un-
certainty (13) is introduced in (3)—(4), then the closed-loop stability is preserved in
the face of the mismatch between the true system and the nominal one. In fact, as
shown in Section 3, the P-polynomial produces a decrease in the complementary sen-
sitivity function at the frequency where the model error is high (Figs. 6-7). However,
the response to a reference signal (Fig. 8) is very sluggish.

Consider now the synthesis of the two-degree-of-freedom controller proposed in
Section 4. The plot of the step response (Fig. 9) shows that robust stability is
preserved, and a clear performance improvement with respect to the one-degree-of-
freedom scheme is obtained.

Finally, it is sufficient to apply only once the iterative identification/control pro-
cedure to obtain further improvements. In fact, the first-order model identified in
the first iteration of the procedure is more representative of the true system than the
one used at iteration #0 (Fig. 10). In this respect, a square-wave of period 8s has
been used as a reference signal during a closed-loop experiment of length 40s. Cor-
respondingly, the model uncertainty Ap,(e??) has been computed by means of (12).
A comparison of this uncertainty and the actual one is reported in Fig. 11, where
the mismatch is due to the limited number of data used in the computation of the
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Fig. 6. CRHPC without P-polynomial: Complementary sensitivity function.
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Fig. 7. CRHPC with P-polynomial: Complementary sensitivity function.

spectral densities ¢yo(0) and ¢yye(6). A more refined estimate of the model uncer-
tainty being available, the cut-off frequency 8, of the high-pass filter P(¢™!) becomes
less conservative. This entails a performance improvement of the corresponding one-
degree-of-freedom CRHPC with P-polynomial (Fig. 12). The results obtained with
the two-degree-of-freedom controller designed at iteration #1 are reported in Fig. 13.

7. Conclusions

In this paper, some issues concerning the synthesis of predictive controllers have
been investigated. The first issue has to do with the problem of improving robust
stability with respect to multiplicative model uncertainties while maintaining nominal
performances. This has been obtained by means of a two-step synthesis procedure,
where the first step is devoted to the enhancement of the robustness properties of the
closed-loop system, while the second one aims at improving the servo properties of
the compensated system. Obviously, in many cases it is sufficient to perform only the
first synthesis step. However, the design of the open-loop compensator H(qg™!) as
described in Section 4 opens the way to different strategies for the design of robust
predictive controllers. For instance, it could be possible to design a feedback regulator
by means of standard Hy theory, thus achieving guaranteed stability, and then to
design the feedforward term H(g™!) with the technique proposed here in order to
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Fig. 8. CRHPC with P-polynomial (iteration #0): Step response.
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obtain the desired response to reference signals. A scheme for model uncertainty
estimation has also been proposed. Having linked the P-polynomial to the model un-
certainty and a method for uncertainty estimation being available, it comes natural
to develop an iterative model-identification/controller-design strategy whose poten-
tialities have been illustrated through the control of a nontrivial simulated bench-
mark problem. Future developments of the main issues considered in this paper,
namely nominal and robust stability, performances, iterative identification/control
procedures, could concern the extension of the proposed methods to the case of input
constrained systems and multivariable systems.
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