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D-STEP AHEAD KALMAN PREDICTOR FOR
CONTROLLED AUTOREGRESSIVE PROCESSES
WITH RANDOM COEFFICIENTS

NaDINE HILGERT*, JEAN-PIERRE VILA*

This paper deals with prediction of controlled autoregressive processes with ad-
ditive white Gaussian noise and random coefficients adapted to an observation
process. Our aim is twofold. We begin by extending to the stendard Kalman
predictor a result of Chen et al. (1989) on the optimality of the standard Kalman
filter when applied to linear stochastic processes with almost surely finite ran-
dom coefficients. We then show on an example how some particular nonlinear
autoregressive processes can be embedded in these linear processes with ran-
dom coefficients. Such nonlinear processes can then benefit from this optimal
prediction, which is not provided by the usual eztended Kalman predictor.

Keywords: autoregressive processes, Kalman predictor, Kalman filter, ex-
tended Kalman filter.

1. Introduction

Let us consider the following linear system with random coefficients:
ZTp+1 = Arzr + Brug + Dywy, Vk>1
yr, = Cp—1Zk + Gr—10p—1 + Frqwp V21
where:

1. zx € R® is the unknown state vector which we want to predict with d steps
ahead (d > 1) and yx € R? (p < s) is the vector of observations,

2. up and v are the input vectors which may be chosen by feedback from
(yo,yl’ e 7yk~d)7

3. vectors (wg) are i.i.d. and wg ~ N(0,1),

4. (z1,v0) and (wx) are independent and z; is conditionally Gaussian given yo
with conditional mean E(()l) and conditional covariance Pél),
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5. the matrices Ay, By, Ck, Dg, Fy, Gy, and the vectors u; and wvg are Fr—a-
measurable (where Fj_4 is the o-algebra generated by Y0,Y1,-- ., Yk—q) for
k > d (they are Fy-measurable for k < d),

6. the entries of Ay, By, uy, Dy, Cy,vx and Fi are finite with probability one.

This setting is close to that of Chen et al. (1989), in which Ay, By, ug, Dy, Cr, Gy,
vr and Fy are Fp-measurable (Condition A3). It is shown in that paper that
Condition A4 (our Condition 6), which is much weaker than assuming
Ay, B, ug, Di, Cr, Gy, vy, and Fg integrable, is sufficient (with Condition A3) for
the conditional distribution of z, with respect to Fj to be Gaussian and that the
standard Kalman filtering algorithm generates the corresponding conditional expec-
tation and conditional covariance. This result is an improvement in comparison with
finite-second-moment conditions used by previous authors, e.g. Liptser and Shiryayev
(1977), which can hardly be verified in practice e.g. in adaptive control by output
feedback.

In Section 2, we show that this approach can easily be extended to one-step and,
more generally, to d-step ahead Kalman prediction, under appropriate measurability
conditions for the model coefficients and the inputs, leading to equivalent optimal
estimation of the conditionally Gaussian distributed state. Moreover, this revisited
standard Kalman prediction (SKP) can be applied in a straightforward mariner to
some nonlinear autoregressive processes which, after reparametrization, obey the lin-
ear form (1) while satisfying the appropriate measurability conditions. The same
is true for the standard Kalman filtering (SKF). In that case, the well-known ap-
proximating extended Kalman procedures (EKP and EKF (Jazwinski, 1970)) can
advantageously be replaced by the optimal standard ones, in spite of the fact that
these processes are nonlinear. Section 3 is devoted to a comparison between the SKP
and the EKP applied to a nonlinear process of this type.

Lemmas 1-3 of (Chen et al., 1989; Chen and Guo, 1991) are briefly recalled in
the Appendix without any proof, together with essential definitions.

Remark. In what follows, ()’ will denote matrix transposition and ()" will denote
matrix pseudo-inversion as defined in the Appendix.

2. d-Step Ahead Standard Kalman Predictor
The minimum variance d-step ahead predictor of z; is the conditional mean :’r‘,(cd) =

E(ztta | Fi). For d > 2, from Fi, C Fr+d-1 and the classical optimal property of the
conditional expectation, we have E(zi4|Fi) = E[E(z41q | Fe+da—1)| Fx] and then

7 =8 (5, | 7) | 2)
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Let us now state the following result:

Theorem 1. The quantity Trya 15 conditionally Gaussian with respect to Fyp with

conditional mean :’fgcd) and conditional variance P,Ed) = E|(®p+d — iscd))(mlﬂ_d -
fc\(d))l | F ; bu:
k k]) gioen by:
i) for d=1
5521) = Akﬁil_)l + Brup + Ki (yk - Ck—liil_)l - Gk—lvk—l) (3)
P = AP, 4, + DD} — K (Cra P Al + F 1D}) (4)
where

+
Ky = (AkP,gl_)lc';c_l + DkF,;_l) (Ck—lP,Sl_)ICIIC_l + Fk—lFl'c—l) (5)

i) for d > 2
fid) = Ak+d—1555¢d_1) + Brtd—1Uktd—1 (6)
P}Ed) = Ak_;_d_lP,Ed_l) ;c+d—l + Dk+d-—1D;c+d—-1 (7)

Proof. i) Let us first consider the case d = 1.

We can recursively show that zj+1 and (Zkt2,Yk+1) are conditionally Gaussian
with respect to Fj:

e For k=1:

According to Assumption 4, z; is conditionally Gaussian given yo. Moreover,

Iy _ A1 D] I + B1u1
n Co Fo wh Go’l)o
Here (§}) is conditionally Gaussian with respect to Fo since
E[GXP (iXz1 + ip'w) |yo] = E[exp(i/\’zl)E(exp(iu'wl) | 21, 90) lyo]
= E[exp(ip'w;)|E[exp(iX'z1) | o)

)y 1
= exp (i/\':’ft(,l) - ix\'Pél))\ - %up') a.s.

Sincg the entries of (é(‘J ?; ) and of (gz’;; ) are Fo-measurable, Lemma 2 (Ap-
pendix) ensures that (3?) is conditionally Gaussian with respect to Fo, with
a.s. finite conditional mean and covariance.
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e For £ > 1:

Suppose that z; and (°jf*) are conditionally Gaussian with respect to Fj_1,
with a.s. finite conditional means and covariances. Then by Lemma 3 (Ap-
pendix) zy1 is conditionally Gaussian with respect to F.

Th+2 \ _ [ Ar1 Denr Tetr ) Brt1uk+1

Yk+1 Ck Fy W41 Groy
where Agi1, Bri1, ugyr and Dyyy are Fy-measurable. Ci, Fj, v, and G
are Fi_i-measurable and then Fji-measurable. As was in case k = 1, one can
show that (gitl) is conditionally Gaussian with respect to Fi, with a.s. finite
conditional mean and covariance. Lemma 2 ensures then that (§+?) is con-
ditionally Gaussian with respect to Fj. The conditional mean and covariance

are finite a.s.

Now

Let us now turn towards the calculation of the conditional mean Egcl) =

E(zk+1| Fk) and the conditional variance P,gl) =E[(zk41 — fgcl))(mkﬂ - Egcl))’ | F)-
By the conditional Gaussianity of (“}i*) with respect to F,_; Lemma 3 ensures
that x4, is conditionally Gaussian with respect to F; and that

ES) = E(z41 | Feor) + PP (e — E(ys | Fi-1)) as.

P = P, - PP P! as.

where

P, = E[(zk+1 ~E(@t11 | Fie1)) (@41 — B(@igr | Fimt))’ | fk—l]
Py = E[(yk ~ E(ys | Fie-1)) (ve = Bk | Fi-1))' | fk_l]

P, = E[(karl —E(@kt1 | Fr-1)) (ye — Eys |7:k—1))l }f’“_l}

According to (1), we have

E($k+1 [:Fk—l) = AkE(.Z'k ’Fk—l) + Brug

E(yr| Fr-1) = ComiE(zx | Foor) + Gro1vp—1

Then

P, = E[(Ak (xk — fc\g_)l) + Dkwk) (Ak (mk - Eil_)l) + Dkwk), Ifk—l]

= AP A} + DD,
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since E(zpw) | Fr—1) =0 and E(wpw}, | Fx—1) = E(wgwy},) = 1.

P = E[(Ck_l (z — fiff_ﬂ) + Fk—-lwk) (Ck—l(zk - 5521) + Fk—lw;c) |]:’“‘1]
= C’k_lP,gl_)lC,’c_l + Fr 1 Fy_y
P = E[(Ak (s —2,) +Dk“”°) (C’“—l(mk ~&0) + F’“—lwk)l | f’“"l]

= AP Gy + DyFyy

Finally,
ES) = Ak&\g_)l + Bruy + K, <yk - Ck~1§§€1_)1 - Gk~1”k-1>
/
PP = 4cPD, A, + DD}, - Ki (4 P(M, Yy + DhFY_,)
+
Ky = (AkPS-)1Cl’c—1 + DkFllg—1) (Ck—1P151—)101’c—1 + Fk—lFlé—l)
it) The case d > 2 is a straightforward generalization of part (7). |

3. Application

Some nonlinear dynamical systems of high practical value can easily be embedded in
the general linear system (1) with random coefficients, while satisfying the related set
of assumptions. The optimal standard Kalman prediction (SKP) can then be applied
to these nonlinear systems, instead of the approximative extended Kalman prediction
(EKP) procedure which relies on an implicit linearization of the models. Obviously,
the same remark is true in the filtering context of Chen et al. (1989), for the SKF
with respect to the EKF.

We now present an application from the biotechnological field, which is well-
adapted to the one-step ahead prediction context. To strengthen the relevance of the
SKP method, we shall then adjust the example to the two-step ahead prediction.

3.1. One-Step Ahead Prediction

Let us consider the following two-dimensional nonlinear autoregressive process (z),
whose second component (m,&s)) is exactly known through the observation variable
Y-

B = (1 T — )+ €7

zg_)l = :cfcs) - Tuk:c,(bB)/T + Tug(So — zgcs)) + {,(CS) (8)

o

Yk
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This system is characteristic of a basic biotechnological reaction. It describes a
microbial growth in a stirred tank reactor, in the case of one population of microor-
ganisms on a single limiting substrate, in continuous operating mode (Bastin and
Dochain, 1990).

The state variables mch) and :L'ECS) are the biomass and substrate concentrations,

respectively. Here wuy, the dilution rate, is the control variable. Sy is the substrate
concentration in the influent, 7 the yield coefficient of the substrate consumption by
the biomass, and T the sampling period. Sy, 7 and T are known constants. & is
a white Gaussian noise.

The quantity p represents the microbial growth rate which is a nonlinear func-
tion of the substrate concentration. It is supposed to correspond to the Sokol-Howell
law (1981), adapted to Condition 5 of Section 1 with d = 1:

€))
Hr = a———zkfl
v (8)\8
v+ (zh)

where «, 3 and +y are appropriate constants. From (8) it is obvious that the non-
linearity of the system depends on the variations of uy. In a simulation perspective,
this nonlinearity can then be stressed by acting on the coefficients v and £, in an
adapted way with regard to the domain of variation of () .

The control uy is assumed to be defined by feedback from the past observations
Yo, - - Yk—1-

Let us now rewrite model (8) in order to reduce it to the linear structure of
system (1):

B
(%) 1+T(ue —ug) 0 0
Trpel = s = Ty -+ uy, + Dipwy
(¥, ~Tup/m  1—Tug TS, (9)
s
Y = w}c )
Here & is replaced by Djwyg, where wy, is a two-dimensional A/(0,I) noise and Dy
an appropriate scaling matrix. Under some good initial conditions, Theorem 1 can be
applied with d = 1, and then it gives the standard one-step ahead Kalman prediction
of 21 Zigepy .k = E(xr [0, .., yp—1).

On the other hand, applying the extended Kalman predictor to system (8) re-
quires addition of a new state variable to the system, in order to perform linearizations:
Zpa1 = m,(cs). This procedure is sufficiently well-known and does not deserve a further
description (Goodwin and Sin, 1984). Let T r be the related prediction, given
the past values yg,...,yr—1.

(EKP)>

We now present some simulation results in order to compare the ohe—step ahead
SKP and the EKP. Here « is fixed to a constant value and 8 remains the only pa-
rameter to characterize the system nonlinearity. Decreasing the values of 3 increases
this nonlinearity. Many simulations trials were carried out for the same conditions.



D-step ahead Kalman predictor for controlled ... 213

For each value of 3, three quantities are computed. The first two ones are mea-
sures of efficiency of both methods, SKP and EKP, in predicting z(B), These are the
mean-squared errors of prediction:

L (B _ =3\ 1 (0 _ 23\
MSgee = n—1 Z (mk - z(sxp),k) ) MSeyr = n—1 (zk - m(EKp),k)
k=1 k=1

where n is the simulated number of steps, each of duration T

The third test compares the relative efficiency of the SKP with that of the EKP:

A = MSEKP 7 MSSKP % 100
MSSKP
Model (8) was simulated with Sp = 50mgl~!, 7 =1, T = 1h, a = 0.5,
v =125, 2% = 25mgl-, 2% = 30mgl™, Dy = (3331) and the feedback

control law uy = 0.05/(yx—1 + 1), which is a relatively good stabilizer and regulator
of both concentrations of biomass z(B) and substrate z(%). Here n is equal to
150, an observation window which approximately encloses the stabilization of z(B)
and z(9. Both SKP and EKP predictors are initialized with a reasonable bias:

f(lB) =10mg1~! and ZEES) = 45mg-17!. The initial conditional variances are

0 500 80 500 20

SKP EKP

P = ., PP =1 500 80 50
500 80 20 50 100

The simulations trials revealed an increasing superiority of the SKP when the
nonlinearity of the model increases. Table 1 reports an extract of about ten different

trials with respective values of MSg,, MS.,, and A. The trajectories of mch),

55553,)), . and ’x\ffép)’k are given in Fig. 1, for the intermediate 8 value equal to 0.5.

Table 1.

[ 8 | MSu, | MS,. | A |
2 65.38 | 66.22 | 1.28%
1 70.52 | 79.03 | 12.06 %
08 | 72.82 | 8381 |15.08%
05 | 7458 | 87.2 |16.93%
0.1 | 75.37 | 8859 | 17.55%
—0.05 | 75.41 | 88.66 | 17.57 %
0.0
0.0
0.0
0

.01 75.44 88.71 | 17.59 %
005 | 75.44 88.72 | 17.59 %
001 | 75.45 88.72 | 17.59 %
75.45 88.72 | 17.59 %

[ R R R R AR Rl el Reg eV el e
I
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Fig. 1. One-step ahead predictions of ®) with SKP and EKP
(8 =0.5).

According to the simulation results, the SKP proved to be uniformly significantly
better than the EKP. Moreover, it is important to point out the simplicity of the
SKP computations with respect to those of the EKP.

3.2. Two-Step Ahead Prediction

To present a simulation example adapted to a two-step ahead prediction, we consider
the system (8) with a slight modification: the microbial growth rate wj is now sup-
posed to be a function of wi‘i (instead of mgi)l) in order to verify Assumption 5 of

the Introduction,

(S)
Ly = aﬁj.’t?_
- Sy\8
Y+ (xl(cj2)

with «, 8 and v determined as in the last subsection. This modification is purely for-
mal and performed for the sake of illustration. It does not pretend to an experimental
reality.

" The control variable is defined by feedback from the past observations
Yo, ---,Yk—2. Under some good initial conditions, Theorem 1 can be applied with
d = 2, which gives the standard two-step ahead Kalman prediction of z: T
E(xk [Yo,- - Yr—2)-

(sKP2),k =
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Fig. 2. Two-step ahead predictions of z(®) with SKP and EKP
(B=0.5).

This two-step ahead SKP predictor of z, :z:(sm”) &, was compared by many sim-
ulation trials to the two-step ahead EKP predlctor T pyepny ko following the same pro-
cedure as previously for the one-step ahead EKP. The SKP method proved to be
more appropriate than the EKP one, as illustrated by Fig. 2. In this example, the
simulation conditions are the same as those used for the experiment described by
Fig. 1, except for the control law ug = 0.05/(yk—2 + 1).

4. Conclusion

We have extended to d-step ahead Kalman prediction the optimal result obtained by
Chen et al. (1989) for the Kalman filtering of an autoregressive process with random
coefficients, under almost sure finiteness assumptions and measurability assumptions
for these coefficients. Both of the results allow for the use of the standard Kalman
procedures in some nonlinear context without requiring any linearization and with
optimal performances and reduced computations.

Appendix

On the Conditionally Gaussian Situation

One can consult classic probability sources as (Neveu, 1975) in addition to (Chen et
al., 1989; Chen and Guo, 1991). The proofs of the lemmas can be found in (Chen
and Guo, 1991).
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Definition 1. Let (Q2,.4,P) be a probability space, G a sub-c-algebra of A and
z a not necessarily integrable random variable. If either E(max(z,0)|g) < co a.s.
or E(max(—=z,0)|G) < co a.s., then one can define the conditional expectation of z
with respect to G as

E(z|G) = E(max(z,0)|G) — E(max(-z,0)|G) as.

Definition 2. Let o(Y) be the o-algebra generated by the random vector Y. Let X
be a random vector such that |X| < co a.s. X is said to be conditionally Gaussian
with respect to o(Y) if there exists a o(Y)-measurable random vector X and a
o(Y)-measurable random symmetric semi positive-definite matrix P such that

= 1
E[exp(iX'X) | o(Y)] = exp (i/\’X - 5/\’P)\) a.s.
for every constant vector A.

Lemma 1. If X is conditionally Gaussian with respect to o(Y), then X =
EX|o(Y)] as and P=E(X - X)(X — X)'|o(Y)] as.

Lemma 2.

(i) If X s conditionally Gaussian with respect to o(Z) and A(-) and b(:) are
measurable functions with ||A(Z)|] < oo a.s. and ||b(Z)|] < oo a.s., then
A(Z)X + B(Z) is conditionally Gaussian with respect to o(Z).

(i) If (¥) is conditionally Gaussian with respect to o(Z), then X and Y are
conditionally independent with respect to o(Z) if and only if

E[(X — B(X| a(Z))) (Y - B(Y| a(Z)))' | a(Z)] =0 as.

Lemma 3. If ({£) is conditionally Gaussian with respect to o(Z) with conditional
variance

szlz Pwy|z

P,

velz Pyylz
then X is conditionally Gaussian with respect to o(Z,Y) with conditional mean
E[X|0(Z,Y)] = E[X |0(2)] + Poy| 2 yy]z(Y E(Y|Z)) as.

y|zP;;”sz|z. Here P is the pseudo-
inverse of P -uniquely defined by Pt = V'(VV')"Y(U'U)"U' whatever U and
V' such that P = UV, where U and V are full-rank p x r and r x p matrices,

respectively, with p = dim(Y) and r = rank(P) < p.

and conditional variance Pyy|.y = Ppy|.—F,
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