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ANALYTICAL DESIGN OF STABLE CONTINUOUS-TIME
GENERALISED PREDICTIVE CONTROL

Zpziseaw KOWALCZUK*, Prorr SUCHOMSKI*

‘With a recently renewed interest in the continuous-time approach to control
system design the continuous-time generalised predictive control (CGPC) is also
worth considering. The main objective of this presentation is the development
of an analytical perspective that results in explicit design procedures for stable
control of both minimum-phase and non-minimum-phase SISO systems. The
basic project idea is founded on a set of closed-loop prototype characteristics
with definite time-domain specifications.
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1. Introduction

In recent years the long-range model-based predictive control has been acknowledged
as a significant and useful approach to adaptive control design (Pike et al., 1996;
Sénchez and Rodellar, 1996; Soeterboek, 1992). The corresponding control system
synthesis procedures are based on the so-called ‘emulator’ paradigm, in which phys-
ically unrealisable operations, such as prediction or taking derivatives of output sig-
nals, are replaced (emulated) by means of non-parametric or parametric system mod-
els (Favier and Dubois, 1990; Gawthrop, 1987; Gawthrop et al., 1996). The famous
Minimum-Variance (MV) controller of Astrém and Wittenmark (1989, 1997) as well as
some extensions like the Generalised Minimum-Variance (GMV) approach by Clarke
and Gawthrop (1975) and Peterka (1972), or the Generalised Pole-Placement (GPP)
control by Leli¢ and Zarrop (1987) represent some original designs founded on the
idea of the Emulator-Based Control (EBC). The essential relations between the EBC
and the Internal Model Control (IMC) principle, established by Morari and Zafiriou
(1989), have also been investigated by Gawthrop et al. (1996). The Generalised Pre-
dictive Control (GPC) proposed by Clarke et al. (1987) as a discrete-time parametric
polynomial-based design methodology using a long-horizon quadratic cost function
has attracted a great interest (Clarke and Mohtadi, 1989; Kouvaritakis et al., 1992;
Kowalczuk and Suchomski, 1995; 1996; 1997b; 1998a; 1999; Landau et al., 1998;
Suchomski and Kowalczuk, 1998; Wellstead and Zarrop, 1991), which is due to its
general applicability as compared to other control strategies. It is also worth noticing
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that the GPC design approach, in which rational models of the controlled plant are
used in an ‘indirect’ manner, is free from some fundamental hindrances restricting the
area, of applicability of other control algorithms, as it is, for instance, in the case of
the basic IMC method ‘directly’ employing a complete model of the plant that suffers
from the limitation to stable plants. What is more, nominal guaranteed stability of
predictive algorithms can be obtained by imposing input and output constraints that
results in monotonically non-increasing receding-horizon costs (Clarke and Scattolini,
1991; Kouvaritakis et al., 1992; Mosca and Zhang, 1992).

The Continuous-time GPC approach (CGPC), which is an appropriate image
of the discrete-time GPC paradigm in the continuous-time domain, has been intro-
duced by Demircioglu and Gawthrop (1991, 1992). It can also be found out from
the literature that CGPC is suitable for considering both in robust and adaptive
control treatments (Demircioglu and Clarke, 1992; Demircioglu and Gawthrop, 1991;
Gawthrop et al., 1998; Kowalczuk et al., 1996; Kowalczuk and Suchomski, 1997a;
1998b; Suchomski and Kowalczuk, 1997). There are three principles of the CGPC
approach that can be briefly listed as follows:

(i) the controlled system output is predicted over a finite horizon by using a suitably
defined time-domain polynomial functional basis,

(ii) as a future setpoint is known, such a future control (represented in the same
functional basis) is evaluated that minimises a quadratic objective function of
an anticipated error between the future output and future setpoint,

(iil) following the receding-horizon predictive control strategy, only the first element
of the optimal control representation is used as the actual control input.

There are some stability results concerning the receding-horizon L.Q control both
in the discrete- and continuous-time domain (see e.g. Kleinman, 1970; 1974; Thomas,
1975; Kwon and Pearson, 1975; 1977; 1978; Longchamp, 1983). Such stability re-
sults have been employed in redesign of the discrete-time GPC controllers by Clarke
and Scattolini (1991) and Mosca and Zhang (1992). In a quest of stability bonds
appropriate for the continuous-time CGPC systems, two mutated versions of the
generic approach of Demircioglu and Gawthrop (1991) were suggested by Demircioglu
and Clarke (1992). These modifications exploiting the stability results of state-space
receding-horizon LQ control laws are based on two formulations of the so-called ‘end-
point principle’, namely: end-point state constraints (CGPC _C) and end-point state
weighting (CGPC_ W). The CGPC _ C methodology uses the certainty adopted from
the state-space receding-horizon LQ approach that if the state vector of the closed-
loop control system at the end-point is constrained to be zero, then the stability of
the system is guaranteed. As the system states are not available with the input-
output transfer function model applied, they can be emulated by using the truncated
Taylor-series expansion technique used for the system output prediction. It is stated
(Demircioglu and Clarke, 1992) that for a suitably chosen order of state prediction,
i.e. when the corresponding truncated Taylor-series approximation of the system (par-
tial) state is good, the resulting closed-loop control system will be stable. Certain
analytical results concerning the resulting closed-loop characteristic polynomial have
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also been given (ibid.) for a special selection of the CGPC_C tuning parameters.
Within the CGPC_ W approach to the CGPC control stability problem, a quadratic
term of the weighted end-point state is included in the cost function. With the as-
sumption that the truncated Taylor-series approximation of the system partial state
is satisfactory, the corresponding CGPC_W design is also able to result in stable
closed-loop systems. Apparently, this approach is of a general use, as the strategies
CGPC and CGPC_C are special cases of the CGPC_W methodology.

The main objective of this contribution is a new development of the CGPC de-
sign resulting in an explicit stable CGPC control design procedure for both minimum-
phase and non-minimum-phase SISO systems. The proposed completely analytical
(ACGPC) method is based on a collection of closed-loop prototype characteristics
(different from the proposition of Demircioglu and Clarke (1992)) with definite time-
domain specifications. In the literature on predictive control the lack of explicit tuning
rules is frequently highlighted as a drawback of the GPC methodology. This opinion
also refers to the CGPC approach. In particular, to the best of our knowledge, the
interplay between the design parameters and the stability and performance indices
has not been satisfactorily explained yet. This work presents a constructive attempt
to fill this gap by giving a closed-form design procedure that assures both the nominal
closed-loop stability and nominal performance requirements at the same time. This
approach represents a direct way of guaranteeing stability and an indirect way of as-
suring a limited control signal as opposed to the constrained receding-horizon control
approach considered in the discrete-time domain.

The detailed contents of the paper is as follows. Minimal and non minimal (re-
dundant) models of a scalar linear continuous-time plant are introduced in Section 2.
The considered models take the forms of two rational transfer functions describing
the controlled and the disturbed part of the plant, respectively. Procedures for both
detection of a plant-model cancellation order and minimal-model reconstruction are
also given in Section 2. Estimation of the true order of the plant model is established
by examining the rank deficiency of a testing matrix composed of the coefficients of
residual polynomials yielded by a properly defined set of Diophantine equations, re-
sulting from the transfer function of the controlled part of the plant model. Two cases
of model based prediction concerning the future output (Case «) and the future fil-
tered output of the plant (Case &) are developed in Section 3. Suitable emulations of
the output derivatives, performed by solving a set of coupled Diophantine equations,
serve as a basis for the signal prediction. As shown in the next section, the prediction
of type a is useful for the CGPC design in the case of minimum-phase models of
the controlled plant. On the other hand, if the model is non-minimum phase, the
emulation of derivatives of the output signal filtered by the numerator polynomial of
the transfer function of the controlled part of the plant (Case @), is appropriate. The
necessary emulation procedures are given in Section 3. The corresponding CGPC
design algorithms are presented in Section 4. Namely, the generic CGPC scheme is
given, and then the two introduced predictive control laws are described: the first
control (o) based on the output emulation and restricted to minimum phase plant
models, and the other control (@) utilising the filtered output emulation and appli-
cable both for minimum phase and non-minimum phase plant models. The resulting
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closed-loop systems are thoroughly analysed. In particular, explicit and relatively
simple formulae for closed-loop characteristic polynomials are given that can serve as
an efficient basis for analytical CGPC design procedures (both ways, @ and &), in
which the principal CGPC ‘tuning knobs’, i.e. the output and control prediction or-
ders as well as the horizon of observation, are directly related to common time-domain
design specifications. Considerations indicating meaningful consequences of miscella-
neous types of potential non-minimality of plant models are presented in Section 5,
taking into account various aspects of the CGPC design. The analytical nature of the
proposed methodology calls for an analysis of the emulation-based design from the
viewpoint of pole placement. Such a deliberation is offered in Section 6. The paper
is completed with a simple design example and conclusions presented in Section 7
and Section 8, respectively. There is also a collection of specific studies provided in
Appendices (A-F), where, in particular, the prototype design characteristic polyno-
mials are catalogued and certain computational aspects of the developed procedures
are explained in detail.

2. Plant Modelling

Let a scalar linear continuous-time plant be described by the following model:

B(s) C(s)

Y(s) = U + 53V (1)

where U(s) and Y (s) are the input and output signals, V (s) represents a disturbance
function, A(s), B(s) and C(s) are polynomials in the Laplace domain: A(s) =
N4 ais', an, = 1, degA(s) = Na > 2; B(s) = S2N% b;si, degB(s) = Na;
C(s) = Zfico ¢;s', degC(s) = Nc = Na — 1, with p = Ny — Ng, p > 0 being the
relative plant order. Consider the first Diophantine equation (cf. Demircioglu and
Gawthrop, 1991; Gawthrop, 1987)

(D1): A(s)Hy(s) + Ly(s) = s*B(s), k>0

where the quotient polynomials Hy(s) = Y57 hy_;st, k > p, are composed of the
plant Markov parameters h;’s, i > 0, resulting from the power series expansion
in s7' of the controlled part of the plant model (1): B(s)/A(s) = Yoo, his™?,
with hg = --- = h,.1 = 0, and Ly(s) = E;\;“O_l l:st, k > 0 standing for the
residual polynomials. The two specific polynomials are additionally characterised by
the following lemma:

Lemma 1. Properties of the solutions to the first Diophantine equation (D1):

degHp(s) =k—p i k>p with Hy(s)=0 if k<p

<Noi-1 if k>0

ith L =s*B if 0<k<p-—1
S Np+k if k<p wi k(s) =s"B(s) if 0<k<p

deg L (s) = {
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In order to facilitate further discussion, let us introduce two structured matri-
ces. Let Ly, N > 0 denote the first Diophantine residual polynomial-allied matrix
defined as

Iy=[lo - lv]", LyeRNTH*Na

where the vectors Iy = [lgo - li,na—1]7, Iy € RY4, are composed of the coeffi-
cients of the residuals L (s), 0 < k < N. Moreover, let TAF € RINc+M)xM = pp > g
denote the following M-column lower band-diagonal matrix associated with a given
polynomial I'(s) = ZﬁV:FO v;st, degI'(s) = Nr:

Yo 0 0
"N Yoo 0
Yo
T = | YNe INpos
0 v
VNos
L0 0 - v

For compactness of the presentation, the proofs of the following three lemmas
are given in Appendix A.

Lemma 2. (Non-singularity of LEA_I for a coprime pair (A(s), B(s))) Polynomials
A(s), deg A(s) = N4, and B(s), degB(s) = Np, are relatively prime if and only if
L%A,l € RNaxNa s nonsingular.

Consider now the case of a non-minimal model (1). Let A(s) = A'(s)A(s),
deg A’'(s) = Na — Ny, and B(s) = B'(s)A(s), deg B'(s) = Np — Ny, where A'(s)
and B'(s) describing the true plant are relatively prime while Ny = deg A(s), 0 <
Nj < Np, denotes the cancellation order of the plant model.

Lemma 3. (Rank deficiency of L% ,—1 for areducible non-coprime pair (A(s), B(s)))
For polynomials A(s), deg A(s) = Na, and B(s), deg B(s) = Ng, having the greatest
common divisor A(s), deg A(s) = Na, we have rank LJTVA—1 = N4—Np and the range
space of LJT\‘,Aﬁl can be found as 'R[L%A_l} = span{lk}fc\’:AO—NA—l.

A robust procedure for determination of the cancellation order Nj is a crucial
point of the CGPC design. As has been shown in Appendix B, for given A(s) and
B(s) the cancellation order N, can easily be obtained by examining the column rank
of left column submatrices of L%A_l, and if such an index ¢ of minimal value p <14 <
N4 — 1 exists for which I; € R[L;{l], it implies Ny = N4 —i. A complete recursive
algorithm developed for this purpose is described in Appendix B. The cancellation
order can also be determined in a standard way by examining rank deficiency of

the resultant Sylvester matrix [Txg TII::‘j ] € RWa+Np)x(Na+Ns) (Fuhrman, 1996;
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Kailath, 1980; Landau et al., 1998). The algorithm given in Appendix B has, however,
an essential advantage that L% -1 has lower dimensions. Once we have determined
Nj > 0, the minimal model, i.e. the coprime pair (A'(s), B'(s)), can be reconstructed.

Lemma 4. (Reconstruction of the minimal model (A’(s),B'(s))) Let A(s) =
A'(s)A(s), degA(s) = N4, and B(s) = B'(s)A(s), degB(s) = Npg, are re-

ducible with the greatest common divisor A(s) of degA(s) = Ny > 0. The co-
Nao—Ny

efficients of the minimal polynomials A'(s) = > ,% alst, an,_n, = 1, and
B'(s) = Zﬁ%ﬁN" bist satisfy
,IVBMNA = bNB
al
TN n, @ —TN:_w, <o | =ty i Np <Nz (2)
. bl
TN _ny@ =tw i Na=Np (3)
where
a =[a) - QM_NFJT’ a' € RVa=Na
b= [t o U], B ERVETNA if Ny < Np
[ On, N, Ong—n,
top=— | ..o..... +bng | .. , toy e RNa+NE—Na
L b a Zf Np<Np
[ On,—n,
top=— | «cooovenn + bnga, T € RV4 if NpA = Ng
i b
_ T Na _ T Npg
a—[ao CLNAMl] , a€R™A b—-[bo bNB—l] , beR

3. Model Based Prediction

Two cases of the model-based emulation are considered in this section. In particular,
two cases of prediction concerning the future output (Case «) and the future filtered
output (Case @) of the plant are developed. The algebraically obtained estimates
(emulations) of both the output derivatives («) and the filtered output derivatives
(@) lay foundations for signal prediction. The emulations are provided by solving
properly defined sets of two coupled Diophantine equations. The above distinction
(a/&) is of consequence and serves as a basis for the CGPC design for minimum phase
and non-minimum phase plants, respectively. As will be shown in the next section,
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the proposed analytical CGPC design method based on prediction of the output of
the controlled plant (Case «) is suitable solely for minimum phase plants. In order to
expand the area of applicability of the analytical ACGPC method, additional filter-
ing of the plant output by an auxiliary all-pole filter employing the numerator of the
transfer function describing the controlled part of the plant model (Case &) is intro-
duced. In both the distinguished cases, computations are performed by considering
a pair of coupled Diophantine equations. The issue of solvability of this equations
taking into account model non-minimality is also considered.

3.1. Emulation of Output Derivatives (&)

Let (A(s),B(s)) be coprime. In order to emulate the k-th ‘derivatives’ of the plant
output Y3(s) = s*Y(s), k > 0, the following two Diophantine equations are taken
into account (Demircioglu and Gawthrop, 1991; Gawthrop, 1987):

(D2) : A(s)Eg(s) + Fi,(s) = s*C(s)

(D3) : C(s)Hy(s) + Gi(s) = B(s)Ex(s)

with constituent polynomials described by the following two lemmas (see also
Lemma 1 and Appendix C). Different interviews of conditions for solvability of the

Diophantine equations were done, for instance, by Grimble (1994), Jezek (1993),
Kugera (1993) and Ogata (1995).

Lemma 5. (Properties of the design polynomials resulting from the second (D2) and
third (D3) Diophantine equations)

0 if k=0

deg Ex(s) = {k:—l ZZ > 1 with Ex(s) =0 if k=0
= Ng-1 k= , ,

deg Fi(s) = {<N2_1 Zf . with Fy(s)=C(s) if k=0
= — ) 1<

deg Gy (s) = Np+k=1 4 1sk<p Ge(s)=0  if k=0
<Ng-—2 if k>p

Gi(s) = B(s)Ex(s) if 1<k<p

Lemimna 6. (Appearance of the third Diophantine equation (D3) for p > 1)
A. Zero solution: Gi(s) = Hx(s) =0 if k=0.

B. Strictly proper rational solutions (only for p > 2): degGr(s) = Np+k—-1<
Na—1 and Hp(s) =0 if 1<k <p.

C. Proper rational solution: degGr(s) < Na—2 and degHy(s) =0 if k=p.

D. Improper rational solutions: degGr(s) < Na—2 and degHy(s) = k—p if
k> p.
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By (D1)-(D3) the following complementary (fourth) Diophantine equation can
easily be derived:

(D4) : A(s)Gi(s) + B(s)Fi(s) = C(s)Ly(s), k>0

The operator form of the predictable part Y;*(s) of Yi(s) = s*Y(s) becomes
Vii(s) =Y, (s)+ Y (s), k>0, where Y,”(s) denotes the ‘observer’ part

_ Gi(s)

Yk_(S) - C(S) F]‘(S)

C(s)

U(s) + Y (s)
with the control signal filtered by a strictly proper transfer function Gy (s)/C(s)
and the plant output filtered by a proper transfer function Fy(s)/C(s), while
Y;F(s) = Hy(s)U(s) stands for the ‘predictor’ part that is completely determined
by the quotient polynomials Hp(s).

Thus, in order to obtain Y};*(s), the pair (Fy(s),Gr(s)) should be determined,
k > 0. This can be achieved in two design paths: by solving the coupled Diophantine
equations (D2) and (D3) (the emulator path) or by solving the other coupled Dio-
phantine equations (D1) and (D4) (the observer path). The equations (D1), (D2) and
(D3) can easily be solved by utilising the recursive algorithm given in Appendix C.
Equation (D4) is equivalent to the following set of linear equations with a non-singular
Sylvester matrix (see also Appendix C):

T%f : i
..... DTN e | =T (4)
p“l{ 0o g

where the vectors

fe=1[feo - fk,NA—l}T, fi € RVA

9 = [gk,o gk,Nc—l]T, gr € RNe

are composed of the coefficients of the residual polynomials Fj(s) = Zf_fo_l fr.ist
and Gi(s) = Z?Lco_l gris', k > 0, respectively.

3.2. Emulation of Filtered Output Derivatives (&)

Let us develop an emulator/observer for estimation of the derivatives of the filtered
output Y(s) = Y(s)/B(s), instead of the previously considered output Y (s). It
is important that (for the limited horizon procedure developed below) petential .-
instability of the filter 1/B(s) has no significance, and that, in the non-trivial case of
Np > 1 considered beneath, the model order N4 > 2. Let (A(s), B(s)) be coprime.
The following four Diophantine equations analogous to (D1)-(D4) make a suitable
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Diophantine basis (for & > 0) for the CGPC design development:

(D1) : A(s)Hy(s) + Li(s) = s*

(D2) : A(s)Ei(s) + B(s)Fi(s) = s"C(s)
(D3) : C(s)Hi(s) + Gr(s) = Ex(s)

(D4) - A(s)G(s) + B(s)Fi(s) = C(s) Li(s)

The operator form of the k-th ‘derivative’ of Y'(s) gains the form ¥ (s) = s*Y (s) =
Y¥(s) + V7 (s) with the predictable part of Y(s)

Fk (S)
C(s)

Ey(s)
C(s)

Vi(s) = U(s) + Y (s)

and the error part of Yj(s)

) = V()

where deg Ey(s) = max{Np—1, No—Na+k}, deg Fj,(s) < Ny—1. The transfer func-
tion Ex(s)/C(s) can be represented by a strictly proper rational part Gy(s)/C(s)
and a polynomial part Hg(s), where (see (D3))

e if deg Ey(s) < No: Gi(s) = Ex(s), degGi(s) = deg Ey(s), and Hy(s) = 0;
o if deg By (s) = No: degGy(s) < No — 1, and deg Hy(s) = 0;
o if deg Ey(s) > Ng: degGi(s) < No — 1, and deg Hy(s) = deg Ej(s) — Ng.

Presuming N¢ = N4 — 1 one obtains deg E(s) = max{Np — 1,k — 1}. Moreover,
the following lemma holds:

Lemma 7. (Appearance of the third Diophantine decomposition (D3))
A. Zero solution: Gy(s) = Hy(s) =0 if B(s) is a factor of C(s) and k < Ng.

B. Strictly proper rational solutions: Gy (s) = Ey(s), deg Gx(s) = max{Np—1,k—
1} and Hi(s) =0 if k< Nga.

C. Proper rational solutions: degGy(s) < Na—2 and deg Hy(s) =0 if k= Ny.

D. Improper rational solutions: degGy(s) < Na—2 and deg Hy(s) =k — Ny if
k> Ny.

The emulator equation for ¥}?(s) thus becomes Y*(s) = ¥, (s) + ¥;"(s), £ >0,
in which Y7 (s) denotes the corresponding ‘observer’ part

Fk (S)

7-(s) = 2y + i

C(s)

Y(s)
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with the control signal filtered via the strictly proper transfer function Gy(s)/C(s)
and the plant output filtered by the proper transfer function Fj(s)/C(s), and
Y.H(s) = Hi(s)U(s) stands for the corresponding ‘predictor’ part, which is based on
the polynomials Hy(s) = Ef_ONA hi—ist, k> N4, composed of the Markov pa;ame—
ters h;’s, i > 0, associated with the all-pole plant-allied system 1/A(s) = Y52 his™¢,
ho = -+ = hy,_1 = 0. Moreover, since B(s) does not appear in (D1), the coeffi-
cients of the residual polynomials Lj(s) = Zﬁ% 'ess7% k > 0, characterised by
Li(s) = s* (degLy(s) = k)if 0< k< Ny—1 and degLi(s) < Na—1 for k> Ny,
cannot be employed in order to detect the cancellation order Nj. This effect can only
be achieved by means of (D1).

From the above development, it follows that, in order to obtain ¥;*(s), the pair
(Fy(s),Gr(s)) has to be resolved. Similarly to the previously considered case, the
two CGPC design paths are now available: the emulator path in which the coupled
Diophantine equations (D2) and (D3) are utilised, and the observer path dealing
with the other pair of the coupled Diophantine equations (D1) and (D4). Equations
(D1) and (D3) can easily be solved in a standard recursive manner. Equation (D3) is
equivalent to the following set of linear equations with a non-singular Sylvester matrix
(see Appendix D):

€r
0 }N~ —k+1

where Ng = max{Np — 1,k — 1},

c=co -+ eny-1)F, ceRV4
and the vectors

Fe="[feo -+ Feona]', FreRY

€k = [Ek,0 "‘ék,NEk]T, &, € RVEw+:
are composed of the coefficients of the polynomials Fy(s) = Zf;‘g_l f_k,isi and

— Nz . —

Er(s) = Y2 &x:s' for k > 0, respectively. Consequently, eqn. (D4) leads to
the following set of linear equations with a non-singular Sylvester matrix (see Ap-
pendix D):

T%i : F _
..... DoTNA o | =TT
p—1 { 0 : i

where

o~

k=[ko 0 lonva1]T, Iy € RV4
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gy =[Gro - Grne-1]", Gp € RYC

are composed of the coefficients of the polynomials Ly(s) and Gg(s) = Zﬁvz%_l Gr,is",

k > 0, respectively.

3.3. Estimation of the Future Output and Future Filtered Output of the
Plant (o and &)

The time-domain estimate of the k-th derivative of the plant output Y'(s) takes the
form

. Y () if k<p
(@) : yr(t) = L7 [ (s)] = ~ e (5)
y, () +yp(®) if k>p

where g (t) = L7V (s)] for k > 0, yif(t) = Yoy hu—iuq(t) for k > p, and
u;(t) = d'u(t)/dt?, i > 0. Similarly, the time-domain estimate of the k-th derivative
of the filtered output Y (s) = Y(s)/B(s) is represented via

i (t) if k<N
@:  sw=rtme={ 0 ©
G, &)+ g,y () if E>Na

where g, (t) = L7Y; (s)] for k>0 and 3 (t) = Zf;ONA hi—iu;(t) for k> Ny.

Let us introduce £, as the variable of future time, and 7 € [0,7], T € Ry,
standing for the relative variable of future time: 7 =t — t. Moreover, let

: k
Bio ko (£ 11, 1) = {{t"/k! 2 tElth] 0<k < k‘z} (7)
denote the weighted natural functional basis.

Case a. The future output y(f) can be approximated in Bon,(7;0,T) as y(f) =
T ) jmpyr = ST Ry (t)/k!, where y;(t) = diy(t)/dt, i > 0, and N, denotes
the plant output prediction order. Seeking for a realisable form §(f) of the above
predictor 7(f), one can replace the derivatives of the output by their estimates (5):
TE) 2 90 imyr = SaZo 7 y5(8)/k!. From Lemma 6, Parts C and D, it follows
that the designed control sequence can be found for Ny > p. The following matrix
representation of §(f) can then be obtained: §(£)|;_,y, = taNy (1)Hn, n,un, (t) +
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tg:Ny (T)y]_\{y (t), where

ho 0 .- 0
Hy,u = b ho e 0 . Hpy, e RN+ s g
hn, hn,—1 <=+ AN, —m
tmn(T) = [1™/m! - )T () eRVHL 0<m<n
wi(t) = [u®) w@) - w®)], wt)eR*T, >0
vi®) = b0 v (@) -y 0], v @) eRT, >0 (8)

while the control prediction order NV, satisfies the design constraint N, < N, — p.
An important feature of Hy, ps (with N, > p and 0 < M < N,), being composed
of the coefficients of the quotient polynomials from (D1) and (D3), is the fact that it
has a zero p-row upper submatrix and a lower triangular Toeplitz submatrix.

Case &. When considering the case of estimation of the future filtered output,
by virtue of Lemma 7, Parts C and D, one concludes that the control sequence
can be designed for N, > Na. By assuming that N, < N, — Ny4, the formula

J(#) = licerr = ton, (NHN, N un, () +1] y, ()Y, (t) can easily be derived, where

g (t) =G5 (1) - g7 ®)F, y; (t) € R*L, i >0 (cf. also (6)) and
710 0 0
_ h h 0 B
Hy, = ! 0 , Hn,u € RNy +1)x(M+1) Ny >0

hn, hn,—1 -+ hn,—m

In this case I_INy,M for Ny > N4, 0< M < Ny, being composed of the coefficients
of the quotient polynomials of (D1) and (D3), has a zero N4-row upper submatrix
and a lower triangular Toeplitz submatrix.

4. CGPC Design

In this section, consequent CGPC control design algorithms are described. Taking
the original CGPC design as a basis for a further development, two analytical design
methods for predictive control are introduced: the first one (o) that utilises the
emulated future output of the plant and is recommended for minimum-phase plant
models, and the other one (&) that applies emulation of the future filtered output
and allows for handling both minimum-phase and non-minimum-phase plant models.
As will be shown, by examining the properties of the resulting closed-loop control
systems, a set of prototype characteristic polynomials can be established. With this
a simple design procedure can be formulated, in which the cardinal ‘tuning knobs’ of

-
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the CGPC methodology, i.e. the orders of output and control prediction, as well as
the horizon of observation, are directly related to certain basic time-domain design
specifications.

4.1. Basic CGPC Design

Supposing that w(t) is the reference signal sampled at a time instant ¢, one can
denote the future reference by

(@) : w(f)lt‘:w-r = w(t)

and the filtered future reference by

(@) : D jmryr = WSy, (M), = L7 [W(s)/B(s)]

where b; = [bg --- b7, b; € R*! is composed of the Markov parameters b;, for
i > 0, associated with the all-pole inverse-plant-allied system 1/B(s) = Y oo, bis™*,
by = = by, 1 = 0. Let us define two future control error signals:

(@) e(t) =ra(f) - 9()

and

(@) () =ro(t) - y()

where r,7 € R are some pre-scaling coefficients. Moreover, let the followmg quadratic
indices be introduced for an observation horizon T' > 0: J(un, ( fo 2t+7)dT

and J(up,(t)) = fo g2(t + 7)d 7. Minimisation of these indices w1th respect to the
future input wpy, (t) yields, respectively,

(a) i, (8) = ~K oY, (), Ny>p, Nu<Ny—p
and
(&) : ﬂN“(t):_I_{Nu,Nyg;,Ny(t)7 NyZNA: NU.SN'y“‘NA
where
Ky, N, = Tz_vi,Nsz:Cry,NuTNy: Kn, N, € RV +1) % (Ny+1)
yvay(t) = L_l [Y“”Ny (8)] ) | yw,Ny (t) € RNy+1

. _ T _
KN o= TNi,NyHNy,NuTNy) KNM,N,, c R(Nu+l)x(Ny+1)
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Yon, () = —Fw)by, + Ty, (1), To N, () € RV T

T Ny +1) X (Nu+1
TN“’Ny = HN NLTNyHNy»NuJ TNuaNU € ]R( ) )

yrdVa

_ T
Ty, N, = Hy

Y

N,H,TNyI—fNy,Nu, TNMNy € RV +1)x(Nu+1)

v

Ty, = Ton(0,7), Ty, € RNy +Dx(Nyt)

T ) = [ () dr, T () € RO X

0<k<Il, 0<m<n
T
Yo, () = [-rW(s) + Y(s) Y7(s) - Yy, (s)] 9)

The first co-ordinate of u}; (t) or @}, (t) determines the optimal control input
u(t) at time ¢ for Cases @ and &

(@) : u(t) = —kx, Yu,n, () (10)
_ _ =T _ A

(@) : a(t) = —k, 53, () (1)
where ky =[ko - kn,], kn, € R¥*+1 s the first row of K, v, and ky =
ko - kn,], kn, € RNy is the first row of Ky, n,. Control (11) can be

rewritten in a unified form:

(@) : u(t) = =k, Yu,n, (1) (12)

_ _ _ T
Y, (s) = [-1W(s) + ¥57 () ¥i7(s) -+ Yy ()]

while the pre-scaling factors r and 7 are related by

ko

T
kNbey

F=r

The above strategy can also be viewed as partial-state feedback control.
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4.2. Control Law Based on Prediction of the Future Output (o)

The linear (partial) feedback of (10) results in the following explicit closed-loop control
law:

U(s) = grW(s) — M(s)U(s) — N(s)Y (s) (14)

where g = ko is the effective scalar controller gain, with M(s) = G?Vy (s)/C(s)
being a strictly proper transfer function and N(s) = F}i,y(s)/C(s) being a proper
transfer function (Fig. 1(a)). The numerator polynomials can then be defined as
Fi(5) = K, Fa oxyos, dog %, (6) < Na - 1, and G (5) = K% G, oo,
deg G']O\,y (s) < Ng—1=N4~2, where s; = [s s* --- s%|T, i >0, while the entries
of the matrices

T
FNy:[fo fNy} , FNyGR(Ny-i-l)XNA

T
GNy = |:go . gNy} s GNy S R(Ny+l)XNC

are composed of the coeflicients of the residual polynomials of (D2) and (D3), respec-

tively.
g(s)
W(s) U(s) %+ Y(s)
- gr » Plant

M(s) N()
+é: |
(@
a(s)
W(s) U(s) %+ Y(s)
— 1 g » Plant
M(s) N7(s)
+6< |
+
®

Fig. 1. Two CGPC closed-loop control system configurations.

With a unity positional feedback distinguished as in Fig. 1(b), one has the
closed-loop control law U(s) = g(rW(s) — Y (s)) — M(s)U(s) — N=(s)Y(s), where
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N=(s) = FR,?(S)/C(S) is a proper transfer function with FR,T(S) = F]Q,y (5)—gC(s) =
ky, FR,sn,-1 and

T
Fy,=0n, f1 o Fn,| » Fu, e RN

v

Consider now the instrumental polynomials E?Vy (s) = k%y En,sn, -1,
degE?\,y(s) < N, — 1, and L%,y(s) = k%yLNySNA._l, degL?Vy(s) < Ny — 1, with
the matrix

0 0 .0
ENy _ e1 0] .« 0 , ENy c RNy +1)xNy
€N, EN,-1 - €1

composed of the coefficients of the quotient polynomials of (D2): Ei(s) = ey = 0
if k=0 and Ex(s) = Zi:ol er—;s' if k > 1. Note that the e;’s, for 7 > 0, are
Markov parameters of the modelled disturbance channel: C(s)/A(s) = Y oo, eis%
From the Diophantine equations (D1)-(D3) one obtains the following representations

of the considered polynomials:

FR,(s) = C(s)kn, sn, — A(s)ER, (s)

& () B(s)EY,, (s) if N, <p
N,\8) =
B(s)E}, (s) — C(s)HR, n,—,(5) if Ny>p
B(s)ky, sn, if N, <p
9, (5) = ’ (15)

B(s)ky, sn, — A(s)HY, n,_,(s) if Ny >p

Y

where HY \(s) = k%yHNy,MsM., deg HY,, ar(s) < M, M > 0. By virtue of (D4),
one gets

A(s)G, (s) + B(s)Fy, (s) = C(s) L, (s)
Thus the characteristic polynomial of the resulting closed-loop system takes the form

P(s) = Fy(s)C(s) with Py(s) = A(s) + L?Vy(s) (16)

4.3. Control Law Based on Prediction of Future Filtered Output (&)

Also the linear (partial) feedback given by (12) yields the explicit closed-loop con-
trol law (14), where g = ko is the effective scalar controller gain, M(s) =
G?Vy (s)/C(s) denotes a strictly proper transfer function and N(s) = F]%y(s)/C’(s)
is a proper transfer function. The numerator polynomials can now be defined as
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FR (s) = I_czyFNysNA_l, deg FR, (s) < Na — 1, and Gy, (s) = I_ch\",y(—;'Nych_l,
deg G%, (s) < Ng — 1, where the entries of the mafrices

_ T
Fn = [fo fNy] | Fy, € RVsF)xNa

~ T =
Gn, = [go gNy] ’ GNyER(Ny+1)XNC

are created with the coefficients of the polynomials given by (D1)-(D4). Let us now
introduce the instrumental polynomials ER; (s) = E%yENys Ny—1 of deg B} (s) <

- _T — —_ —
N, — 1, L?Vy(s) = ky,Ln,sNy—1 of degL?vy(s) < Ny -1, and H][i/wM(S) =
I;:jj\}yI:INy,MsM of deg I_{?\,y’M(s) < M, M >0, where the matrix

i €0,0 e €0,Np—1 0 e 0 ]
B ENg,0 €Ng,Ng—1 0 0
No T | e
| ENp+1,0 “++ BNp41,Np-1 §5N5+1,NB e 0
€N,,0 e €N,,Np—1 5 €N,,Np St BNy, Ny—1 |

En, € RN+ OXNy | with &y = &g—14-1 for k > Ng+1 and Np+1 <1 <
k — 1, is composed of the coefficients of the polynomials Fy(s), k < Ny, of the (D2)
Diophantine equation, and the matrix

Iy, =[lo - In,]", Ly, € RNsTDXNa
is made up with the aid of the coefficients of the residual polynomials of the (D1)
Diophantine equation.

3

From Diophantine equations (D1)—(D3) it follows that

C(s)kn, sn, = A(s)EX, (s) + B(s)FR, (s)

0 (s) ER (s) if N, <Ng
GN, S) = B Y _ .
v E?Vy(s) — C'(8)HR, n,-n,(8) if Ny>Na
o T )
_ k SNy if N. < NA
%,6) =4 v

kx,sn, — AS)HY v _n,(s) i Ny>Na

On account of (D4) it can immediately be deduced that

A(s)GR, (s) + B(s)Fy, (s) = C(s)Liy, (s)
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Thus the characteristic polynomial of the resulting closed-loop system takes the form
P(s) = Po(s)C(s) with Po(s) = A(s) + L, () (17)

For the unity positional-feedback control law (12) and Fig. 1(b) we have N=(s) =

FR¥ (s)/C(s), where F=(s) = Fy (s) — gC(s).

4.4. Analytical ACGPC Design for Minimum-Phase Plants (o)

Let (A(s), B(s)) be coprime, as previously. Let N, > 0 be a free design parameter
and, having in ind the general design restriction that N, < N, — p, assume that
for a given relative order p the output prediction order is established at its minimal
value: N, = p+ N,. In such a case the gain matrix Ky, ,+n, € RVu+Dx(p+Nut1)
of Sec. 4.1 becomes

~1
- T
Ky pen, = (Hp+Nu,N,LTp+NuHﬁNmN”) HorronTorv.  (18)
Rewriting H N, N, as
0,5 (v, +1)

Hp—l—N,, ANy = | e

where vau denotes the following non-singular submatrix of a lower triangular
Toeplitz structure:

h, 0 0
Hf’vy = hp+1 hy 0 . HY ¢ RV +1) X (N +1)
hN hNy—l hp

yields

-1 1 _ .
Koo, = (115)” |(722230.0) 225, 0) | a9

Consequently, the gain vector kg;_ ~, of (10) takes the form
koo, =hy? I:VZ’N“ 0,7):10 - 0} , koo, € RO (20)
where h, =bn,/an, = by, and

-1
VI (0,T)=[10 - 0] (Tz:ZiJsz(O,T)) T4 (0,7),

v,n,(0,T) € R (21)
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Since the non-singularity of TZ:Zi%Z(O, T) is guaranteed by the linear independence

of the function basis (7), the solution to (21) always exists. From (18) it follows
that Kn, p+n, Hptn, N, = IN41 and H), vy (s) = 1. Hence the following form
of the polynomial FPy(s), being a factor of the resulting closed-loop characteristic
polynomial P(s) = C(s)Py(s), can easily be established (cf. (15)):

Po(s) = B(s)K,,n, ()
where
K, N, (s) = k,:)r’+Nu Sp+N,y

By examining the above polynomial, the following corollary can be drawn (Kowal-
czuk and Suchomski, 1998b).

Corollary 1. The CGPC design based on emulation of the plant-output derivatives
and setting Ny = p + N, is restricted to minimum-phase models of the plant.

Another important outcome of the above representation of the characteristic polyno-
mial is that successive coefficients of its ‘consciously’ designed polynomial factor are
determined by the coordinates of the gain vector k,in,. What is more, from (8)
and (9) it follows that the component matrices of (19) can be written down as

0,p—1
Tp,;;—i-Nu 0,7)
T/(p+1) e 17 /(2p)
=TP, N, : : Py (22)
TNt (p+ Nu+1) oo TN /(2p + Ny)
PN
TP (0,T)
T/(2p+1) s TNHJ (204 Ny, + 1)
== szpp,p—l—Nu : . PP’P+N1.L (23)
TNt /(2p4+ Ny+1) --+ TNt /(2p4+2N,+1)

where P,,, = diag{1/k}"__ m <n, P,,, € Rv-mtlx(n—m+1) By congiderin
, g , g

k=m>
the above matrices in (21), the following form of the CGPC gain vector of (20) can
be derived:

r ~1E k - % :
korn, =h,* kf,’,Nu/T" ky oy, JTP7Y - k2 o /T 0 - 0]
where the composite vector, defined for the normalised observation horizon T =1,

(B Bt o Bt

= [vEn o) 11 = (vl 00 (24)
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depends solely on the relative order p of the plant and the control prediction order
N,. Furthermore, by defining a normalised complex operator variable as p = T's, the
following set of two-parameter prototype closed-loop polynomials can be acquired:

Ko, (p kap, Koy, =1, degK,n,(p) =p

Each of these monic polynomials constitutes (for chosen parameters p and N,) the
design polynomial factor of the characteristic polynomial

](p,Nu (S) = hthﬁﬂI} P, Nu (p)]p=Ts (25)
As is shown in Appendix E, the coeflicients kp N, ©=0,...,p, of these polynomials
take the form
Pt (2p+1)
(p+i+1)
k;’vNu = N,+1 2p +j (26)
N'Z’ H +’l+] H Z+] if Nu,Zl

if N,=0

It can easily be seen that for the starting point & = 0 and a given value of p,
the design computations can be performed in the following recursive manner:

o+ E+L)(p—i+ k) .
k. f k=1,...,Ny =0,...,
k(p+i+k+1) ph—1 10T B and ¢ =0 P

k; E =
Now, the controller gain takes the form
7.0 Nu+1
k p!

£, Nu

0,76~ Nuh,T7(p + Ny 4 1) H (2p+9)

g:k‘O:

An important feature of this approach is that the coefficients of K o.N. (D), as
described by (26), can be derived explicitly, without the necessity (expressed in (21)) of
inverting the Hilbert-type matrices Tz i ‘H]:,’ (0,1), which are extremely ill-conditioned
even for a relatively small N, (Kowalczuk and Suchomski, 1997a). By considering
the following matrix transfer function defined for two input 31gnals (W(s),Q(s)) and

two output signals (Y'(s),U(s)) indicated in Fig. 1:

Y(s) | Tuy(s) Tyy(s) W (s)
Us) | { Twul(s) Tyu(s) ] l Q(s) @7)
one obtains
_ kot _ korA(s)
Twy(s) - I{p,Nu,(S), Twu(S) - B(S)[{p,Nu(S) (28)
% (s —A(s)FY (s
Tyy(s) = w’ Tyu(s) = A )FNy( ) (29)

Cs)Kpn., (s) B(s)C(s)Kp,n., (5)
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Thus the ACGPC closed-loop control system under consideration (Case «) is nom-
inally internally stable if and only if B(s),C(s) and K, n,(s) are Hurwitz polyno-
mials. By examining the coefficients of K ».N, (), the following corollary of practical
importance can be formulated:

Corollary 2. For a practically pertinent range of the relative order p, the polynomials
K, n,(p) are of Hurwitz property if:

p<4 and N, >0, p=5 and N, >1, p=26,7 and N, >2
p=8 and N, >3, p=9 and N, >4, p=10 and N, >5

With the nominal performance of the closed-loop system in mind, in order to
assure the unity DC gain of Ty,(s) the unity set-point pre-scaling factor, r = 1,
should be assumed. What is more, the proposed CGPC method results in robust
zeroing of positional error if T, (0) = 0, which is guaranteed by the presence of open-
loop integral action, i.e. when A(0) = 0. On the other hand, taking into account both
the stability robustness and performance robustness requirements one can consider the
modulus of the output sensitivity function Tj,(s) as a convenient tool of robustness
analysis (cf. Green and Limebeer, 1995; Grimble, 1994; Weinmann, 1991). In many
cases, simple robust stability conditions can be formulated in terms of upper bounds
for common robustness indices. A good example makes the modulus margin A,, of
the closed-loop system defined as A, = 1/||Tyy(s)||o (Landau et al., 1998; Morari
and Zafiriou, 1989; Zhou et al., 1996).

From (29) it is clear that the modulus margin can, to some extent, be shaped
by properly choosing the control prediction order N, the time scaling factor T', and
the observer polynomial C(s). The prototype transfer functions kp ~,/ K 0. N (p) can
easily be scanned to yield their time-domain prototype spec1ﬁcat1ons A sample of
results concerning overshoot % and its instant T, as well as a couple of settling
times, achieved for p = 3 and different N, is given in Appendix F. The necessary
scaling factor T' of the time axis (and the observation horizon) can easily be obtained
as a ratio of two corresponding time parameters, e.g. T = Ty /Tso% Moreover,
from (28) it follows that the considered CGPC system has rather poor properties of
tracking velocity signals: the system is of the 1-type independently of the number
of open-loop integrators. The nominal steady-state tracking error for the reference
signal of unity velocity can be determined as

4.5. ACGPC Design for Minimum and Non-minimum Phase Plants (&)

The development given in the previous section combined with the methodology given
in Section 4.3 can result in a general design method for minimum and non-minimum
phase plants. Let N, > 0 be the only free design parameter. The output prediction
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order can then be established as N, = N4 + N,,. Consequently, by considering the
gain matrix Ky, y,on, € RVuHDXNa+Nat1) - the following gain vector can be
found:

Egﬁm = E(IJVA,NU/TN kNA, Ny [TNAE kf\\,’;&’N /T° 0 - OJ
where for 1 =0,..., N4
1
Nal (Na+1) & N, =0
il (Nga+i+1)
kv, = No+1
o 2NA+7 )
Ny — f Ny>1
N'l'H(NA+z+3 H( i+j) i >

Hence a set of monic two-parameter prototype polynomials: Kn W N.(p) =
ZNA k}\,mN P, k%: n, =1, deg Kn, N, (p) = Na, results. It can easily be estab-
lished that with the initial iteration & = 0, computation of %}VA ~, can be performed

in the following recursive way: for k =1,..., N, and ¢=0,..., N4 one has
i @ANoA+k+1)(Na—i+k)~;
.NA]\, k(NA+Z+k+1) Na,k~1

In this case, the controller scalar gain is given by

};_E)\ N N ! N, +1
ko = Al : ONa+j
07 TTNA T NTNA(N4 + Ny + 1) le( a+i)
As for the all-pole plant-allied system 1/A(s): hyx, = 1l/ay, = 1 and

f_—{f\']y,NrNA (s) = HY, +N. N, (8) = 1. Consequently, the factor Po(s) of the resulting
closed-loop characteristic polynomial P(s) of (17) becomes

Po(s) = Knu . (5)
with

— -7 - _ ~
KI\TA,Nu (s) = kNA-f-N“SNA*‘Nu = hNLT NAKNA>N11 (p)lp:Ts

where Ky, n, (p) = K, N, (D)|p=n, Of (25).
The transfer functions (27) take the form

_ _ForB(s) _RorA(s)
Tuy(s) = B, (5) Tou(s) = s
S 0 S _ =0

Toy(s) = _ALERG)_ Tyuls) = AL, ()

C(s)Enan.(s) C(s)Kn4,N,(5)

The pre-scaling factor r = 1/by assures that Tyy(s) is nominally of unity DC gain.
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As in the previously considered CGPC design, the zero steady-state error prop-
erty for positional references can be robustified by assuming A(0) = 0. In such a
case, the nominal steady-state tracking error for the unit-velocity reference-signal is
determined by

N,.+1 .
T(Na+ Ny +1) 2 (Ny4j-1) by
v = ; _—:TVN7N'LL -
¢ NatitD b LevWaNu)

by
bo

j=1

that, in certain limited cases, can be eliminated by properly tuning the design pa-
rameters N, and T. This is, however, only a nominal, not robust, property.

5. ACGPC Design for Non-Minimal Models (a and &)

The generic solutions given in the previous section for minimal models of the plant
can equally serve as a basis for designing the CGPC controllers for non-minimal
models. Let (A(s), B(s)) be reducible with the greatest common divisor A(s) of
deg A(s) = Nj > 0. According to the type of model cancellations, the following cases
can be considered here:

e ‘Design Unilateral’ (DU): a Hurwitz C(s) of degC(s) = Noc = Na —1 is
arbitrarily chosen and a high-order controller is designed based on the triple
(A(s), B(s), C(s)),

e ‘Design Bilateral’ (DB): a Hurwitz C'(s) of degC'(s) = Ngr = Na — Ny — 1
is arbitrarily chosen and a low-order controller is designed based on the triple
(A(s), B(s),C"(s)),

e ‘Controller Bilateral’ (CB): a Hurwitz C'(s) of degC'(s) = Nov = Na—Np—1
is arbitrarily chosen and a high-order controller is designed based on the triple
(A(s), B(s),C"(s)A(s)) with the required Hurwitz A(s) (the non-minimality of
the controller gives a possibility of additional parameterisation of the control
loop),

e ‘Object Bilateral’ (OB): the design is based on the triple (A'(s), B'(s),C'(s)),
obtained by performing an appropriate reduction both in the control channel
and in the disturbance channel of the original non-minimal model, and a low-
order controller is designed assuming that the resulting polynomial C’(s) of
deg C'(s) = Ng» = Ny — Ny — 1 is Hurwitz.

A summary of the design principles is given in Tables 1 (Case a) and 2 (Case
@). For simplicity of presentation, the dependence on s is omitted and the following
notational conventions are introduced: ‘E’ and ‘O’ correspond to the emulator and
observer design paths, respectively; ‘G’ and ‘F’ denote the corresponding numerators
of the input and output observer filters M(s) and N(s), respectively; ‘R’ refers to
the recursive way of solving the Diophantine equations; ‘L’ reflects the fact that a set
of linear equations is to be solved; ‘LS’ indicates a least-squares problem; and, finally,
‘LS+p’ should be read as a parameterised least-squares problem.
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Table 1. Design principles for non-minimal models: Case c.

Case|Path|Design Equations Method |Solutions| Key commentary
of solving
AEk'{-Fk:SkO R G/C
E
DU CHy+Gr=BE, R F/C
AHy + Ly = s*B R G/C
(0]
AGy + BF, = CLy LS+p F/C
AEj + AF, = s*C'A LS G'/C" |A(s) should be eva-
E luated independently.
C'AH| + AG) = BE;, LS F'/C!
DB ’ ’
AH} + Ly = s*B R G'/C'
(0]
AG), + BF, =C'Ly LS F'/c!
AE, + F, = s*C'A R G/(C'A)|A(s) should be Hur-
E witz and evaluated
OB C'AHy, + Gy = BE, R F/(C'A) |independently.
AH, + L, = s*B R G/(C'A) A(s) should be Hur-
0 : witz and evaluated
AGy + BF, = C'AL, | LS+p |F/(C'A) |independently.
A'El, + F| = s*C"' R G'jc'
E
OB C'Hj + G, = B'E}, R F/ct
A'H, + L, = s*B' R G'jc'
0
AG +B'F =C'L. | L FjC

Additional points and comments are specified below, where only cases of practical
importance are given in detail.

1. (a + DU+ E):
e a non-minimal controller always exists,
o neither Ny nor A(s) need to be evaluated,

e there is no possibility of controller parameterisation.
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Table 2. Design principles for non-minimal models: Case &.

Case|Path Design Equations Method |Solutions Key commentary
of solving
pul E — — — No solution!
0 — — — No solution!
AE} + BF] — s*C'A =0 LS G'/C" |A(s) is determined as
a by-product of the
E C'H +G = FE R F e method, effective when
DB b ’ b (C', A) is coprime
AHL + AL, = sFA R G'/C" |A(s) should be evalu-
0 _ _ - ated independently
AG), + BF, = C'AL;, LS /e
AE) + BF, — s*C'A =0 LS G/(C'A) |A(s) is determined as
a by-product of the
E method, effective when
C'AH;, + G, = E,, R F/(C'A)|(C", A) is coprime and
CB A(s) is Hurwitz.
AHp, + Ly, = " R G/(C'A) |A(s) is determined as
0 a  by-product of the
_ _ = .« |method, effective when
fle + BFk -C LkA =0 LS+p F/(C A) (017 A) is coprime and
A(s) is Hurwitz.
o ABL+ B = O Lo| ac '
os| © B+ G =B, R | FC
A'H, + L = s* R G'|C'
0 - _ _ _
A'GL+DB'G, =C'L, L /e

2. (a+ DU+ O):

e a practically convenient parameterisation of the solutions to (D4) can be ob-
tained by the following splitting of the vector f,, & > 0:

5
fr=1 -1,
hirs

where fk/} denotes its free part,

£ € RN

7

fi e RV,



78 A qualczuk and P. Sucho;pskj

e the modified Diophantine equation (D4) is equivalent to the following set of
linear equations:

On,—n,
T%i_NA 2 ........
: N,
............... CTNAL || e | =TS L— | TR SR (30)
O0ptNy—1,Ns=Ny - L
o0 et

3. (a¢+ DB+ 0):

e the vectors

T Na—N,
[fII:,O e fLI?,NA—NA—l] ’ f’k € R 4 A

i
r_ / ! T ! Ng —Np
gy = [gk,o gk,Nc—NA—l] ; gr€R

: - Nao—Na—1 ;
of the coefficients of polynomials Fy(s) = 3 ;4 %~ fi;s* and Gi(s) =
Efi%_NA~l gy, ;8" k > 0, are obtained via solving the following set of linear
equations (note that there is no need for A(s) to be explicitly evaluated, see

Appendix C):

%

T%j—NA N f”” N
Y TN nys | =TS (31)
p= { 0 ; g

4. (&+DB+E): If the minimal controller is designed based on the pair (A(s), B(s)),
an appropriate reduced-order emulator of the derivatives of the system output, filtered
via the minimal all-pole inverse-plant-allied filter 1/B'(s) = > o0, bis™, i.e. V'(s) =
Y'(s)/B'(s), should be utilised instead of the previously used emulator matched to
Y(s) = Y(s)/B(s). This implies that now the filtered future reference should be
defined as W(f)|;_yy, = 0 (0)limyy, = W)L 5, (D)by, = L7 [W(s)/B'(s)], where
the vector b, = [by --- b7, b; € Rt is composed of the Markov parameters
bj, for ¢ > 0 with by = --- = by, _n,_1 = 0, associated with the filter 1/B’(s).
Consequently, for the output prediction order established as N, = Ny — Na + N,
and with a free N, one obtains the gain vector ki, _n, .y, € RV4~NatNuti the
scalar controller gain g = k{ and the pre-scaling factor r = 1/by = Ag/by assuring
that Tyy(s) is nominally of unit DC gain (cf. Sec. 4.5). The characteristic polynomial
of the resulting closed-loop control system takes the form P(s) = C'(s)FPo(s), where

Po(s) = K, _n, v, (s) with K, _n n.(s) = k_'NA~NA+Nu3NA~NA+Nu' If solely
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the cancellation order N is known, i.e. if A(s) is unavailable (no explicit model
reduction is performed), the procedure of seeking for the vectors

A = [ho oo Anga]’, An €RM

7 F T 3! Na—N
Feo = [fto - FhNa-ta-1] s freRIATTA

o
.
Il

_ T _ Nz +1
g ! B
[Eeo - ek,NE;] , e, € R

requires solving the following set of linear equations:

=1
N, fk
Np c!
TNA—NA k,Na
Na —/
........ NE§C+1 e
NE_I,C—NB+NA+1 { 0 ONEL—'k‘l"Z,NA
Ap
On,tk

where

vk

Negro Nei (Na+k—1)x Ny
= y TR, € R

T
! / ; ! Ng—Na
=l ... Ny-Ny-1] s CER

for the unknowns A(s) = SINA st of degA(s) = Nx and Ay, = 1, Fi(s) =
_ . _ — Ngi _
TNATNATL 1 st of deg Y (s) = Na—Na—1,and Ej(s) = 3, ¢ & ; of deg By (s) =
Ng =max{Np — Nx — 1,k — 1}, respectively. For solvability of the design problem
the pair (C’(s),A(s)) is to be coprime. If this condition is not satisfied, the com-

mon divisor A(s) should be independently estimated (as is required in the case of
(@+DB+0)).
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5. (@+CB+E): In order to obtain the emulator, the following sets of linear equations
should be solved:

=0
N S
N i ) ,
TN Ny . : T.%,
A —
...................... TNEk+1 €y
ONg, —Np+Na+1,Na—Na ONg, —h+2,Na
Ar
Ony+k On,—ny
R .
= c | TNEfy
0 }NE k+1 0 }Nm-Ng+1
r -0
- T 0 —A
fk = ) fk ERNA_NA, fk ERNA
A
L S

where fﬁ denotes the vector of free parameters, k£ > 0. The simplest choice ]—‘2\ =
On, results in deg Fi(s) < Ny — Nu. Irreducibility of (C'(s), A(s)) guarantees the
problem solvability.

6. (a+CB+0): The solutions (Hy(s), Lx(s)) to the corresponding Diophantine equa-
tion (D1) obtained for A(s) = A’(s)A(s) and the solutions (HJ(s), L} (s)) obtained
for A'(s) are generally characterised by Hy(s) # Hj(s) and Li(s) # L (s)A(s) for
k > 0. Moreover, the following set of linear equations is involved in the controller
synthesis:

-0
. I
Np Ncl L
TNA—NA TNAJrNA—lTNA
TNA g
............... NA—]. gk
: B T
0pt Na=1,N4=Ny : ONA
A
On, -,
Ony, |} oviint
_ mNe Ng A
kTNAJrNA e | T TNAfk
Iy
0 }P—l

where _]_”2 € RV stands for a free parameter, k& > 0. The coprimeness of
(C'(s)Li(s), A(s)) or (C'(s),A(s)) for a Hurwitz A(s) guarantees solvability of the
design problem.
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6. Pole Placement Perspectives

Let us consider some connections between the developed analytical ACGPC design
and an emulation-based pole-placement methodology reconstructed below (references
corresponding to the classical observer approach to the pole assignment can easily be
found in any modern text-book by Brogan (1991), Ogata (1995), or Wellstead and
Zarrop (1991), for instance). Assume that the control system is of the previously
considered observer-like structure given in Fig. 1(a) (cf. Gawthrop, 1987; Middleton
and Goodwin, 1990), where M (s) = G(s)/C(s) and N(s) = F(s)/C(s), with G(s) =
S Ne=t gis' of degG(s) = Ng—1=Na—2 and F(s) = SINATY fist of deg F(s) =
N4 — 1, being now certain free design polynomials. In the case of unity positional
feedback, the control system can be represented as in Fig. 1(b), where F=(s) =
F(s) — gC(s).

6.1. Basic Pole Placement Design

Let A(s) and B(s) be coprime. The characteristic polynomial of the closed-loop
system under consideration takes the form P(s) = A(s)C(s) + A(s)G(s) + B(s)F(s),
deg P(s) = 2N4 — 1. Assume that D(s) = Zf;“o dis® = Hi‘%(s - pi), dy, = 1,
deg D(s) = N4, denote a monic polynomial chosen accordingly to desired closed-loop
poles p;, i = 1,...,Na. Hence, taking P(s) = C(s)D(s) leads to the Diophantine
equation

A(s)G(s) + B(s)F(s) = C(s)(D(s) — A(s))

which is equivalent to the following set of linear equations with a non-singular
Sylvester matrix (Liu and Patton, 1998):

where
f: [f() fNA——l]Tv fERNA

T -
g:[go gNAfZ] s QERNA 1
qg= T%j(d—- a), gqecRNa-1

T N
d:[do dNAvl} , deR'

In order to assure the unity DC gain of the tracking transfer function Tyy(s),
one has to set gr = do/bo. In the case of integral action existing in the plant (i.e. if
A(0) = 0) it occurs that by fo = codo. Thus the simplest tuning rule with g = do/bo =
fo/co and 7 =1 results in the unity DC gain of the closed-loop control system and
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differentiation in the internal loop (F=(0) = 0). If the plant is minimum-phase (i.e.
B(s) is Hurwitz) a special setting for D(s) can be recommended:

D(s) = biy., Dp(s)B(s) (32)

with D,(s) = Y0  dfs’ = [[_1(s = ps), df = 1, degD,(s) = p, being a monic
polynomial associated with the desired set of closed-loop poles locations p;, @ =
1,...,p. The solution to the above leads to Tyy(s) = (97bny)/D,(s). This means
that for g = dj/by, and r = 1 one gets a possibility of explicitly shaping the
closed-loop transients by employing an appropriately prepared prototype polynomial
D,(s).

6.2. Pole Placement Design for Non-Minimal Models

In the case of non-minimal models one has four ways of handling this issue, which is
shown in Table 3. Symbols C', D', F' and G’ used in this table are respectively re-
lated to a simplified observer polynomial C’(s) of degC’(s) = Na—Na—1, areduced-
in-degree polynomial D'(s) = Eﬁ%ﬁN“ dis' = Hfi”l—NA (s —pi) with diy, N, =1
and degD'(s) = Na — Nj, chosen accordingly to the desired set of closed-loop
poles p;, i = 1,..., N4 — Ny, a design polynomial G'(s) = Zf;%_NA_Z gis' with
degG'(s) = Ny — Ny — 2, and F'(s) = SMA™NA7L st having deg F'(s) =
N4 — Ny — 1. Each of the above Diophantine equations can easily be transformed
into an equivalent set of linear equations similarly to the methodology described in
the previous section (details are omitted). The only interesting case (DB) with a
Hurwitz B(s) is considered below. By assuming that D(s) is constructed as in (32),
the following set of linear equations can be obtained:

I N
TNi_NA N .f/
-------- TNQ’“NA——l DR f— qp
p—1 { 0 g'
f/ — [fo e f]\TA—NA—J_]Tj fl e RNA—NA
g/ = [go gNA—NA—-E}T , gl € RNA—NA—I

r =1 Y. —Na—
q, = T%i (bN]lBTNLB)"bA-d,, —a) , g, € RNa~Nazl

T

0

Since A(s) divides D,(s)B(s) — A(s), the exact solution to the design problem
exists and can easily be obtained by applying any standard least-squares technique.
At the same time there is no requirement for (C’(s),A(s)) to be coprime.
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Table 3. Design principles for non-minimal models.

Case Design Equations Method |Solutions Key commentary
of solving

A(s) is determined as

G/C a by-product of the
DU |AG + BF —CD'A = —-AC | LS+p method, effective when

F
/¢ (CD', A) is coprime.

A(s) is determined as

!
G'/C a by-product of the
DB |AG'+BF' —C'D'A = —A(C" L el method, effective when
(C'D', A) is coprime.
. |A(s) is a by-product
G/(C'A) of the method, effective
CB |AG+BF -C'(D—-A)A =0 LS+p F/(C'A) when (C'D, A) is co-
prime and A(s) Hurwitz.
. GI Cl
OB AIGI + BIFI — CI(DI _ AI) L /
FI/C’I

6.3. ACGPC from the Pole Placement Viewpoint

Considering the control strategies given by the linear combinations described by (10)
or (12), we can deduce that once we have obtained the appropriate output-derivative-
allied estimates, i.e. y,, y, (t) and g, y,(t), the only question that needs to be an-

swered is how to choose the gain vector, k%, N, Or ky N, respectively. The previously
proposed analytical rules for ACGPC controller de51gn can just be identified as a par-
ticular choice of these vectors expressed in common terms of predictive control lexis.
In fact, such a choice may be made completely arbitrary. What is more, by employ-
ing easy-to-find and clear relationships between the gain vectors and the closed-loop
characteristic polynomials, a ‘natural’ tuning rule for these vectors can be established.
Now, the problem of the existence and computability of a controller satisfying certain
design requirements can be formulated in terms of the existence and computability of
the appropriate sets of polynomials, {F}(s), Gx(s)} or {Fi(s),Gk(s)}, k=0,...,N,
The requisite answers can be found in Tables 1 and 2.

There are two examples considered below that additionally illustrate the simplic-
ity of this approach:

(i) Let us consider a minimum-phase plant described by a non-minimal model
(A'(s)A(s), B'(s)A(s),C(s)). Assume that the (o + DU + E) design means
that the control law has the form of (10) in which the emulated output
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derivatives are utilised. Considering the factor of the characteristic polyno-
mial defined in (16) and (15), we obtain Po(s) = A'(s)(1 — HY, n,-,(5)) +
B'(s )kN sn,. Taking the feedback gain of RN+l N, > p, in the form

kn, = h; [ko %p_l 10 ... 07, we get H]({,y’Ny_p(s) = 1. Thus,
simply letting N, = p yields the factorial form of the closed loop characteristic
polynomial P(s) = hy*B'(s)C(s)K,(s), in which K, ( =3 kst k, =1.

Thus the corresponding tracking transfer function Twy(s) = (kor)/K o(s) can
directly be shaped in order to satisfy the design specifications. The free param-
eters ki, 1 =0,...,p—1, can instantly be utilised so as to guarantee the desired
set of closed-loop poles p;, i = 1,...,p: K,(s) = [17_1(s —pi). Then the scalar
gain is g = ko = h;lzo = an, /bny [15-,(=ps). Thus, with 7 =1 the nominal
transfer function Tyy(s) has unity DC gain.

(ii) Let the controlled plant be described by a non-minimal model (A’(s)A(s),
B'(5)A(s),C"(s)). By assuming the (&+DB+E) design with both the control
strategy of (12) and the snnplest setting Ny = N4 — Nj one can directly estab-
lish the controller parameters k' n,» specifically, by considering the monic factor

PBj(s) = ZN"O Na st = HiV:AfNA(s —pi), kiy,_n, =1, of the characteristic
polynomial P’(s) = C'(s)P}(s), corresponding to the desired set of closed-loop
poles p;, i = 1,...,N4 — Nx. In order to achieve the unity DC gain of the
nominal transfer function T,(s), the scalar gain g = k; and the pre-scaling

factor 7 = Ag/bo should be implemented.

The only matter left for consideration is the problem of how to generalise the non-
filtered (a) methodology in order to obtain a universal design rule for both minimum-
phase and non-minimum-phase plants. This is possible if the model of (1) is minimal.
Then, from the design polynomial Py(s) = D(s) generated by the desired closed-loop
poles set, a suitable set of linear equations for the controller parameters ky, can
instantly be obtained: LT kN = d—a. With Ny = N4—1 the matrix LNA 1 isnon-
singular. It is also p0551ble in the case of non- mlmmal models characterised by a known
(formerly determined) Nj > 0. Then one finds the parameters kn, |y, _n,-~,-1
associated with the polynomial D’(s) generated by the limited set of desired closed-
loop poles p;, i = 1,..., N4 — Nj. This can surely be achieved via employing the
reduced minimal model (A'(s), B'(s),C’(s)). If merely the cancellation order Np is
detected (and no effective model reduction has been performed), the parameters of the
controller of a non-redundant structure (Case o +DB+0) as well as of a redundant
structure (Case a+DU+0O) can be derived by solving

where d' = [0} d) ... dy,_n,_1]T, d € RV4,
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It is worth noticing that L%A_NA_I corresponding to a non-coprime pair
(A(s), B(s)) can always be obtained. Clearly, a solution to the above equation exists
if and only if the polynomials D'(s) and A(s) are relatively prime. As, in gen-
eral, one has no additional prior knowledge about the common factor A(s), using the

rank deficiency detection algorithm, described in Appendix B, is recommended. In

particular, if rank [L}:,A_NA_I Po- Txf’} < N4, then D'(s) has to be properly

redesigned. In order to enforce the unity DC gain of the nominal transfer function
Twy(8), the pre-scaling coeflicient r should be taken as 7 = do/(kobo) if Ny =0, or
r = doho/(kobo) if No > 0. If A(0) =0, i.e. if there is integral action in the control
channel, one always observes that r = 1.

7. Illustrative Example

The ACGPC design method proposed in this paper is analytical in its roots. Nev-
ertheless, for the reader’s convenience, let us consider a simulated example of our
ACGPC implementation, which can also be viewed as another evidence of the design
correctness, applicability and simplicity.

Assume that a non-minimum phase and non-stable plant is characterised by the
non-minimal model A(s) = —1.55 + s — 1.55% + s* = s(s — 1.5)(s*> + 1), B(s) =
~1.5+1.35—02s2 = —0.2(s — 5)(s = 1.5), Nga =4, Ngp =2 and p = 2. Let the
desired control specifications, defined for the closed-loop step-response, be described
by the indices x = 0.05, T,y < 2sec and u(0) < 75. The algorithm given in
Appendix B applied to determine the rank deficiency of the matrix

-1.5 0 0 0
1.3 -15 -0.3 1.5
-02 13 -13 -13
0 -02 1.0 02

LT =

yields Nj = 1.

Let the reduced-degree observer polynomial be of the form C’(s) = 1+ s+ 0.25%.
Now, the filters M(s) = Gy (s)/C'(s) with degGR (s) = 1 and N(s) =
F (s)/C'(s) with degFy) (s) = 2 are to be designed. By performing the com-
putations described in Appendix D one ascertains that A(s) = —1.5+ s and

1.1154 04231
0.5769 1.1154
—-1.1154  0.5769
—0.5769 —1.1154

o O O



86 Z. Kowalczuk and P. Suchomski

00846 : 0 O 0.0846 0

- 04231 : 0 O - 0.49231
EIS = . e ) GI3 =
: 1.1154 0.2

1.1154 : 02 0

05763 © 0 02 0251

The set-point pre-scaling factor is » = Ag/bp = 1. From the data listed in Table 4
of Appendix F it follows that the value of the control prediction order can suitably
be chosen as N, = 2. Since u(0) = rg = rky = ks /T?, the time scaling factor
is constrained by T > (%’3?2 Ju(0))'/3 = 1.4978sec. Thus let the observation horizon
be T = 1.5sec. This leads to the gain g = 74.667, and the observer numerators
Gﬁy(s) = 32.1795 4+ 1.8s and FJ’\‘,]y (5) = 74.6667 + 94.8205s + 78.4974s%. Simulation
of the resulting closed-loop system shows that « = 0.054 and T,y = 1.74sec (see
also Figs. 2 and 3).

1.2

y(t)

1
0.8}
0.6 r
0.4+

0.2+

t (secs) »

0 0.5 1 1.5 2

-0.2

Fig. 2. Step response.

t (secs)

0 0.5 1 15 2

-40

Fig. 3. Controlling signal.
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8. Concluding Remarks

In our considerations, scalar linear continuous-time plants are represented with the
ald of two conjoined rational transfer functions describing the controlled part and
the disturbed part of the plant, respectively. Two cases of model-based prediction
concerning the future output (Case «) and the future filtered output of the plant
(Case &) are developed. Suitable emulation of the output derivatives serves as a
basis for the signal prediction. The emulation can be performed by using two design
paths, referred to as the Emulator (E) and the Observer (O) paths, respectively,
resulting from resolution of a set of coupled Diophantine equations, taken from a
suitable Diophantine basis (different for each case, @ and &). The prediction of
type « is useful in the CGPC design for minimum-phase plant models, while the
prediction of type & (with the output signal filtered by the numerator polynomial of
the controlled plant transfer function) is appropriate for both minimum-phase and
non-minimum-phase plant models.

All the necessary emulation procedures, the CGPC design algorithms, including
the two (o and @) introduced predictive control laws are provided, and an anal-
ysis of the resulting closed-loop systems performed. Moreover, explicit formulae for
closed-loop characteristic polynomials are given that serve as a basis for the analytical
ACGPC design (both ways, a and &), which is the main objective of this presenta-
tion. In this approach, the principal CGPC ‘tuning knobs’, i.e. the output and control
prediction orders as well as the horizon of observation, are directly related to common
time-domain design specifications.

By observing the above-mentioned specific design parameterisation, simplicity
and explicitness of the proposed design solution is obtained. The nominal performance
and nominal stability of the closed-loop ACGPC systems for both minimum-phase
and non-minimum-phase plants is guaranteed via a suitable choice of the control
order that can be derived from the (relative) order of the plant model and arbitrary
time-domain design specifications. These features, which are in contrast to the generic
CGPC design, lay practical foundations for applying of the method in adaptive control
systems.

Taking into account various aspects of the CGPC design (the design cases «
and &, paths E and O, and related Diophantine equations, the methods of solving
them, and the forms of solution), syncopating forethoughts are provided that indicate
meaningful consequences of miscellaneous types of potential non-minimality of plant
models, including design unilateral (DU), design bilateral (DB), controller bilateral
(CB), and object bilateral (OB) types of non-minimality (reducibility).

What is more, a method of detecting the cancellation order of non-minimal plant
models along with a way of reconstructing their minimal models are proposed that
are established by examining the rank deficiency of a testing matrix composed of the
coefficients of residual polynomials yielded by a properly defined set of Diophantine
equations, resulting, in turn, from the transfer function of the controlled part of the
plant model. There is also a collection of specific studies provided in the Appendices
given below, where the prototype design characteristic polynomials are catalogued and
certain computational aspects of the developed procedures are explained in detail.
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A self-imposing analysis of the proposed analytical emulation-based ACGPC de-
sign methodology from the viewpoint of pole placement (PP), employing a design-
identified characteristic polynomial, is also performed. It is shown that the ACGPC
method can easily act toward a special case of the PP technique. A specific property
of ACGPC is that the characteristic polynomial of the ACGPC closed-loop system is
a resultant polynomial, conforming to the postulate of minimisation of the quadratic
index, which is composed with the aid of the predicted system-output signal and
governed with the use of the traditional CGPC gears: the prediction orders and ob-
servation horizon. Consequently, the family of implemented prototype polynomials is
obtained by a suitable parameterisation of a “fundamental” factor of the closed-loop
characteristic polynomial resulting from the ACGPC design.

Settling the deliberated ACGPC project on the catalogued properties of the
polynomial family allows for rationalisation (minimisation) of the degrees of design
freedom. For a given system relative order (in Case «), or the true/minimal system
order (in Case &), the only key knob for the designer is the control prediction order
which affects the closed-loop stability margin, the overshoot of the step response and
the control signal magnitude. At the same time, one has to keep in mind that the
observation horizon resulting from the design specifications exerts influence on the
speed of transient processes and the control signal, as well. This type of synthesis,
characterised by a limited design freedom, appears to be beneficial as compared to
both the generic CGPC and PP methodologies. In particular, in most practical cases
of the PP scheme, where all the poles of the closed-loop system transfer function have
to be discriminated, the designer allocates only one pair of dominant complex poles
and puts the remaining poles somewhere “deep in LHP.” This procedure applied to
higher-order systems can, however, easily result in unduly large control signals.

Another important outcome of the proposed approach is the fact that the com-
mon subordination of the control signal both by the control weighting factor A of
the cost function and the anticipative filtration of the control error (Kowalczuk et
al., 1996), is now abandoned. Instead, the control effort is practically restricted by
using a constrained control signal (in terms of its instant value), implied by the scalar
gain coefficient g (entailing the observation horizon T). Consequently, the designer
is able to trade off effectively between the control energy and output transients (e.g.
the settling time).

In this paper, two practically important issues of nominal stability and nominal
performance of the CGPC control systems are deliberated at length. On the other
hand, the only modelling uncertainty included in the design is the existence of cancel-
lations in the plant model. This issue is completely solved by effective detection of the
corresponding plant model cancellation order. Thus, the under consideration plant
models are otherwise nominal. Nevertheless, it is equally important that the proposed
analytical control design approach provides the means for discussion of the two other
complementary issues of robust stability and robust performance in cases of modelling
uncertainty. For instance, the control structure comprising a freely designed polyno-
mial C(s) allows for shaping robust and noise properties of the closed-loop CGPC
systems (with an interplay included). The presented here analytical considerations
can also be used in synthesis of predictive control of delay systems (Kowalczuk and
Suchomski, 1999).

Ao
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Appendices

A. Proofs of Lemmas 2, 3 and 4
Proof of Lemma 2. (Only if) Suppose that A(s) and B(s) have a common factor
A(s) = o + s A(s) = A'(s)A(s), degA'(s) = Na -1, and B(s) = B'(s)A(s),
deg B'(s) = Np — 1. By virtue of (D1) one can conclude that

Li(s) = L} (s)A(s), degLj(s) = deg Li(s) -1 (33)

with L) satisfying the reduced degree Diophantine equation

(D1') A'(s)Hy(s) + Li(s) = s*B'(s), k20
From (33) it follows that L%, _; = TNA_ L, ;, where Iy, _; =[lo ... Iy, 1),
Liy,_, € RVaxWNa=b hag columns Iy = [lo - L N2l 1, € RNAT estab-

lished by polynomials Lk( 5), 0 < k< N4g—1,and TNA . € RN4*(Na=1)  Clearly,
rankL% = ranka; 1 < Na —1, a contradiction.

(If) From Lemma 1 it follows that the first p columns of LY are composed of the
coefficients of the numerator polynomial B(s), thus one has p < rank LY Nao1 <

Ny4. Therefore, in the sequel only the non-trivial case of p < Nu will be anal—
ysed. Suppose that LN 1 is singular. Then the set of homogeneous linear

equations LNA ,x = Oy, has a non-zero solution for = € RMN4. By splitting
x=lag ... -1 | Po ... PDBnp- 1]T and a simple matrix algebra one ob-

tains the relation B(s )Zp aps® + SSnE BrLpsk(s) = 0. With the use of the
above and the first Dlophantme equamon (D1) one gains A(s)Wg(s) = B(s)Wal(s),
where Wa(s) = 02t apsh + Y02 Bes?* and Wp(s) = Ne 1 B Hpt o (5)-
Since degWy(s) < NA — 1, the previous assumption (that deg A(s) Ny4) is thus
contradicted.

Proof of Lemma 3. Since Vk > 0 : Li(s) = Li(s)A(s), with Lj(s) =
Zﬁ% Na= 1l’ satisfying the corresponding (first) Diophantine equation ap-
propriately reduced—in degree, one has L% —1 = T%’; NALN 1, Where
Ly,.. = o o Uy,a)% LN _, € RNax(Na=Na) ' and columns I} =
o - Uona—na-1lTs i € RYA774, are composed of the coefficients of poly-
nomials Li(s), k=0,...,Na — 1, while TNA_, € RN4*(Na=No). From Lemma 2
it follows that rankLNA L= rankLNA Ny—1 = Na — Na. Since TN N, isof full
column rank, i.e. rankTNA_NA = N4 — Ny, the claim is proved.

Proof of Lemma 4. The proof is straightforward, and follows directly from the
equality A(s)B’(s) = B(s)A'(s). Since

TNB/ . TNA/

Npg : _ Na — Na
TN Ny 0 —Tng-ny| = TN 4Ns—2N, _Na
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Na _ Ny : N 4
where rank T\, v oy, = Na+Np—2N, as well as ra;nk[TMPNA P- TstNA]

= N4 + N — Nj, one concludes that the matrices of (2) and (3) are of full column
rank. Since tqp € R[TJNvi_NA —T]NV“;_NA] and £, € R[Txf_NA], the exact solution

to (2) can be obtained by applying any least-squares method (Bjoérck, 1996; Golub
and Van Loan, 1996). Once the coprime pair (A4'(s), B'(s)) is derived, the coeflicients
Ar =X - Any—1], Ax € RVA | of the common factor A(s) can be estimated by
solving another simple least-squares problem (given here for Ny < Np)

On,
T]N\,:’ a a’
..... AL = ..
TV b On,
) é,; .

B. Determination of Cancellation Order N,

Let Nj > 0. From Lemma 3 it follows that Iy, —n, € ’R[L]:QA_ Na—1], which is equiv-
alent to In,—n, € N[PN,-N,~1], where N[Pn,_n,—1] denotes the null space of
the projector P, _ny—1 = INy— LN, N -1 (LN, —Noe1)Ts PNa-ny—1 € RYaXNa,
onto the orthogonal complement R+ [L%A_ N._1] of the range space of L%A CNaA-1-
Therefore Ny can be computed by using the following recursive algorithm for Moore-
Penrose generalised inversion (Boullion and Odell, 1971) of subsequent left submatri-
ces of LY, 1t

The algorithm (Kowalczuk et al., 1996; Kowalczuk and Suchomski, 1996)

Initialisation (3 =0):

Ng = lo
-2 T T
"(_JF = HnOHZ()nOa (L0)+:n3'

PO = INA ——’I’L()‘Tlg‘

Iteration (i <+ i+ 1; End: if ¢ = Ny):
n; = Pil;
Inill; = nin; (= End: if [nill3 <e)
+ _

n;, = IImIIEZmT, p; = (L?—1)+li
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Termination:
Njy = NA -1

where ¢ denotes a small real number determining the accuracy of computations.

A geometric characterisation of the iterative mechanism of the algorithm is given
in Fig. 4, where [|n;ll2/||lill2 = sina; < ||Pi—1fls, ¢ > 1, with || -||s denoting the
spectral norm, can be interpreted as a measure of the angular distance between [; and
R[LT |]. Another important outcome of the algorithm is the fact that a numerical

estimate of the pseudoinverse (LiT)+, 1=1,..., N4 — Ny, is also available and can
be utilised while considering the corresponding linear least-squares problem.

,
ni=F _il; l/‘
: T '/ yT Y+
o Li—l‘(Li-l)li

Fig. 4. Geometric interpretation of the algorithm for determi-
nation of the cancellation order.

R[L] ]

C. Solution of Diophantine Equations (D1)—(D4)

C.1. Diophantine equations (D1)-(D3) can easily be solved be employing the follow-
ing recursive algorithms that can immediately be verified by direct computations (see
also Grimble, 1992; Jezek, 1993; Kucera, 1993):

Ek(s) : € = 0
€1 = CNg
i1
€ = CNg—it+1 — Z €jaN, —itj, t>2

j=max{l,i—~Na}

and CNC—ZZO if 1> Ng
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Hk(S)Z ho="‘=hp_1:0
hP = bng
i—1
hp+i = bng—i = Z hptjQN,—its, 121
j=max{0,i—Na}
and bNE.ﬂj =0 if 1> Np
Li(s) : Ihi=big, 0<k<p—-1 0<i<Ny-—1
and b, =0 if I<0 or {>Np
k ,
byi = biek — Z hjai—kij, k2p, 0<i<Ng—1
j=max{p,k—1i}
and =0 if I<0
Fy(s) : foi=c¢, 0<i<Nu—1
k
Jri=cizp— Z €j0i—gt+j, k2>1, 0Zi1<Ny—1
j=max{1l,k—i}
and ¢g=0 if 1<0
Gr(s) g0,i=0, 0<i<Ny-—2

min{k,k—Np—1i}
Ok, = Z ejbi—pyj, 1<k<p—-1, 0<i<Ny—2
j=max{1 k—1i}

min{k,k—Ng—i} k
Gi = Z eibi_ktj — Z hjci—r+j, k>p
j=max{1,k—1i} j=max{p,k—1}

0<i< Ny-2
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C.2. Since the matrices of (4), (30) and (31) do not depend on %, the following block
equation (D4) should be solved for any k > 0:

-1

- 7 N
fo - fu Ty, N e
............. = TN, TNS Ly,
L 9o 9r | p—1 { 0
M g0 0 N +
fo by LA v N
............. = | o TN | TReLT,
L 90 9 | 0prNy—1,Na—N
- - N +
.ﬂ) flk TNf—NA N N
rrT
............. = e D TNA | TN L]
R BRI
where the minimal model (A(s),B(s),C(s)), the non-minimal model (A(s),B(s),
C(s)) with the zero parameterisation | f§ - - fﬂ = 0n, k+1, and the non-minimal
model (A(s),B(s),C'(s)) can be used, respectively.
D. Solution of Diophantine Equation (D4)
The vectors €, k > 0, have the following form:
( T
é) = [ék,O ék,NB——l] , enéyeRVE if 0<k<Np
50
e
e = { i _ [_ = : > ]T
= |€,0 ' €k,Np-1 : €,Ng ~°° C€kk-1| ,
€y
{ ereR, e eRNe if k> Np

The co-ordinates of the vector

ENg+1,Ng = CN4—1 if k=Ng+1

..... if k>Np+1

can be computed be applying the following recursive formula:

mill{NA+NB,k—l}

€k,Np = CNs+Np—k — Z €k l1aN +Ns—1, k> Np+1
i I=Np+1
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where cy,4+ng—k =0 for kK > Ny + Np. Then, for £ > Np + 1, the solution takes
the form

-1
_ NA . NE Nc L == .. —_—
o [TNE : TNA] [TNB+1 : €ENg+1 €
where

ey =cy —Trsey, & e RVa+tNs 5 Ng

4T
T . .

Cz _ [Ok e o CNA'*'NB'k*l] if Ng<k<Ng4+ Np, c% c RNA+N.B

ON 4+ if k>Na+ Np,

N . N _
N TN'; : Tkléz T;;V;[% c R(NA+NB)X(IC NB)’
TN = | S , k> Ng
: N o — o
Ok—NB,NB : Ti\{f) Tk;?‘ € R(k N ) x(k NB);

The exact solution exists because the Sylvester matrix [T%g T%i’ | is non-singular.

E. Gain of CGPC Controller
From (22) and (23) it follows that for T =1 we have

(T2t 0,1) T 00 = Pbe, (T00E) T T Poss (34)
where
1(k+m+1) - 1/(k+n+1)
Ty, = : : L 0<k<l, 0<m<n,
1/(l+m+1) 1/(l+’n—|—1)

The above given matrix can be found in the square Hilbert matrix TO, PN
following partitioning:

~0,0=1  ~pp+Ny
T, _ Y S
0,p+N. 1 0.p+N 1 0,p—1 0,p—1
’ Y p— 24Ny - _ :
To,p-;-Nu = PO,p+NuTO,p+Nu(0’ 1)P0’p+Nu = ... e
. ~0,p—1 L e tNu

p,p+Noy ’ pp+Nu
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It is a known fact that Hilbert matrices exhibit bad numerical conditioning (Dem-
+Nu
mel, 1997). On the other hand, the inversion of To Z 4N, can be obtained explicitly.

0,p+Ny
Hence the inverse of the Hilbert matrix T0 P+ N

~0,0+Nu\ "1 - oiN, pENG N,
T — ¥ tp N, ’ Tp+ c R(P+Nu+1)x(p+Nu+1)
0,p+Nu i =0

can be shown to have the following entries:

oV _ (—1)3=% (p+Ny+i+ 1D p+Ny+j+1)!
T i+ G+ 1) @22 (e + Nu — 1) p + Nu —5)!

An interesting feature resulting from the common partitioned matrix inversion formula
(Barnett, 1971; Weinmann, 1991) is that a component of

Ny 710, N
Y Ty
artNe | o
7P Nu Nu
T3 T3
+N,, =1
namely, Tol = —(Tﬁ Z+ - 1prz N, T’fl , contains the necessary factor of the
right-hand 51de of (34) and the partitioning complies with the original decompo-
p+Nu
sition of T, Z+N c T8N e mexe TN e Rex(utD) TN € RVu+1)xp
and 75" € RWu+Dx(Mut1)  Rewriting vT 4, (0,1) in the form of vT, (0,1) =
~p,p+ N 0,p—1 N
[Pt 0 - 0UT, ,in.)” lTp o+N, Po,p—1 and using T’;l leads to
7P Nu y— 7P Nu
Tll’l Po,;l;—l’/p,Nu(Oa 1) =—p!t’ (35)
where TV = [tp’ tp’N“ J7, M € Re, and Py, = diag{k!}_. By

direct calculatlons it can easﬂy be verified that v, n,(0,1) defined by (24) and (26)
satisfies the relation (35).

F. Properties of Design Polynomials Kp ~N. (p)

Consider the case of p = 3. Let § = gh,T” = %2,1\,“' denote the normalised CGPC
controller gain. Four parameters of the normalised step response, corresponding to
the prototype transfer function §/K, n, (p), are considered. In partlcular %k denotes
the overshoot occurring at the normalised time instant T,G, whereas Tsz% and TsS%
denote the normalised settling times.
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Table 4. ACGPC-model specifications for p = 3.

N g K,n. () Pooles of K, nv, (p)|  RlTw | Tosnel T
—0.774 + j2.186,
0| 10.5 | 10.5+8.4p+ 3.5p%> +p° L 059 0.1572|1.972 | 3.623|3.992
—2.095 + j3.640,
1| 67.2 | 67.2+33.6p+ 8p? + p? 3810 0.0693]1.204 | 1.402|1.582
~3.695 + j5.253,
2| 252 | 252+ 86.4p+ 13.5p2 + p® J 0.0441]0.837|0.606|1.048
—6.109
—5.573 & j7.089,
3] 720 | 720+ 180p + 20p% + p? .. 0.0333]0.621 | 0.447|0.742
—7.728 + j9.172,
4 {1732.5|1732.5+ 330p + 27.5p% + p? 0.0277/0.477{0.343]0.551
~12.044
—~10.163 £ j11.512,
5| 3696 | 3696 + 554.4p + 36p? + p3 0.0244/0.3800.272/0.424
—15.673
, .|—12.880 % j14.114,
6 |7207.2|7207.24+873.6p+45.5p%+p? 0.0222(0.309 |0.221]0.335
—19.741
—15.878 + j16.982,
7 | 13104 [13104 +1310.4p+ 56p>+p3 0.0208]0.257 | 0.183]0.269
—24.244
~19.159 + 520.118,
8 22522.522522.5+1890p+67.5p%+p3 0.0197|0.217|0.154|0.166
—29.181
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