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SUB-OPTIMAL NONLINEAR PREDICTIVE AND
ADAPTIVE CONTROL BASED ON
THE PARAMETRIC VOLTERRA MODEL

RoBerT HABER*, Ruta BARS**, OrsoLya LENGYEL**

Predictive control algorithms have been worked out mainly to control linear
plants. There is a great demand to apply different control ideas to nonlinear
systems. Using predictive control algorithms for nonlinear systems is a promising
technique. Extended horizon one-step-ahead and long-range optimal predictive
control algorithms are given here for the parametric Volterra model (which in-
cludes also the generalized Hammerstein model). A quadratic cost function is
minimized which considers the quadratic deviations of the reference signal and
the output signal at a future point (or points) beyond the dead time and also
penalizes large control signal increments. For prediction of the output signal, a -
predictive model is applied which uses information about the input and output
signals up to the current time. A predictive transformation of the nonlinear
dynamic model is given. The incremental model is advantageous since the cost
function contains the control increment and not the control signal itself. An in-
cremental transformation of the predictive forms is also described. Sub-optimal
solutions to the optimal control algorithms are discussed with different assump-
tions for the control signal during the control horizon. The effect of the different
strategies and the effect of the tuning parameters is investigated through simu-
lation examples.

Keywords: predictove control, nonlinear control, optimal control, nonlinear
systems, adaptive control.

1. Introduction

Predictive control algorithms were suggested first in the mid 1970s and originated
from industrial applications. The main idea is to calculate the series of control signal
values which minimizes the quadratic deviation of the reference signal and the output
signal predicted in a future horizon and also penalizes the squares of the control in-
puts or control increments. With the so-called receding horizon strategy only the first
control signal is applied and at the next sampling point the procedure is repeated.
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A detailed theoretical analysis only followed the reports on successful industrial ap-
plications. Nowadays predictive control algorithms are declared as the second most
accepted algorithms (after the PID algorithms) in industrial process control. The
technique can be considered well-studied for control of linear plants. There are a
variety of different versions of the algorithms (long-range or extended-horizon one-
step-ahead optimal control based on non-parametric or parametric system models,
etc.). The appropriate choice of different tuning parameters (prediction horizon, con-
trol horizon, control increment penalizing factors, etc.) could ensure good results for
different circumstances and requirements.

There are several ways to model nonlinear processes. Non-parametric models
are extensions of the linear weighting function series. With the Hammerstein series
model square terms of the shifted input signals are considered and with the Volterra
series model also cross-product terms of differently shifted input terms are included.
The drawback of such models lies in the great number of parameters which have to
be estimated. With a memory length of m = 10, the number of components in the
Hammerstein series model is 21 and in the Volterra series model is 64. Parametric
models are extensions of the linear pulse-transfer function model. With the sim-
ple Hammerstein cascade model the linear dynamic term is preceded by a nonlinear
static characteristics. Its extension, the generalized Hammerstein model, is linear
in the parameters, which makes adaptive control possible. The generalized Ham-
merstein model takes only equally shifted quadratic input terms into account. The
parametric Volterra model includes the shifted input and output terms in linear form
and the product terms of the equally and differently shifted input signals. Therefore,
the parametric Volterra model approximates the whole Volterra series with only few
parameters. Assuming a second-order memory the number of parameters becomes 7
and an adaptive tuning is easily performable.

Further on, the control based on the single-input, single-output parametric
Volterra model is investigated. Control based on the generalized Hammerstein model
remains a special case.

Non-parametric models are predictive ones, which means that the future output
signal does not depend on the output signal terms not known at present. Parametric
nonlinear dynamic models are non-predictive but can be transformed to such a form.
If control increments are penalized in the cost function, an incremental predictive
form of the system model is expedient where control increments are used instead of
the control values.

One-dimensional analytical optimization (without any constraints) assumes a
predictive form of the nonlinear dynamical model under consideration. Cascade mod-
els can be partitioned into a static nonlinear part and a linear dynamic part. The
predictive control algorithm can be applied then for the linear part if the steady-state
characteristic is known (Zhu et al., 1991). With the generalized Hammerstein model
this separation cannot be done and a nonlinear dynamical control algorithm is needed
(Haber et al., 1997; 1998). The parametric Volterra model is a generalization of the
generalized Hammerstein model and approximates different nonlinear structures bet-
ter than the Hammerstein model. The parametric Volterra model can be described
by few parameters. This model is advantageous over the non-parametric Volterra
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series. Predictive control based on the Volterra series was proposed e.g. by Bars and
Haber (1988).

There are two ways to compute (predict) the output signal in the prediction hori-
zon: sequential simulation of the non-predictive model equations till the end of the
prediction horizon or using the corresponding prediction model for each point of the
prediction horizon. The second method is especially advantageous when the change
of the input signal during the control horizon is restricted, which means that the
future input increments are any functions of the current input signal (e.g. they are
equal to one another), then all predicted output signals in the prediction horizon can
be expressed analytically and the cost function becomes an analytical function of the
current control increment. In the case of the parametric Volterra model with poly-
nomial steady-state characteristics the cost function is a polynomial of the current
control increment. The optimal input increment can be computed by any constrained
minimization algorithm. If hard input constraints are not taken into account, then
the current control increment can be searched by a root finding algorithm and by a
straightforward selection of the roots. Regardless of the degree of the nonlinear char-
acteristics, a one-dimensional optimization can be used instead of a multi-dimensional
one. (Another sub-optimal solution was recommended by Zheng (1998): the future
control increments in the control horizon are approximated by linear controllers which
can be computed analytically off-line based on linearized models.)

Long-range optimal and extended horizon one-step-ahead predictive optimal and
sub-optimal control algorithms are given here for the parametric Volterra model (in-
cluding the generalized Hammerstein model). Some properties of these algorithms
are shown through simulation examples. Also adaptive control is demonstrated.

2. Control Aim and Control Strategy

The control signal is calculated by minimizing the following cost function:

T= 37 . [w(brdne) =g (ke dbng | )] +3° g1 AP (k1) = MIN (1)

Ne=T.c1 =1

Here w denotes the reference signal, §(k +d + n. | k) is the n, steps over the
dead time d ahead predicted value of the output signal on the basis of the system
model using information available up to the current time k, while d denotes the
discrete dead time relative to the sampling time.

The tuning parameters of the control algorithm are: the prediction horizon
Nez — Ne1 (if Mea = ne1 = ne, extended horizon one-step-ahead predictive control
is applied), the control horizon n, (the number of the supposed consecutive changes
in the control signal), the weighting factors of the control error Yyners- - > Vynes, USU-
ally assumed to be equal to 1 (7, = 1), the weighting factors of the control increments
Yu0> - - + s Yu,n, —1, Usually assumed to be equal to each other (and denoted then by Ya.).

The control increments Au(k), ..., Au(k +n, — 1) have to be calculated. Only
the first one is applied as an input signal, and at the next time point the procedure
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is repeated (a receding horizon strategy). The optimization problem formulation is
similar to the LQ problem. The main difference is in the receding horizon strategy.
A term penalizing the deviation of the output from its required value at the final point
was not used. A new feature here is the control horizon which could be less than the
prediction horizon. With an appropriate choice of the control horizon a good control
performance could be achieved e.g. for non-minimum-phase plants. With n.; > 0 an
extension beyond the dead time is realized resulting in more moderated control signals.
Penalizing control increments instead of the control values themselves introduces an
integrating effect in the control system, which is advantageous when considering the
static accuracy.

Depending on the prediction horizon lengths, two different control strategies can
be distinguished:

o FExtended horizon one-step-ahead control (e.g. Ydstie et al., 1985): the prediction
horizon is restricted to one value, Nes = Ne1 = Ne.

e Long-range optimal control (e.g. Clarke et al., 1987): ng1 < Nea.

Two sub-optimal control strategies will be considered, which simplify the calculations
(for linear systems, see (Ydstie et al., 1985)):

o Strategy 1: Only one change is taken into account in the control signal at

the current time point k, and during the control horizon the control signal is
constant:

Au(k) #0, Au(k+1) =0, Au(k+2)=0, ..., Au(k+n,—1)=0 (2)

o Strategy 2: The changes in the control signal during the control horizon are
considered as equal to one another:

Au(k) =Aulk+1) = Au(k+2) = = Au(k +n, — 1) (3)

3. Parametric Volterra Model and Its Incremental Predictive
Form

A noiseless parametric Volterra model with quadratic steady-state characteristics has
been chosen as the process model. As being linear-in-parameters, it is suitable for
adaptive control.

The generalized Volterra model is defined as follows:

A(g™M)y(k +d) = & + By(g~ ulk) + Bz (g7, 57Y) w2 (k) (4)



Sub-optimal nonlinear predictive and adaptive control . .. 165

where ¢f is the constant term (the asterisk is used to distinguish from the constant
term co of a polynomial) and the polynomials of the backward shifting operator ¢—!
are

A(q_l) =1 + alq_l 4+ anaq—na

Bi(g7Y) =bio + biig 4+ bin, g7
p2 Tb2

By (g qr ") u(k) = D) basjulk — du(k - j)

1=0 j=1i

As can be seen, the parametric Volterra model includes the generalized Hammerstein
model as a special case if the terms u(k —#)u(k — j) (i # j) are missing.

The predictive form of the parametric Volterra model can be given as (Haber,
1995)

§(k+d+ne) = ch+alg  y(k)+ Bl Hulk+ne) + Ba (a7, g5t ) w?(k+n.) (6)

The parameters can be calculated recursively by solving the following Diophantine
equation (Clarke et al., 1987):

1=F(g ) A(g?) +¢ )@ (¢7) (7)

Here the degree of the polynomial F' is d + n. — 1, the degree of polynomial G is
ne — 1, and

alg)=G(¢Y), g=FU)c, A(¢)=F(¢")Bi(¢7?)

(8)
Bo (et ') =F (¢ Ba (7,05 )
Equation (6) uses only the output information available up to the current time % to
predict the future output value.

The control algorithm can be derived easier if the predictive form depends on the
input signal increments, rather than on the input signal itself. The current and the
future control signals are expressed with the current and future control increments
and u(k — 1) as follows:

u(k+i) =u(k—1)+ > Au(k+j), i=0,1,...,n. (9)
7=0
Let us define Au*(k) as

Au*(k) = u(k) —u(k—1) if k>0 10)
u(k) if k<O
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Taking (9) and (10) into consideration in the predictive equation (6), the incre-
mental predictive equation can be derived in the following form:

Gk +d+nel|k) =+ (g7 ylk) +m (¢7F) Au*(k+ ne)

+7 (a7t a5") Aut? (k + ne) (11)
where
8gh) =ald)
min (3,1 +d+ne—1)
= > B, i=01...mp+d+n.—1

v=0

min(é,npa+d+n. —1) min(i,npo+d+ne—1)

Yoii = Z Z ﬂ2yu, 1=0,1,...,np2+d+n,—1

v=0 pw=v

min(z,npz+d+ne—1) | min(i,npa+d+ne—1) min(j,npa+d+ne—1)

Ya2ij = Z Z /621//_L+ Z /621/;:, 3
u=v u=v

v=0
i=0,1,...,np+d+n.—1, j=1t+1Li+2,.. . ,npp+d+n.—1 (12)

Equation (11) includes product terms of the past, current and future control
increments. As the past increments are known when the control algorithm has to
be solved, such product terms can be handled as linear functions of the unknown
(current or future) control increments. The incremental predictive form of the para-
metric Volterra model can be expressed as a function of the current and future control
increments:

§(k+d+ne k) = p§") + P (¢71) Au(k+n) + P (7 ¢50) Au? (k+n.)  (13)

The degrees of the polynomials are deg(P;) = n. and deg(P2) = [n.,n.]. The
coefficients are calculated as follows:

Ne+npa+d—1 Nnet+npat+d—1

pgnc) - cg +4 (q_l) y(k) + Z Y11 + Z "yQijA’u(k + ne — j)
i=n+1 =i
x Au(k +ne — 1) (14a)
Netnp1+d—1
P =i Y mAu(ktne—j4),  i=0,1,...,n (14b)
J=ne+1
Py = ey, i=0,1,...,m,,  j=1,2,....m, (14c)

The upper index (n.) means that the coefficients depend on the prediction step.

—
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4. Control Algorithm

With a quadratic process model the cost function (1) is a fourth-degree function of
the control increments in the control horizon. The minimization can be performed
numerically with and without constraints. If, however, we assume any sub-optimal
strategy (2) or (3), then only the current control increment has to be searched. As-
suming hard input constraints the one-dimensional optimization can be performed
numerically. Without constraints the minimization of the cost function (1) leads to
the solution of a cubic polynomial equation

ko + ky Au(k) + ko Au? (k) + ks Au® (k) = 0 (15)
The solution to (15) depends on the control strategy chosen (Haber et al., 1998):
e Strategy 1 (the control signal is kept constant in the control horizon)

Me2

Fo= D . [pgne) w(k+d+ ne)] i) (162)
Me=Tel
Te2
k1:2 Z [ k‘+d+77 :|pg1711ne+ Z [pg:l:] +’)’uo (lﬁb)
Ne=Ne1 n
Te2
2 =3 Z lne p?ne’ﬂe (16C>
Ne=Ne1
Ne2 9
b=z 3 ] -
MNe=Nel

e Strategy 2 (the control increments are kept constant in the control horizon)

Ne2 e
ko= Y Yyn. [pgm —w(k+d+ ne)] [ngzﬂ} (17a)
Neg=T¢] =0
Te2 Ne MNe
k=2 [ k+d+ne] SN ph
Ne=Ne] =0 j=1
Ne2 MNe2
> [Z P |+ Z Vuj (17b)
Ne=Ne1 LI2=0

Ne2 [ ne Ne Ne
o3 3 ngﬂ $55° g

ne=ne1 Li=0 i=0 j=i

Te2 ne Ne

ks=2 ) ZmeJ | (17d)

Ne=Ne1 1*0 Jj=1i
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Equations (16) and (17) are valid for the long-range optimum case. With one-step-
ahead extended horizon we have ney = nep = ne..

The control increment is to be chosen from among the solutions to eqn. (15).
From among three real roots that one is chosen for which the value of the cost function
is minimal. The real root is chosen if conjugate complex pairs exist too. It has to be
checked whether the control signal is inside the control limits, otherwise the weighting
factor of the control increments should be increased.

The tuning variables are the prediction horizon n.; — n.y, the extension of the
prediction horizon beyond the dead time (n.:), and the weighting factor -y, penalizing
large values of the control increments. The control aim is a fast aperiodic behavior.
Long-range control is generally smoother and slower than one-step-ahead extended
horizon control. The control behavior is smoother and slower with Strategy 2 than
with Strategy 1. The extension is suggested to be higher or equal to the order of the
linear(ized) part of the process otherwise inter-sampling oscillations may occur. The
smaller the weighting factor of the control increments, the higher the control effort
could be and the faster the system output is. Simulations show the effect of the tuning
parameters.

5. Simulations

Example 1. (Adaptive predictive control of the parametric Volterra model) The
system is given by the following Volterra model:

y(k) —0.9y(k —1) + 0.2y(k — 2) = 1+0.2u(k — 1) + 0.1u(k — 2) + 0.1 (k — 1)
+0.2u(k — Du(k — 2) + 0.05u>(k — 2)

The reference signal was changed stepwise in each 20 steps first to 5, then to 6,
4.5, 4, and finally to 3.5. For the first 20 steps a stochastic excitation was applied
and off-line LS (Least Squares) identification was executed. After that recursive
LS parameter estimation was used with a forgetting factor of 0.9 and the control
algorithm was executed in each sampling step. The weighting factors of the control
error and the control increments were 7, = 1 and +, = 0.001, respectively.

Figures 1 and 2 compare the long-range optimal control (with ng = 1,ne = 4)
and the one-step-ahead extended horizon control (with ne; = n. = n, = 4) for
Strategy 1 (only one change of the control signal during the control horizon). It is
seen that the long-range control has a smaller control error than the one-step-ahead
control after the initial transients of the adaptive tuning were decayed.

Figures 3 and 4 compare Strategy 1 (only one change of the control signal during
the control horizon) and Strategy 2 (equal control increments in the control horizon)
for the long-range optimal control (with n.; = 1, ne = 4). As can be seen, the
control is smoother and slower with Strategy 2 than with Strategy 1 already at the
first set point change after the adaptive tuning.

o
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Fig. 1. Reference and output signals for adaptive long-range and ex-
tended horizon control of a parametric Volterra model with
Strategy 1.

Fig. 2. Control signals for adaptive long-range and extended horizon
control of a parametric Volterra model with Strategy 1.
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Fig. 4. Control signals for adaptive long-range control of a parametric
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Example 2. (Adaptive predictive control of a simple Wiener cascade model based on
the generalized Hammerstein and the parametric Volterra model) The simple Wiener
model is shown in Fig. 5. The static characteristics of the cascade Wiener model is
again 2 4+ U + 0.5U%. The transfer function of the continuous linear dynamic part
preceding the static nonlinearity is 1/(50s2+ 15s+1). The sampling time was 5. The
extended horizon control strategy is applied for n, = 2 with Strategy 1. Adaptive
control is used. For the first 150s a stochastic excitation was applied and off-line
LS identification was executed. After that recursive LS parameter estimation was
used with a forgetting factor of 0.9 and the control algorithm was executed in each
sampling step.

-hs ¥
e Vo~ 2 5
diseiias) [ 7] ZHYi0Sv

S

Fig. 5. Simple Wiener cascade model.

Figure 6 shows the reference, the output and the control signals for the one-step-
ahead extended horizon algorithm based on the generalized Hammerstein model, while
Fig. 7 gives the results based on the parametric Volterra model. Both the algorithms
give acceptable results, but for higher jumps of the reference signal the Volterra
algorithm gives much better results. (See the plots between the discrete times 200
and 400).

R SR R

0 200 400 g00 800 1000

Fig. 6. Extended horizon adaptive control of a Wiener model based on
the generalized Hammerstein model.
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Fig. 7. Extended horizon adaptive control of a Wiener model by the
parametric Volterra model.

6. Conclusions

Sub-optimal long-range and extended horizon one-step-ahead predictive control algo-
rithms have been derived for the nonlinear parametric Volterra model (including the
generalized Hammerstein model). Using a restriction on the control increments during
the control horizou, the multi-dimensional optimization could be reduced to a one-
dimensional minimization. Two sub-optimal strategies were introduced: a constant
control signal or equal control increments during the control horizon. The sub-optimal
algorithms require fewer computations and they are suitable for real-time applications
and adaptive control. Simulations illustrate the new algorithms.
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