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ADAPTIVE PREDICTIVE CONTROLLER
USING ORTHONORMAL SERIES FUNCTIONS

Gustavo H.C. OLIVEIRA*, WAGNER C. AMARAL**
GERARD FAVIER™

A constrained adaptive predictive control method that uses uncertain process
modelling based on orthonormal series functions is considered. Such unstruc-
tured modelling is described as a weighted sum of orthonormal functions using
approximate information about the time constant of the process. The orthonor-
mal series functions model can thus be used to derive a j-step-ahead output
prediction according to the constrained adaptive predictive control law. In rela-
tion to predictive controllers based on structured models, this approach presents
the advantage of not requiring prior knowledge of the order or time delay, which
decrease prediction errors and lead to a better closed loop performance when
these parameters are not well known. Stability issues of the proposed control
scheme are discussed and, finally, a simulation example is given to show the
performance of the algorithm.

Keywords: model-based predictive control, adaptive control, uncertain pro-
cess, orthonormal series functions.

1. Introduction

Model Based Predictive Controllers (MBPC) are, by definition, based on predicted
behavior of the process. The principle of the MBPC control law consists in calculating
the control input by the minimization of a cost function over a future time horizon
under certain constraints of the process. The cost function is defined in terms of the
tracking error, i.e., the difference between the predicted output and desired set-point.
Output predictions are made by using a model of the process; hence, the closed loop
performance depends on the choice of an appropriate model for prediction. Using
this scheme, many different MBPC algorithms have been proposed in the literature
(Clarke, 1994). When model parameters are unknown or time varying, they can be
estimated by an identification method, with the estimated model used to establish
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the control law, following the standard indirect adaptive control procedure. This
procedure can easily be applied in MBPC controllers.

Adaptive MBPC based on structured models such as, for instance, the General-
ized Predictive Controller (GPC) (Clarke and Mohtadi, 1989) which uses a CARIMA
model, provides reasonable performance when the model structure is well selected,
i.e., when the model order and time delay are known. When these parameters are not
well known, however, the closed loop performance can be deteriorated or even become
unstable (Rohrs et al., 1982). In fact, this kind of MBPC is not robust to uncertainties
in the process structure. MBPC algorithms based on unstructured models, such as
the finite impulse response (FIR) model, can overcome this problem, i.e., when exact
information about these parameters is unavailable. However, due to the intrinsically
infinite dimensional characteristics of this representation, the number of parameters
to estimate on-line can become very large, even in the case of a simple process.

In the present paper, the use of an unstructured model representation based on
orthonormal series functions in the MBPC algorithm is considered. As an unstruc-
tured model, there is no need of exact specification of the order or time delay of the
process and, moreover, the degree of freedom given by the choice of the basis func-
tions can increase the rate of convergence of the series coefficients, reducing the model
parameters. The FIR model can be viewed as a special case of this kind of modelling.
The characteristics of orthonormal functions models in the context of system iden-
tification has already been analyzed by several authors (Dumont, 1998; Gunnarsson
and Wahlberg, 1991; Ninness and Gustafsson, 1995; Olivier, 1994, Wahlberg, 1991a;
1991b; Wahlberg and Makila, 1996), and some works describing its application in
both predictive control and robust predictive control algorithms can be found in (Du-
mont, 1998; Elshafei et al., 1994; Finn et al, 1993; Oliveira et al., 19964, 1996b;
1997; Zervos and Dumont, 1988). Here, a review of these works including the case of
Kautz functions, input/output signals constraints and infinite norm cost functions is
presented.

‘The paper is organized as follows. Section 2 presents a description of orthonormal
series function modelling, whereas Section 3 describes a constrained adaptive predic-
tive controller using this kind of modelling. Section 4 discusses the stability of the
closed loop system and Section 5 illustrates the performance of the algorithm with a
simulation example; finally, Section 6 presents the conclusions.

2. Orthonormal Series Function Modelling

A stable linear system can be characterized by its impulse response h(k) and, sup-
posing a causal system with h(k) in the Lebesgue space Lo[0,co[, the signal h(k)
can be modeled by an orthonormal basis function expansion, as follows:

h(k) =" cigi(k) ey
i=1

where {¢;(k)}{2, are orthonormal basis functions and ¢; represents the set of the
parameters associated with this orthonormal basis expansion.

-a
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Various orthonormal basis functions can be used to model such a stable system
and a basis constructed using the knowledge of the system poles, such as the one
presented in (Broome, 1965; Heuberger et al., 1995; Ninness and Gustafsson, 1995),
is used in this paper. The Z-transform of such a basis is as follows:

~1V1-Ipil? ﬁ (zl—m> i=1,...

$;(2) =
(=) 1—piz™! 1—pgz?

(2)
k=1
where p; represents the set of system poles and P; is the complex conjugate pole of
p;. It has been shown that, in the modelling of the process, if an orthonormal series
has an infinite number of functions, with its poles strictly inside the unit circle, the
basis (2) is complete in the Lebesgue space (Ninness and Gustafsson, 1995). This
means that any stable system can be modeled using this approach.

Moreover, there are orthonormal bases which use functions constructed with a
single pole for the development of a series of h(k), i.e., the Laguerre and Kautz
functions (Lindskog, 1996; Wahlberg and Makila, 1996). These are special cases of
the base presented in (2), as will be discussed below.

When p; = p, V4, with p € R, is set, the expression (2) is reduced to the
Laguerre function:

271zt - p)i~t
(1—pz71)t 7

2

(I)lagu,i(z) =+1-p° i=1,... (3)

Also, when p =0, ®; is given by:
B, i(2) =274 i=1,... (4)
This special type of orthonormal functions results in an impulse response model,
so this model is a particular case of the orthonormal series functions model. The Kautz

functions constitute an orthonormal basis defined by the use of a pair of complex poles
(p,p*) (Ninness and Gustafsson, 1994; Wahlberg, 1991b) and are given by

272 /(1 —a?)(1 —~2) y—aly+ 1)1+ 22 (i—1)/2
l—a(y+ 1Dzt +y272 \I-a(y+1)z7! + 7277

for ¢ odd
(I)kautz,i(zm;L) = (5)
/-y —az™h) (y—aly+ Dzt + 272 i/2
l—aly+Dz +9272 \1—-a(y+1)z! + vz72
. for i even

and i = 1,..., where |a] < 1 and |y] < 1 are defined such as p and p* are the
roots of z2 — a(y+1)z++. Due to these characteristics, the Kautz functions should
be used to model systems with resonant dynamics.

In the modelling of an actual process, only a finite number of functions ¢; can
be used to approximate A (k). Hence the series (1) has to be truncated to n terms
and is given by

h(k) = Z c;i¢i(k) (6)
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where h(k) is an n-th order approximation of h(k) and e is the truncation error,
computed e = Y77 |h(k) — h(k)|.

In this way, the input and output signals of a stable process are related by means
of the following orthonormal series of functions:

y(k) = Zciwq)u(k) = Zcizi(k) (7)

where ¢ is the shift operator and I;(k) is the output of the i-th function ®;(g). This
can be expressed more compactly as follows:

y(k) = cTi(k) : (8)
The vector ¢ = [¢1 -+ ¢,]T gives the series coefficients and the vector (k) =
[li(k) -+ 1.(k)]T is the basis functions state vector.

The Laguerre and Kautz functions, which are typical orthonormal functions de-
rived from (2), are also recursive functions, i.e., the i-th function can be written using
the (i—1)-th one. Thus, it is possible to describe the basis-function state vector 1 (k)
using the following equations:

Wk +1) = Al(k) + bu(k)

(9)

y(k) = cTi(k)
Here the matrix A and vector b depend on the pole p and on the number n of
functions used in the series expansion. In the case of Laguerre functions, they are
given by

[ P 0 0 0]
1—-p° P 0 0
L (=p)" (1 -p") (—p)"3(1-p?) p

b=VI=F [1 p (-9 - (] (1)

This orthonormal series approach is able to model a stable process with an im-
pulse response in the Lebesgue space. However, processes with integral action can
also be modeled as follows:

Wk+1) = Al(k) + bu(k)
(12)
Ay(k) = cTi(k)

where A =1 — g1,
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In this way, the model is constructed by selecting the pole p (a real pole or a pair
of complex ones) and the number n of functions. The ¢; coefficients characterize
the process dynamics. Due to the property of completeness, a linear stable process
can be modeled by using any selection of p. Although this selection is not crucial, it
is important for ensuring that the coefficients of higher order functions in the series
moves quickly towards zero. This means that some of the higher order functions
can be eliminated, thus reducing the number of model parameters. In this way, p
is usually selected by using a-priori knowledge of the dominant dynamics of the
process (Ninness and Gustafsson, 1995). Various algorithms for determining the best
selection of p have been proposed in the literature, e.g., (Fu and Dumont, 1993),
which proposes an algorithm for finding the best p to minimize the number of series
functions n and (Masnadi-Shirazi and Ahmed, 1991), which proposes an algorithm
for finding the best p to minimize the series truncation error e. These algorithms
use process impulse response coefficients to compute the optimal value for p.

The ideal number of functions in a series is such that it makes the truncation
error tend to zero. In practice, however, the selection of n depends on the process
complexity, which means that the more complex the process is, the more functions
will be necessary for process modelling. In the case of undamped systems, the use of
Kautz functions based models results in a model with a smaller number of parameters
than the equivalent Laguerre functions based model. However, generally the selection
of 10 functions is sufficient to make the truncation error approximately equal to zero.
The computation of the matrix ¢ is discussed below.

The coefficients ¢;, 1 = 1,...,n, can be computed by using the process impulse
response h(k), as follows:

co

¢ = 3 h(R)®:(9)5(k) (13)

k=0

where (k) is the unit impulse function. For a model with integral action (12), the
coefficients of matrix ¢ are computed by filtering the process impulse signal with the
use of A.

However, when the impulse response of the process is not available or it is time
varying, an indirect adaptive control scheme can be used. If the model (8) is expressed
as an ordinary linear regression, then the classical RLS algorithm (Ljung, 1987) or
some of its variations (Latawiec, 1998; Shook et al, 1991; Yoon and Clarke, 1994),
can be used to estimate on-line the matrix ¢ parameters.

The identification properties of orthonormal series functions modelling have been
studied by various authors (Dumont, 1998; Gunnarsson and Wahlberg, 1991; Lindskog
and Wahlberg, 1993; Ninness and Gustafsson, 1995; Olivier, 1994; Oliveira et al.,
1998; Van den Hof et al., 1995; Wahlberg and Makila, 1996; Zervos and Dumont,
1988) who delineate some nice characteristics, such as the fact that there is no need
for knowledge about the order or time delay of the process to use the identification
algorithm. This represents an advantage over structured model based MBPC when
exact information about these parameters in unavailable. Other properties of this
OSF modelling are summarized as follows.
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If the number n of parameters in the model is changed, the coeficients of low
order in the orthonormal series remain almost constant (Zervos and Dumont, 1988), so
it is easy to adjust the number of parameter on-line during the identification phase, in
contrast to CARIMA models, where a change in the model order leads to the change
in almost all model parameters.

By the use of approximate a-priori knowledge of the dominant time constant
of the process in the selection of p, the OSF modelling is able to represent a model
with fewer parameters ¢; than impulse response modelling, leading to better quality
of estimation, i.e., a smaller estimator variance. The OSF model also reduces the
mean square error (NlSE) of the estimation, in relation to impulse response modelling
(Gunnarsson and Wahlberg, 1991).

To apply the OSF model in the development of predictive controllers, it is neces-
sary to compute the j-step ahead output predictions using the model (9), as follows:

G(k+j/k) —y(k J—-l/k)+cTAl(k+J) (14)

By successively substituting Al(k + 7), §(k+j — 1/k) and assuming Au(k +
j/k) =0 VY j> N, with N, being the control horizon, which is standard in MBPC
strategy, we have

Ny
Glk+3/k) = y(k) +eT (K, ——I)_\Z(AH "y K nbAu(k+m—1/k)  (15)

m==1

where K; = Y)_) A’ with A" =0 for i < 0 and K; = 0 for j <0, I(k) =0 for
k <0. I isthe n-th order identity matrix and Au(k + j — 1/k) is the incremental
control signal &k + j — 1, computed at k.

For processes with integral action, the output predictions are given by model (12).
Hence

Glk+j/k) =g(k+j —1/k) + eTl(k + j) (16)
By successively substituting Al(k+j) and §(k + j — 1/k), the following equation
is obtained:
gk +3/k) = y(k) + T (K; — DI(k) + 7K, _ybu(k — 1)
Ny . ‘
+e" Y KjombAu(k +m —1/k) (17)
m==1
where IC; = 327 K, with K; =0 for j < 0.
The set of output predictions for j = Ny, ..., N, can be expressed as

§=GAu+4, " (18)

where § = [g(k + N1 /k) --- J(k + Ny /B) T Au = [Au(k/k) - Au(k+ N, —
VE)T; 4 =[Gk + Ny JE) - i(k+Ny/k)]T. Here fii(-) is the part of the output
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predictions (15) and (17) that depends only on the process past behavior. The matrix
G is given by

gNy -+ gN1—Nu+1
G=| : s (19)
gNy, -+ 9GN,—-N,+1

where g; is equal to ¢ K;_1b in the case of eqn. (15), or equal to ¢7/C; b in the
case of eqn. (17) (processes with integral action).

3. Constrained Adaptive Predictive Controller

An adaptive predictive controller is described by using a model (the parameters of
which are obtained through an identification algorithm) to compute the predicted
process output. Also, a cost function related to the closed loop performance of the
system is defined, and a control signal is obtained by the minimization of the cost
function. Finally, the first of these signals is applied in the process (a receding horizon
strategy).

The predicted output j-step ahead §(k + j/k) is calculated as described above

and used to derive the control law, resulting in an Adaptive Predictive Control based
on the OSF modelling (PC-OSF).

The cost function of the Adaptive PC-OSF is defined by using the output pre-
diction error, relative to the system set-point, and the weighted control signal, which
can lead to a quadratic cost function as follows:

Ny ALY 2
Ty = 3 (a0 3/8) —wlk+ D)+ A(Aulk+i-1/K)  (20)
j=N1 Jj=1

where N; and N, are the prediction horizons, NV, is the control horizon, w() is the
set-point and ) is a weighting factor; or can lead to an infinite norm cost function,
as follows: “

Joo(Au) = max gk +j/k) —w(k+3)|, j=NL...,NY (21)

Taking the classical apbroach for the minimization of the cost function (as in the
case of GPC and DMC controllers), the Adaptive PC-OSF control law is obtained as

Awu = arg min J(Au)

subject to
Auk +§/K) =0 iz N,
Umin < u(k +Jj — 1/k) < Umax Vi=1,...,N,
Aumin < Aulk+7 —1/k) < Aumax VJj=1,...,Ny
Yumin < Gk +5/k) < Umax V=N, N,

(22)
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where J(-) is the cost function and Aw is the optimal value of the control signal,
computed at k. The signal u(k), applied in the process, is obtained from the optimal
Au vector as u(k)=u(k — 1) + Au(k/k).

When the quadratic cost function is used, the optimization problem (22) can be
rewritten as follows:

min AuTQAu + fTAu

subject to
AAu<w (23)
where
Q=GTG+ I (24)
f=2G" (9, - w) (25)

with w = [w(k+ N1) --- w(k+Ny)]7. A and v are built using the information
about the process constraints.

The infinite norm does not attempt to minimize errors at all future time horizons
as in the case presented above, but only at the instant where the error is maximum.
So, using the infinite norm cost function, the control law (22) can be rewritten as
follows:

s, »
subject to
—p<gk+j/k)-wk+j)<p  Vji=DN,...,N,
Umin < ulk +j — 1/k) < tmax Vi=1,...,Ny (26)
Atupin KAulbk+7—1/k) < Atumax Yi=1,..., Ny
yminsg(k+j/k)§ymax vj:Nl:-”zNy
or:
Rup #
subject to
GAu —p < -9, +w
—GAu-p <Gy —w (27)

AAu<w

where g =[p - p]7 € RNy =M+1),
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Thus, for the optimization problem based on the quadratic norm, the solution is
delivered using a QP (Quadratic Programmang) algorithm (Bazaraa and Shetty, 1979)
or analytically in the unconstrained case. It must be remarked that the numerical
solution used to solve the control law is not of the main interest in this paper. Thus,
the control law was written as a QP problem in such a way that several methods can
be used to solve it. There are examples of the method that reduces the Kuhn-Tucker
conditions of the QP to a linear complementary problem: the dual programming and
the gradient projection method of Rosen (Bazaraa and Shetty, 1979). Moreover, the
work (Soeterboek, 1990) discusses an application of the latter in the context of MBPC
algorithms. Rewriting the control law as a constrained least-squares problem (Golub
and Van Loan, 1985) may result in a more robust solution to finding the optimal
control law, which merits future research, especially if a particular structure of the
matrices involved in the control law is explored. ’

For the infinite norm problem, a solution is obtained using an LP (Linear Pro-
gramming) algorithm (Luenberger, 1984).

4. Stability Results

In this section, the stability of the closed loop system for the unconstrained PC-
OSF with quadratic cost function and control horizon N, equal to 1 is investigated.
Assuming the unconstrained case, the solution to the minimization problem (23) in
relation to Awu is

Mu= -2 Q7f (28)

When N, is equal to 1, G is the column vector, which is represented by g, and
Aw is the scalar Au(k/k). In this way, the control signal Au(k/k) is given by

—~1 R

Au(k/k) = (g7g+X) " g7 (w— @) (29)
From eqn. (15), it follows that the vector ¢; can be written as

91 = Ym + [T (K~ D] _p, y, AUE) (30)

where y,, = [ym(k) -+ ym(k) |7, and y,, (k) is the measured output at the instant k;

CT(KNl “I)
CT(KNl-‘r-l - I)
[CT(KJ' - I)]j:Nl,...,Ny = (31)
CT(KNy - I)

Substitution of (30) in (29) gives

(7g + ) Au(k/k) = g7 (w -y, — [ (K; = D] _y, n AUR)) (32)
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or
(979 + ) Aulk/k) = g7 (w—y, = [eT(AT = D] _,  1(k) ~ gu(k - 1)) (33)
Hence u(k) is given by
u(k) = (g7 (w =y = [T = D]y 10)) + dulk— 1) (34)
where
a=(gTg+N)"" (35)
This equation can be rewritten as follows:

u(k) = a (—gT [cT A7)

J=N1,.., Ny
Ny
+agiw+a Y gi(cTU(k) - ym(k)) (36)
=N,

and the closed-loop system is given by

( (k) = Al(k—1) + bu(k — 1)
u(k) = —ag” [cTA] k1)
' (37)
-« ()\ -g7 [CTAJ]ijl,..A,Ny b)
Ny
X u(k — 1) + Oth’UJ + Z gi (CTl(k> - ym(k))
\ i:Nl

In the case of a plant-model match, the measured output signal ¥y, is given by
ym(k) = cTU(k) + &(k) (38)

where £(k) is a measurement noise.
Thus, the closed loop equations (37) are given by

i 1 Ik - 1) o[+ &
[u(k/k) _[Mm{u(k 1>%LM”+ZMM) 0

- i=N1

where

b
} (40)

and

s
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Since the process model is open-loop stable, the matrix @ has its eigenvalues
inside the unit circle. In (Elshafei et al., 1994), it is shown that the stability of
a closed-loop system having the same structure of system (39) can be assured by
selecting a sufficiently small term aI'. This result is given by the following theorem:

Theorem 1. (Elshafei et al., 1994) Let us consider the system

z2(k+1) = ®z(k) (42)
where
IP>0 VQ>0 (43)
such that
3TP®-P=-Q : (44)

The system given by
z(k+1)= (2 +9)z(k) (45)

1s stable if

_ 9 )\min(Q)
0 < [I8l < =@l +4/liell N2 (46)

From eqn. (35) it follows that by increasing the value of N, and/or A, it is
possible to decrease the value of the scalar ¢, in such a way that Theorem 1 is satis-
fied. Thus the stability of the closed loop system can be guaranteed by an adequate
selection of controller parameters N, and A.

5. Simulation Example

In this section, a simulation example is presented to illustrate the behavior of the
proposed Adaptive PC-OSF in a time-varying process. Its performance is compared
to a predictive algorithm based on a structured model, the Adaptive GPC. The con-
straints are not taken into account in this example to highlight the performance of
the control schemes.

The process is defined by the following transfer function:
y(s) = G(s)e™*u(s) (47)

where

1 1 —-2s+1 1
G(s)= —— +k - 4
&) =oss1 " {1o$+1 25+ 1 10s+1} (48)
The process dynamics change as follows: for ¢ < 60, d = 0 and k£ = 0; for
60 <t <120, d =2 and k= 0; and for ¢ > 120, d = 2 and k = 1. The sampling
time is 1s.
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Set-point and output signals

0 20 40 60 80 100 120 140 160

Control signals

T T T T T T L T T

! i L ! .
0 20 40 60 80 100 120 140 160
Time in seconds

Fig. 1. Closed-loop performance for a time-varying process
(dashed line: GPC, solid line: PC-OSF).

The orthonormal series model is defined as follows. The pole p is set at 0.6
(p = 0.6) to approximate the dynamics of the process and the number of functions is
set at 10 (n = 10). The matrix A and the vector b are computed by using these two

parameters and the matrix ¢ is initiated with ¢; =1 and ¢; =0 for i =2,...,10.
The GPC controller of CARIMA model is given by
Al Hy(k) = Blg ulk — 1) + T(qg")é(k)/A (49)

and is set by selecting the orders 2 and 3 for the polynomials A(¢™!) and B(q™?),
respectively, to allow for the identification of all the process dynamics; the polynomials
A(g™') and B(¢™') are initiated as A(g™') = 1 and B(g™!) = 1. T(g™!) is set
at 1.

The OSF and CARIMA model parameters are identified by using a recursive
least-squares estimator, with a forgetting factor of 0.97 and an initial covariance
matrix of 100I. At each process change, i.e., at ¢ = 60 and ¢t = 120 seconds,
a covariance matrix reset strategy is applied in the estimator algorithm, and the
covariance matrix becomes 5I. The tuning parameters are Ny = 1, N, = 10, N, = 1
and A =0, and the approach used for the control law is that shown in eqn. (22).

Figure 1 shows the input/output signals for the Adaptive GPC and Adaptive
PC-OSF for this time-varying process. From these closed-loop performances, it can

o
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Set-point and output signals

- ; ; ; i
0 50 100 150 200

Control signals

time in seconds

Fig. 2. Closed-loop performance for different values of the control weighting factor
(solid line: A = 0, dashed line: A = 0.5, dotted line: A =1).

be seen that during the identification phase, the Adaptive PC-OSF provided more
accurate set-point tracking than did the Adaptive GPC controller, although both the
adaptive schemes resulted in a similar performance during the steady-state phase.
An accurate selection of the order and time delay of the model is necessary to main-
tain closed-loop system stability for the GPC controller, whereas, for the CP-OSF
controller, approximate knowledge of the process dynamics is sufficient. Thus, in
the present example, orthonormal series function modelling requires less information
about the process than would CARIMA modelling, and it results in a predictive
controller with a more accurate closed-loop performance.

The influence of the control weighting factor on the closed-loop performance is
shown in Fig. 2. It follows that an increase in the weighting factor A tends to decrease
the amplitude of the control signal, leading to a slower closed-loop behavior.

In the simulation presented in Fig. 1, the covariance matrix reset has been made
just after the process changes, since the main objective was not to compare identi-
fication methods but the modelling strategies in the context of adaptive controllers.
Thus, Fig. 3 illustrates the system behavior, in comparison with the case presented in
Fig. 1, when: (a) the reset is made 20 s after the process changes; (b) there is no reset
in the covariance matrix; and finally, (c) without covariance matrix reset and with
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Set-point and output signals

0 50 100 150 200
time in seconds

Fig. 3. Analysis of the covariance matrix reset (solid line: (a)
dashed line: (b), dashdot line: (c), dotted line: (d)).

)

the forgetting factor equal to 1. It can be noticed that the performance slightly dete-
riorated in the cases where the covariance matrix was not made just after the process
changes. However, cases (a) and (b) present a quite similar behavior. Moreover, the
behavior of the system with an increase, in relation to situation (b), in the forgetting
factor value, i.e. case (c), represents the worst performance of the RLS algorithm.

Now, the use of an infinite norm in the cost function instead of the quadratic cost
function is illustrated. In Fig. 4, a comparison between infinite and quadratic cost
functions is presented, with the use of process (47) when d = 2, k = 0 and assuming
the plant-model match case. The infinite norm does not attempt to minimize the
errors at all future time horizons, but only at the instant where the error is maximum
and, in this example. this characteristic results in a predictive controller with a slightly
faster time response to set-point changes when compared with the one based on a
quadratic cost function.

6. Conclusion

An approach to a constrained adaptive predictive controller, based on an unstructured
representation of a process using orthonormal series functions, has been presented.
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Set-point and output signals

0 50 100 150 200
time in seconds

Fig. 4. Comparison between infinite and quadratic cost functions
(dashed line—infinite norm cost function, solid line—quadratic
cost function).

Two types of norms to derive the cost function were taken into account: the 2-norm
(quadratic cost function) and infinite-norm. In such a predictive controller, some
approximative information about the open-loop dynamics of the process are assumed
for the on-line parameter estimation. The control law can be derived for the process
both with and without integral action.

When compared with other adaptive predictive control strategies, the algorithm
described here has some advantages. First, fewer unknown parameters are involved
in the identification than in an impulse response model, which improves the quality
of estimation. Second, there is no need for exact specification of the order and time
delay in the model, which constitutes an advantage in relation to predictive controllers
with structured models when exact information about these parameters is unavailable.
Moreover, the closed-loop system is stable by an appropriate selection of the prediction
horizon and/or the control signal weighting.
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