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ADAPTIVE PREDICTIVE CONTROL
OF A DISTILLATION COLUMN

TAE-WooNG YOON*, DAE Ryook YANG**
KwANG SooN LEE™, Young-MiN KWON*

Distillation processes reveal complicated multivariable nonlinear dynamics for
which it is difficult to design a high-performance control system. This paper
proposes an adaptive control scheme for a distillation column. The proposed
adaptive system consists of a multivariable receding-horizon predictive controller
using a transfer function model and a recursive least-squares (RLS) based es-
timator. Simulations show a consistent closed-loop performance despite the
uncertain nonlinear characteristics of the distillation column.

Keywords: adaptive control, multivariable predictive controller, distillation
column.

1. Introduction

Distillation is the most important separation process in chemical and petroleum in-
dustry, and is also very energy-intensive (Yang and Lee, 1997). Designing a high-
performance control system for a distillation column is therefore important for im-
proved product quality and energy saving. However, distillation processes feature
quite complicated multivariable nonlinear dynamics, for which it is difficult to find
simplified models that can be used for controller design. In this paper, we present an
adaptive control strategy for a distillation column using a transfer-function model.

It is widely recognized that Generalized Predictive Control (GPC) is one of the
most effective control algorithms for adaptive systems. However, the problem with
GPC is that there is no clear theory guaranteeing closed-loop stability in terms of
GPC tuning knobs. For this problem, solutions were later presented independently by
Clarke and Scattolini (1991), Mosca and Zhang (1992) and Kouvaritakis et al. (1992).
In their methods, an appropriate number of terminal equality constraints are imposed
on the output of a plant such that the receding-horizon cost is monotonically non-
increasing, thereby guaranteeing closed-loop stability. These schemes can be regarded
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as input/output realizations of the state space controller of Kwon and Pearson (1978),
where the state variables are constrained to zero at the end of the costing horizon.
The effectiveness of such a scheme for adaptive control is demonstrated in Yoon and
Clarke (1994). Recently, a multivariable extension of the stable predictive scheme of
Clarke and Scattoloni (1991) is proposed (Yoon and Chow, 1995; Yoon and Kwon,
1998). This type of predictive control method is employed here for adaptive control
of a distillation column.

2. Distillation Dynamics

Consider a binary distillation column with multiple trays, a total condenser and a
reboiler, which is depicted in Fig. 1.

Vr’ y1
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Fig. 1. Binary distillation column.



Adaptive predictive control of a distillation column 195

For simplicity, the following assumptions are made:
e Molar overflow is constant;
e Liquid holdup in each tray is constant;
e Vapor holdup is negligible;
e Vapor leaves a tray at equilibrium with liquid;
e The holdups in the accumulators are constant.

Let the total number of trays be Ny and each tray be numbered from the top
(condenser). We then derive a model, which consists of the following equations:

e Total condenser

dz
e = Vel —@1) = Vopy — (Lr + D)y
¢ Rectifying section

dz,
H, dtj = Ve(Yrj = Yrj—1) + Lr(Trj—1 — zrj) + (1 — ) Fjar

where F; = F' if j = Np — 1, otherwise F; = 0.

e Stripping section

dag;
Hsd—tJ = VS(ysj - ysj—l) +Ls(zsj—l - xsy‘) +qFj$F
where F; = F if j = Np, otherwise F; = 0.
e Reboiler
dz Ny
Hb dt = LSxNT—l - Vs?/NT—l - BJ;NT

Other relations

Ly = L, +qF
Ve = Vs+(1-q)F
yi = Kjzjn

The symbols introduced in the above equations are explained in Table 1, and sub-
scripts ¢, r, s and b denote the condenser, rectifying, stripping and reboiler sections,
respectively. The subscript ¢ denotes the i-th tray. The control objective for this
distillation column is to regulate the overhead and bottom compositions z; and z Np
using the reflux and steam flow rates L, and V.
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Table 1. Symbols used to describe the distillation column.

z,y | Liquid and vapor compositions
D, B | Overhead and bottom products
L,V | Liquid and vapor flow rates

F, zp | Feed and feed composition

q Feed quality
H Liquid hold up
K Vapor-liquid equilibrium constant

3. Predictive Control

In this section, we employ the multivariable predictive control algorithm proposed by
Yoon and Chow (1995). The stability properties are obtained in (Yoon and Kwon,
1999).

3.1. Model and Prediction

Consider a MIMO process described by the following CARIMA model:

» o T(g™")

Alg™)y(®) = Bla™ult - 1) + — —€(1) &
where u(t) and y(4) are the input and output vectors, £(t) is a vector of uncorrelated
random noise sequences, A(¢™!), B(qg™!) and T are polynomial matrices, and A is
the difference operator (i.e. 1—¢~1). It is assumed without loss of generality that A
and T are diagonal. It is also supposed for simplicity here that the vectors y, u and
£ have the same dimension n (i.e. y, u, &€ € R*). For the purpose of formulation,
we write the relation between the i-th output and the inputs as

- - Ti(g*

Aiail0) = Bula (e - 1) + 2 g 2
where A; and T; are the i-th diagonal elements of A and T', B; is the i-th row of
B, and ¢; is the i-th element of €. The optimal prediction §;(t+ k) for y;(¢ + &)
is then obtained by

Gt +k) = GFAu(t + k= 1)+ fi(t + k)

i k (3)
filt+ k)= Z;j yi(t) + I;{Z Au(t —1)

where the polynomials FF, Gf and H f satisfy the Diophantine identities

EfB; = GT,+q "H}
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Note that G¥ is a polynomial (row) vector of order k — 1 whose coefficients are
equivalent to the first k step responses of the system B® /Al ie.

Zgl ——H—l Zgl —1+1 (5)

On the basis of the predictions given in eqn. (3), the MIMO receding-horizon control
law is derived below.

3.2. Control Law

As is standard, we consider the quadratic cost function of the form

i=1
where
Ny—1
Jo= Y w®)[wit+ k) - §it + k)]’

k=N
N,—1

+Z piNy) w1t+N) Gt + 8]+ D pilk) Aw(t+ k) (7)
k=0

This is a MIMO extension of the performance index considered in (Yoon and Clarke,
1995a): w;(k) and p;(k) are positive weighting sequences for the i-th tracking errors
and control increments, Ny and N»; are the lower and upper prediction horizons,
N, is the control horizon, and v is a non-negative number ( < 1) introduced to place
heavier weighting on the errors further ahead than N,. Note that if v = 0, then we
have the following equality constraints:

wi(t+ Ny) =Gt + Ny + k) for ke[0,m;—1] (8)

where m; is the number of constraints, i.e. m; = Na; — Ny + 1. It is also assumed
that the control w(t) does not move after the interval N, (ie. Au(t+k) =0 if
k > N,), and that the first term of the cost (7) is ignored when N; equals N,. The
weighting sequences u;(k) and p;(k) are normally set to be time-invariant. However,
time-varying weighting can be specified to enhance the performance: as in (Yoon and
Clarke, 1993), it is suggested that

pi(k) = o™, pi(k) = o *p; (9)

with g; > 0. This exponential weighting places the closed-loop poles within a circle of
radius « (if the control law is stabilizing). The cost function (7) is general in that it
can lead to a wide range of existing predictive control methods including GPC (y = 1).
The use of a nonzero number (< 1) for 7 is expected to have effects similar to those
observed in receding-horizon control with finite end-point weighting as discussed by
Kwon and Byun (1989) and Demircioglu and Clarke (1993).
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In order to rewrite the cost (7) in a simple vector form, we define

AU = Au(t+1)T

w; =

wi(t + Ny) w;(t + Ny)

fi= [Ht+DNy) filt+ DNy +1) -

Using these vectors, we re-express eqn. (7) as

Bilt + Ny) Gilt+ Ny +1) -

—2Ny

- Aut+ N, - 17T

wit+ N, - 1)]"

Git + Ny — 1)]7

ft+ N, —1)]7
wi(t+N,)]”

gt + quz)]T

filt + Nog)] "

[5; — i) [9; ~ ﬁ’i])

a—-z(Ny—l)]

n
(8%

J=> ([yi —w]"Qy; — wi] +

=1

+AUTA AU,

with

Q = diag[a M1, o 24D
A = diag [A,, a7 ?A,, ..., a X NTDA)
A, = dlag [ﬁla P2y ey ﬁn]

This cost function is subject to the predictions:
Yy, =GAU+ f;, 5, =GAU+ ¥,

where the matrices G; and G are given by:

N1 Nyj—-1
gl gi 1 e 0
Ni+1 N
g; 1 gi 1 .. 0
G; = )
N. -1 N,—2 — Ny
g;" g;" g;"’
\ N, -1 Ny—N,+1
93\]" 9;" 9,
b1 N, Ny—N,+2
= ) gz g
G; = _ ’

(10)

(11)

(14)
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Minimizing the cost (11) results in the optimal AU:

~1
~ n - . a—QNy_,“T,_‘
AU = (A-l- E [GiQGl-f- 5 G; Gl]>

=1
n —2Ny _ _
x (2 (GTQw: - £ + “——G (i - f»]) (15)
5=1

The control law (15) may, however, produce numerical difficulties as v approaches
zero, and it is obvious that - cannot be made zero. To deal with such a situation,

we introduce

a2y

p= T [GiAU - (@ - 1] (16)

Y
From (15) and (16), it follows that AU can also be found by forming the augmented

linear equation:

A+YGTQa:  Gf S Gt AU
i=1
= p
Gy —ya?V I, 0 !
én 0 . _,ya2NyImn_ pn

\_ mﬂ. - }.n
where I,,, is the identity matrix of dimension m;. This description of the control

law now allows v to be zero, and thus is numerically superior to eqn. (15) for v < 1.
In order to simplify further eqn. (17), we define

G=[GrGl - cT)", @&=[GlaG; - &'
p=[p? pl - ], w = [wl w] - wl]"
w=[w] o} - wl]",  f=[fF - £
F=0f 72 - F2)Y, M=dx[QQ, -, Q) (18)
Then the control law is rewritten as -
A+GTMG el AU

[

G —ya?Ne T P
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which is in exactly the same form as in (Yoon and Clarke, 1995a). When « = 0, the
vector p (p;) turns out to be the Lagrange multiplier for the optimization problem
subject to GAU = — f (G;AU = w; — f;).

Having computed AU using eqn. (17) or (19), only Au(t) (the first n elements
of AU) is actually applied at time t, and the whole procedure is repeated at the
next sample instant: hence the name ‘receding-horizon.” The resulting control law is
simple to implement, and is independent of the input-output ordering in the system
description. Also, this predictive scheme has stability guarantees as follows:

Theorem 1. For the MIMO process described by (1) or (2) and the receding-horizon
predictive control law (17) or (19), the closed-loop is guaranteed to be stable if

¥y=0 a <1

m; = deg(4;)+1
N, > deg (ICHI(A]_,Az, e ,A.,I)) +1
Ny = Ny + max (deg(B;;) — deg(Ay)) (20)

1<4,j<n

where m; is the number of equality constraints (i.e. Ny; — Ny +1), By; is the j-th
element of By, and lem denotes the least common multiple.

Qutline of proof. As in the proof of the corresponding theorem for SISO systems given
in (Yoon and Clarke, 1995a), it can be shown using N,, > deg(lem(Ay, As, ..., 4Ap)) +
1 that there exist control inputs such that the outputs settle in a finite time. It then
follows from N, = N,,+max; <ij<n(deg(B;;) —deg(A;)) that each set of m; terminal
equality constraints can be satisfied and the resulting receding-horizon cost can be
shown to be monotonically non-increasing. This completes the proof. |

Remark 1. For a detailed proof, see (Yoon and Kwon, 1999).

Remark 2. When N; is set to IV, the control law is shown to be independent of the
weighting parameter p;. Therefore, if we require the others to satisfy the conditions
in (20), then only two parameters remain to be determined: N, and «. This is
very useful as N, and a can easily be chosen by considering the rise-time of the
process and the desired settling time of the closed-loop, respectively. We also take
this approach here.

3.3. Estimation Law

Having stated the control law, the adaptive control design can be completed by de-
scribing the estimator. To this end, we employ the following set of estimators:

Yy Pi(t - 1)¢;(t — 1) .
6.(t) = 6;(t 1)+ 1+¢i(t_l)TPi(t_l)qbi(t—l)ez(t)
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Pi(t—1)¢,(t — D)o (t — DTP;i(t-1)
1+ ¢, (t — )T Pt —1)g;(t — 1)

Pi(t) = Pi(t—1) -

P;(t) = (1 — i\\—?) Pi(t) +XI, P;(0)=MI (21)

where i € [1,n]. The vector 0, contains the estimates of the parameters of the
polynomials 1 — A;(¢™!) and Bi(g™') in (2), the regressor vector ¢, consists of
filtered input and outputs (u’, y{ ), P is the covariance matrix, and e;(t) is the
estimation error given by

ei(t) =y (t) = ¢t — DT Oi(t — ). (22)

Note also that T}’s in (2) are not estimated since they are considered important design
polynomials used to enhance robustness, rather than representing noise characteritics.
Regarding the robustness effects of the so-called T polynomial for SISO predictive
control, see (Yoon and Clarke, 1995b). '

The covariance modification in (21) is employed to impose lower and upper
bounds (Mo, M) on the eigenvalues of the covariance matrix P. It is necessary
to keep the estimator alert (Ao > 0) due to the nonlinear and time-varying nature of
distillation dynamics.

4. Adaptive Control of the Distillation Column

The overall adaptive control algorithm is applied to a binary distillation column with
15 trays. The detailed parameters of the column used in simulations are given in the
Appendix.

4.1. Design Procedure

The design procedure involves selecting the sampling time, specifying the model struc-
ture, and setting up the control and estimation parameters.

The open-loop system is seen to have a rise-time of around 1 hour, and the desired
rise-time is 20 minutes. We thus set the sampling time to 2min (= 20/10).

Having selected the sampling time, we now specify the plant model (2). By
observing the responses obtained through some open-loop simulations, it is assumed
that

Ailg™) = 1—aiqg "
Bij(g™) = bijn + bij2q ' + bijaq >+ bijaq”? (23)

We then perform initial estimation by applying PRBS inputs to the process. As shown
in Fig. 2, the estimated outputs (dotted lines) tend to the actual outputs (solid lines)
as the number of observations increases.
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Fig. 2. PRBS test for initial estimation.

Table 2. Design objective and parameters.

Objective a rise-time of 20 min

Sampling time | 2 min

Ao, A1 0.1, 100

Ny, a 20, 0.8
Estimator filter | 0.1/(1—0.9¢71)

After the model structure and initial parameters have been decided, we select
the adaptive control parameters as summarized in Table 2.

The choice o = 0.8 is reasonable as the desired rise time is 10 samples and
1—0.81% ~ 0.89. Note also that the estimator filter is set to 1/(1 —0.9¢™') as it is
observed that the open-loop poles (a1, as) lie in the interval (0.9,1).

4.2. Simulations

Three simulation results are reported here. Firstly, a set-point following performance
is investigated. As illustrated in Fig. 3, consistent transient behavior is observed, and
the objective of achieving a rise-time of 20min is seen to be reached (dotted lines:
set-points, solid lines: outputs). Also the interaction between the two channels seems
to be handled quite well.
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Fig. 3. Responses to varying set-points.

Secondly, we look at the regulation performance in the presence of a feed change.
Ag shown in Fig. 4, the effect of feed change is rapidly eliminated by the adaptive
controller. However, it can be argued that this satisfactory performance may be due
to successful implementation of linear predictive control, rather than to adaptation.
We thus consider the case where the feed quality ¢ is varying, in order to demonstrate
the enhanced performance resulting from the use of adaptation. The corresponding
simulation results are shown in Fig. 5, where it is clear that adaptation leads to an
improved performance (cf. Figs. 2 and 3 with Figs. 4 and 5) in the presence of the
feed quality change.

5. Conclusion

We have presented an adaptive control scheme for a binary distillation column. The
proposed scheme is based on a recently developed multivariable receding-horizon pre-
dictive control method and an RLS algorithm with covariance regularization. An
important feature of the overall adaptive controller is the ease of tuning; only two
parameters need setting for control. Furthermore, these have close relationships with
time-domain terms such as the rise-time. As discussed in Section 4.1, N, and « are
determined simply by considering the open-loop and desired closed-loop rise times.
Despite its simplicity, the resulting adaptive control strategy is seen to result in a sat-
isfactory performance through simulations. It is also demonstrated that adaptation
leads to an enhanced performance in the presence of a feed quality change.



204

T.-W. Yoon, D.R. Yang, K.S. Lee and Y.-M. Kwon

% 0.93F . /hﬁ\ .
) ~ \Va
0‘92 3 1 1 i i)

1 1
0 200 400 600 800 1000 1200 1400

£ 0072 . . _
% 0071 A\
1 1 1 1 1 1 J
200 400 600 800 1000 1200 1400

1 L J
0 200 400 600 800 1000 1200 1400

H 4 J
200 400 600 800 1000 1200 1400
Time (min)

Fig. 4. Responses to a feed change.
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Appendix

Steady-State Conditions for the Distillation Column

K

[1.1242 1.2118 1.3185 1.3990 1.4854 1.5588 1.5588
1.5599 1.5661 1.5788 1.6305 1.8240 2.5984 4.7013]

zp = 0.3, g = 1.001
F = 216, D =108, B =108[mole/hr]
H, =15 H.=25 H;=35H,=24[mole]

Nr = 15 (total number of trays), Np =7 (feed stage)
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