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EVOLUTIONARY MULTI-OBJECTIVE PARETO
OPTIMISATION OF DIAGNOSTIC STATE OBSERVERS

Zpzistaw KOWALCZUK*, Piorr SUCHOMSKI*
Tomasz BIALASZEWSKI*

A multi-objective Pareto-optimisation procedure for the design of residual gen-
erators which constitute a primary instrument for model-based fault detection
and isolation (FDI) in systems of plant monitoring and control is considered. An
evolutionary approach to the underlying multi-objective optimisation problem
is utilised. The resulting robust observer detector allows for FDI, taking into
account the issue of false alarms.
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1. Introduction

Fault Detection and Isolation (FDI) systems are commonly used for diagnostic pur-
poses and obtained by means of two distinct operations. With the first of them an
occurrence of a defect or a fault is detected, while with the other the underlying faults
are isolated from one another. Such systems ensure reliable operation of engineering
assemblages for signal measurement, system monitoring and control, for instance.
This issue is of special importance in systems of high safety (Patton et al., 1989;
Chen et al., 1996; Gertler and Kowalczuk, 1997). The presence of errors in system
components may be disagreeable, or even dangerous. Sometimes, after some length of
time, even small system errors can have a profound effect on the system performance.
Therefore, the detection and isolation of faults should usually be done as early as
possible, so as to allow a human operator to take appropriate measures.

The concept of FDI, based on mathematical models of the monitored system,
lies in a current comparison of measurements of the plant with certain signals pre-
dicted based on the system’s model. Differences between the corresponding signals,
called residuals, allow for identification of existing failures, faults or defects of the sys-
tem. It is assumed that those differences are, in general, influenced by disturbances,
noises and modelling errors. Fault detection is achieved by appropriate filtration of
these residuals and principal diagnostic decisions are also taken on the basis of their
evolution.
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In this paper, the design of a residual generator is discussed that is founded on
a common scheme of state observation, which should be not only sensitive to sensor
errors, but also robust to modelling uncertainty and measurement noises. Such an
effect can be obtained by optimisation of a performance index, suitably describing the
influence of faults, noises and modelling uncertainty. Thus the primary objectives of
our considerations are design procedures for robust observers applicable in the FDI
systems.

A consequent synthesis of such an observer should therefore be made by multi-
objective optimisation of a vector performance index, taking into account all the
above-mentioned factors. A practical solution to such a multi-objective optimisation
problem can be found with the use of inequality constraints (Zakian and Al-Naib,
1973), and implemented by means of genetic algorithms (Chen et al., 1996).

Another aspect of this problem yields the notion of Pareto optimality which
allows for an efficacious judgement of a proposed set of solutions which are evaluated
in terms of different quality measures. In particular, we suggest solving the multi-
objective FDI optimisation problem by a method that incorporates both the concepts
of Pareto optimality and evolutionary (genetic) search (Goldberg, 1989; Michalewicz,
1996; Viennet et al., 1996). The idea of genetic searching is based on mechanisms
emulating the evolution of nature. The respective genetic algorithms (GAs) constitute
a major tool of optimisation in the class of random methods. They also provide a
universal method of searching in multi-dimensional spaces.

2. Residual-Generator Design

Consider the following mathematical description of the monitored system:
z(t) = Az(t) + Bu(t) + Ry f(t) + d(t) (1)
y(t) = Cz(t) + Du(t) + Ry f(t) + n(i) (2)

where x(t) € R™ is a state vector, u(t) € R? stands for a control vector, y(t) € R™
is a measurement vector, f(t) € R? denotes a fault vector, d(¢) € R" signifies a state
disturbance vector, and n(t) € R™ represents output measurement disturbances.

The matrices appearing in the model (1)—(2) have the following dimensions: A €
R**™ B eRY™P, C e R™" DeR"™ R; € R*, Ry € R™*?, It is presumed
that the pair (A, C) is completely observable. Signals d(t) and m(t) can also map
a structural or non-structural system modelling uncertainty if

d(t) = AAz(t) + ABu(t) + w(t) (3)
n(t) = ACz(t) + ADu(t) + v(t) (4)
where the quadruple (AA, AB, AC, AD) describes deviations from the nominal

model (A, B, C, D), while the signals w(t) € R® and v(t) € R™ represent noisy
characteristics.
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It is thus postulated that the fault f(¢) is an unknown (vector) time function,
and that the influence of such faults on the state evolution of the system under
consideration and on the measurement signals is conditioned by the choice of matrices
R; and R,, respectively. For example, in a simple scheme with actuator faults (in
the control channel) it can be assumed that R, = B and Ry = D, while in the case
of sensor faults (in the observation channel) we have R; =0 and Ry = I,.

The state observer has the well-known form (Brogan, 1991; Chen et al., 1996;
Kowalczuk and Suchomski, 1998)

&(t) = (A - KC)% + (B — KD)u(t) + Ky(t) (5)
§(t) = CZ(t) + Du(t) (6)

where & (t) € R is a state-vector estimate, §(t) € R™ is an output-system estimate,
and K € R*™*™ is an observer gain matrix.

Consequently, the residual signal 7(¢) € R" is obtained from the following fault
detector given in matrix form:

r(t) = Q(y(t) — §(t)) (7)
where the weighting matrix Q € R™*™ serves as a ‘free’ design parameter.

Evolution of the state estimation error
e(t) =x(t) —&(t), e(t)eR” (8)

can be described by the following ‘internal form’ equation, conditioned by faults and
disturbances:

ét) =(A—-KQC)e(t) + (R — KRy) f(t) +d(t) + Kn(t) 9)

Thus, for an asymptotically stable homogeneous error equation all the eigenvalues
of A — KC must have negative real parts. It can easily be shown (ibid.) that the
residual vector r(t) of (7) can be expressed by the state estimation error e(t) and
perturbation signals f(t) and n(t):

r(t) = QCe(t) + QR f(t) + Qn(t) (10)
The solution of (9) can be given in the Laplace domain, as shown below:

E(s) = [sIn — (A — KC)] " (R — KRy) F(s) + [sI, - (A— KC)] " e(0)

+[sI,— (A—KC) ' D(s) = [sI, — (A - KC)]"" N(s) (11)

where F(s), D(s) and N(s) are the Laplace transforms of the corresponding signals,
while e(0) is an initial value of the state estimation error.

Consequently, the residual has the following Laplace form:

R(s) = Grf(s)F(s) + Gre(s)e(0) + Gra(s)D(s) + Grn(s)N(s)  (12)
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where the matrix transfer functions are as follows:

Grs(s) = Q{ClsLn — 4] ™! (Ry ~ KRo) + o | (13)
Gre(s) = QC [sIn — Aol (14)
G.a(s) = QC [sI, — Ag)™* (15)
Gra(s) = Q{In = C sk, — Ao] " K } (16)

Ay = A — KC being the observation system matrix. The above transfer matrices
describe the influence of all the critical factors: faults, initial conditions of the state
estimation process, external disturbances and/or modelling uncertainties. The steady-
state value of the residual vector is

7(00) = Grs(0)f(c0) + Gr4(0)d(00) + Grn(0)n(c0) (17)
where

G,7(0) = Q[CA;' (R, — KRy) + Ry (18)

Gr4(0) = ~QCA! (19)

Grn(0) = Q [Im + CAJ'K]| (20)

It is clear that under the assumption spectr[Ag] C C_ the inverse matrix A;!
exists. As the matrices K and @ constitute the underlying parameterisation of the
designed detector, it is necessary to choose the values of the entries of those matrices
such that they will emphasise the influence of F'(s) on R(s) and, at the same time,
restrict the impact of the remaining factors on R(s). In order to define such tasks
of parametric optimisation, let us consider the following weighted partial-objective
functions in the whole frequency domain (different from Chen et al., 1996)

I(K,Q) = |[Wi(s)Grs(s)| (21)
J(K, Q) = [Ws(s)Grals)] (22)
J3(K,Q) = |[Ws(5)Grn(s)] (23)
J(K,Q) = A", (24)
J5(K,Q) = A5 K|, (25)
with the following matrix norms:

1M (s)]|, = supo[M(juw)] (26)

[ M|, = o[ 27)

where g[M] is the maximum singular value of a matrix M.
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The weighting matrix functions W (s), Wa(s) and Wi3(s), which represent
the prior knowledge about the spectral properties of the process, introduce additional
degrees of freedom of the detector design procedure. Those matrices allow for a
spectral separation of the effects of faults and noises. In order to maximise the
influence of faults at low frequencies and minimise the noise effect at high frequencies,
the matrix function W (s) should have a low-pass property, and the spectral effect
of W3(s) should be opposite to that of Wi (s).

The profit index J; (K, Q) constitutes the main maximised criterion (with some
hope for a similar beneficial effect on lower bounds on the minimum singular values),
while Jo(K,Q) and J3(K,Q) account for state and output disturbance effects, re-
spectively. From (19) and (20), the cost functions J4(K,Q) and J5(K,Q), describ-
ing the influence of static deviations from the nominal model of the plant, represent
important robustness measures.

Once we have fixed weighting matrices W1 (s), Wa(s) and W3(s), the synthesis
of the detection filter boils down to the issue of multi-objective optimisation of the
pair (K,Q) € R™*™ x R™*™ with regard to the goal expressed by

- (K, -
(III}%C) 1( Q)

in Jo(K,
g (K, Q)

— | min J3(K,
(Igl?é)J(K,Q) (i 3(K,Q) (28)
min Jo(K)
in Js (K
| min Js(K) |

The selection of the observer gain K can be done in several ways. For example,
the method of eigenstructure assignment of the observation system matrix Ag, or
the method based on the Kalman-Bucy filtering can be applied (in the latter case,
the knowledge of covariance characteristics of noise perturbations in the considered
model is necessary). In this paper, we follow the first approach (Chen et al., 1996), in
which the whole spectrum (eigenvalues A;) of the observation system Ag is placed in
a required region of the complex plane. It is also necessary that this system be robust
to deviations (AA,AC) from the nominal plant model. Therefore, the spectral
synthesis of the matrix Ag should incorporate the task of robust stabilisation of the
observer.

3. Genetic Multi-Objective Optimisation in the Pareto Sense

In many practical decision processes it is essential to totally optimise several objective
functions (Goldberg, 1989; Michalewicz, 1996; Viennet et al., 1996). For integrating
those objectives into one, it is necessary to determine the relations among the par-
tial objectives considered. With multi-objective optimisation in mind, the notion of
optimality is not obvious. If one is not going to weigh different objectives arbitrarily,
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it is prerequisite to define a suitable measure of optimality. This is the notion of the
optimality in the sense of Pareto (Goldberg, 1989; Michalewicz, 1996; Viennet et al.,
1996) that becomes suitable in such cases. With this, a useful classification of the
(dominated and non-dominated) solutions resulting from (multi-objective) optimisa-
tion is possible. The condition of Pareto optimality for a maximisation™ task can be
formulated as follows.

Consider two vectors a,b € R*. Vector a is partially smaller that vector b if and
only if (Goldberg, 1989; Michalewicz, 1996) for all their co-ordinates ¢ = 1,2,...,k
we have

Vi (a; < b)) AT (a; < by) (29)

Thus in the Pareto sense, a solution a is dominated if there exists a solution b
partially ‘better’ than a in terms of the definition (29). If a solution is not dominated,
then it is called a Pareto-optimal one (Goldberg, 1989; Michalewicz, 1996).

Such a concept of optimality does not give any directions as for the choice of a
single solution from amongst several Pareto-optimal solutions found. Therefore, in
such cases, it is the designer who has a chance to make an independent judgement of
the whole range of offers.

The Pareto-optimal solutions of the described optimisation task are obtained with
the aid of genetic algorithms (Michalewicz, 1996), with which a global search in the
space of optimised parameters is possible that is immune to a possible discontinuity or
multimodality of the partial objective functions. Genetic algorithms are principally
characterised by: processing encoded forms of parameters values, simultaneous search
of a larger number of regions, and stochastic rules of a genetic expansion.

A set of optimised parameters is called an individual. Genetic algorithms (GAs)
usually operate on tenths of individuals. A group of individuals makes a population.
In GAs the population of individuals is subject to a simulated evolution. This means
that in each cycle of the algorithm, certain ‘good’ solutions reproduce, while ‘bad’ ones
die out. The population obtained after one cycle of a GA is called a (new) generation.
Evaluation of generations is carried out on the basis of an objective function, according
to which the value of a fitness degree of each individual is evaluated.

The genetic mechanism of GA works as follows. For each generation, a set of most
suitable solutions constitutes a group of individuals of special meaning that is called
a parential pool. Through genetic operations the parental pool generates a set, of new
individuals called offspring. There are two basic types of genetic operations: crossover
and mutation. Simulated evolution cycles are repeated until a desired termination
condition is fulfilled (for instance, when an assumed number of cycles is arrived at).

In the process of selection of individuals a method of ranking is applied that
assigns a scalar rank to the vector fitness of each individual (Man et al., 1997). This
rank directly relates to the number of individuals in the current population by which

* For simplicity, we define the maximisation task that is directly implemented in genetic algo-
rithms.
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the individual considered is dominated in the sense of Pareto. Namely, the rank of
an individual v; in the population is set according to the following formula:

P(V,‘) = Hmax — ,U(Vz) (30)
where p(v;) is the number of individuals by which v; is dominated in the same

population, while fiymax is the maximum value among all u(v;), i =1,2,... N.

Figure 1 illustrates an example of a two-objective ranking in the Pareto sense for
a vector fitness degree ® = [p1, 2] which is calculated from an objective function
J = [J1,J2). The individuals {v1,v2,v3,v4} constitute the Pareto-optimal set, or
the primary Pareto front, while v5 and vg constitute the secondary Pareto front.

.............................. P up) =0
wysi=1
................ ®
@ 1(2)=0
H(V7)=3 H(V(,):l
@
® ur3)=0
. H(VB =3 H u(v4)=0
| ¢

Fig. 1. Exemplary domination in the Pareto
sense for a two-objectives function.

The selection of individuals is carried out with the use of a proportional method
founded on a deterministic procedure and supplemented by a ‘stochastic-remainder’
choice. The latter is also based on a proportional method which imitates a roulette
wheel whose angle sectors are proportional to the individual ranks, taken as ‘uni-
form’ fitness degrees (see Appendix A). Thus both the deterministic and stochastic
mechanisms relate to the ranks of individuals. It is also clear from (30) that in this
selection procedure the lowest Pareto-front is completely ruled out, as it is e.g. in the
case of the individuals v7 and vg characterised by the zero rank (and pimax) in the
exemplary characterisation of the population in Fig. 1.

4. Genetic Niching Mechanism

In order to sustain a diversity of individuals in the population ‘processed’ by a GA, an
additional ‘niching’ mechanism (Goldberg, 1989; Michalewicz, 1996) can be utilised.
This method gives rise to creation of niches and species in the population. The niche
'is a finite ‘ball’ region in the parameter space, in which at least one individual is
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situated. As close individuals can also have similar characteristics with respect to the
degree of fitness, they can be recognised as species (of a distinct sort), as well.

Let us consider the following degree of closeness (kinship) between two individuals
v, v; € R¥ 4,5 =1,2,..., N, which is expressed by a closeness function within a
niche, also called a ‘sharing’ function in (Goldberg, 1989):

L=y —vjllp if 0< |lvi—vjllp <1
0 if “Vl - Vj”p Z 1

where -
lvllp = VvTP 'y, P =diag{A}/36,...,A}/36} (32)

while A;, 1 =1,2,...,k is the range of the [-th searched parameter whose third part
constitutes the [-th diameter of the niche. In such a way the niche is a hyperellipsoid
centred on the i-th chosen individual.

The niching method itself consists in adjusting the magnitude of the fitness-degree
vector of each individual in its own niche according to the following niche-related
prescription:

~ d(v.
q)(yz.) — _%
Zj:l 0ij

where ®(v;) is the vector fitness of the i-th individual and &D(ui) is its ‘niche-
adjusted’ vector of fitness. The sum in the denominator concerns the whole set of
individuals in the dynamically-determined niche centred on the i-th individual. If the
individual is the only member of its own niche, then its fitness degree is not decreased,
as ) d;; = 1. In other cases, the fitness (degree) is decreased according to the number
of neighbours in the niche.

(33)

For illustrative purposes, consider two exemplary processes (A and B) of niching.
In Case A, the placement of 12 individuals in a two-dimensional space is shown in
Fig. 2(a) with their corresponding vector of fitness given in Fig. 2(b). Note that a
single Pareto-optimal solution is marked with a ‘star.” Figure 2(c) presents the niche-
adjusted fitness vectors of individuals prepared for the ranking selection. As a result
of the niching mechanism, the fitness degree of ten individuals (the star and circles)
have been decreased (see the arrows) and the fitness of two individuals (the cross
and one dot) remain the same. Figure 3(a) depicts Case B of the population’s state,
where the numbers denote the multiplicities of individuals in the population. With
the population’s characterisation given in Figs. 3(a) and 3(b), the effect of magnitude
adjustment on the fitness degree vector is illustrated by Fig. 3(c). In this case, the
fitness degree of all the individuals in the population is decreased. As the niching
operation allows for both increasing probability of survival (i.e. an appearance in the
next generation) for species of ‘sparse’ niches and decreasing it for ‘dense’ niches,
the mechanism has a nature of ‘uniformly breeding.” Nevertheless, it is important
that in spite of the uniformly breeding policy, as a global effect of genetic expansion
and selection procedures, one observes that there are constant densities sustained in



Evolutionary multi-objective Pareto optimisation . ..

697

certain niches. This can eventually be interpreted in terms of their robustness to
changes in the fitness measure.
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Fig. 2. Niching mechanism, Case A: the population and ellipse
niche of the optimal solution (a), the true fitness amongst
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the population (b) and the niche-adjusted fitness (c).

5. Evolutionary Multi-Objective Otimisation

()

Chen et al. (1996) proposed the method of sequential inequalities (Zakian and Al-
Naib, 1973) in the multi-objective optimisation procedure performed by evolutionary
(genetic) algorithms. In their approach, the cost indices are expressed in the fre-
quency domain and all the performance objectives are used in a set of inequality
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constraints tested in a limited frequency range. Finally, GAs are used in searching
for optimal solutions satisfying all the inequality constraints. The eigenstructure
assignment approach (Liu and Patton, 1996; Chen et al., 1996) is employed in order
to get an appropriate parameterisation of the gain matrix K. What is important,
in our approach the multi-objective optimisation problem is solved by a method that
incorporates both the concepts of Pareto optimality and genetic search in the whole
frequency domain.
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Fig. 3. Niching mechanism, Case B: the population and ellipse
niche of the optimal solution (a), the true fitness amongst
the population (b) and the niche-adjusted fitness (c).
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A Pareto-optimal observer is obtained via optimisation of the vector index
J(K,Q) of (28) whose coordinates are the (weighted) partial objectives: profit func-
tion (21) and cost functions (22)—(25). These objectives are composed in a way that
allows for an achievement of a robust observer. In order to simplify the optimisation
procedure, the method of assignment of the spectrum {A;} of the observation system
matrix Ag is applied with the aim of yielding a suitable parameterisation of the gain
matrix K = K()), where A = [A1, A, ..., Mn)T.

In the evolutionary algorithm discussed here, each individual is represented by a
sequence of real numbers. Such a description allows for searching in the continuous
domain of real numbers. Thus each individual is simply a vector whose coordinates
are the optimised parameters.

The procedural steps of the evolutionary algorithm, tailored to the considered
design case, are as follows:

Optimisation Procedure:
1. Randomly generate an initial population of N individuals, ie. V =
Vi,Va,...,uN] where v; = [¢,v,...,vi]T € R* is the j-th individual,
’ J 1>72 n
j=1,2,...,N, and ] isits k-th coordinate, k =1,2,...,n.

2. For each individual v; compute its fitness vector ®(v;) whose coordinates are
defined by

Ji(l/j), 1=1
pi(v;) = _ (34)
Cmax; —Ji(l’j)a 1=2,3,4,5

where J;(v;) is the i-th cost function (21)-(25) and the coefficient Ciay; can
be equal to a maximum value of the i-th cost criterion function in the current
population.

3. Apply the niching mechanism in order to obtain the niche-adjusted fitness of all
the individuals.

4. Estimate the individuals’ ranks in the sense of Pareto.

5. Perform the selection based on the population ranking in order to create the
parental pool.

6. Create a new generation of individuals V' through the following operations:

(a) Execute the arithmetical crossover (a linear combination of two vectors) to
produce offspring. Given a pair of parents v, and v, their offspring v,
and v! are set by

v =av, + (1 —a)vs, V,=av,+ (1—a)v,

where a € [0,1] is a real value randomly chosen for each mating pair.
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(b) Execute mutation which introduces an appropriate random ‘perturbation’
of the newly-formed solution. A coordinate of the vector v;, chosen for
a change with a mutation probability, is replaced with a random value «
from the coordinate domain:

) ) T
- Jo J j
uj—[u 7S 7 A vn]

where a € [g’,%,ﬂi], while gi and Di are lower and upper bounds of the

coordinate v}, respectively. The value « is generated with a uniform

distribution of probability.
7. Replace population V' with population V.

8. When the assumed number of generations is obtained, Pareto-optimal solutions
are ultimately selected from the most recent population.

6. Illustrative Example

Consider the unstable state-space plant model (1)-(2) characterised by the following
matrices (Mudge and Patton, 1989):

[ —o0.217 0 -32.9 981 0| [ 5432 0
~0.1033 —8525 375 0 0 0  —28.64
A= 03649 0 —-0639 0 0|, B=| —949 0
0 1 0 0 0 0 0
0 0 1 0 0| 0 0 |
[0 10 0 0 00
C=[00010 D=|0 0
100001 00

The quadruple (A, B,C, D) describes a linearised lateral control system of a re-
motely piloted aircraft.

For simplicity of computations, the weighting matrix Q is assumed to be the
3 x 3 identity matrix. Thus the search goal can be expressed as

opt J(K,Q) = opt J(K) = opt J (K(})) = opt J(K(/\(uj)))
Q) K A v;
where

. . . . . . 1T
/\(Vj):[y{ vi v+l vl-jv l/g] eC
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and the j-th instrumental individual has the form
... 1T s
v;= [ vi vi v v v ] e R

It is presumed that a fault may occur in the control channel (R; = B, Ry = D).
Furtheremore, the hypercube of the optimised parameters {v;} is specified as follows
(Chen et al., 1996):

v e[-5,-0.2], vie[-15-3], v e€[-10,-2], v] €[0.2,4], v € [-30,-8]

The 3 x 3 weighting transfer function matrices of the indices (21)-(23) are of the
following forms:

. 1
W (s) = diag { (0.1s +1)(0.02s + 1) }

W(s) = diag {1}

Wi(s) = dia,g{ (0.1s +1)(0.02s + 1) }

(0.0055 + 1)2(0.001s + 1)

The residual generator has been designed by means of the evolutionary optimi-
sation procedure based on the index J(K,Q) of (28) and described above. Some
practical and implementation thoughts concerning the procedure itself are given in
Appendix B.

Fifty five Pareto-optimal solutions (out of a population of eighty individuals) for
the observer gain matrices, characterised in Fig. 4 in terms of their partial objectives,

value of objective functions

indices of Pareto-optimal set

Fig. 4. The objective functions of 55 Pareto-optimal solutions.
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have been obtained as a final effect of this optimisation process. The corresponding
set of the instrumental Pareto-optimal parameters {v;}, 7 =1,2,...,55, describing
the spectrum of the observation system matrix, is graphically presented in Fig. 5.

Distribution of two selected coordinates (v{,v3) of all the Pareto-optimal solu-

tions (7 = 1,2,...,55) in their respective two-dimensional (v1,1v2) subspace is de-
picted in Fig. 6, where the numbers (next to some ‘circles’) correspond to the indices
of the Pareto-optimal observers indicated in Fig. 5. The corresponding values of two
chosen objective functions (profit J; and cost Js) are presented in Fig. 7.

There is an illustrative dense niche shown in Fig. 6 (the distinguished ellipse
centred on the ‘last’ (55-th) solution, with radii of 0.8 and 2, respectively). The
demonstrated niche (species) can be interpreted in terms of robust (confirmed) Pareto-

instrumental parameters

20p ——

—
—=
—= v,
—¥— v

=251

-30¢ . . . . . 1
1 10 19 28 37 46 55
indices of Pareto-optimal set ’

Fig. 5. The considered 55 instrumental Pareto-optimal solutions.

6F

-8t

-10

-14

8 -6 -4 2 0 2,

Fig. 6. The optimal solutions against the niche of solution Kss
(in the selected two-dimensional subspace).
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optimality of the final solution: The individuals bred in this niche are immune enough
to survive in the cyclic genetic evolution process. In the example under consideration,
a natural jeopardy appears that is connected with the solutions which are optimal
in terms of certain criteria and completely unfavourable from the viewpoint of the
other co-ordinates of the vector quality index (28). For example, the non-dominated
solution #21 which is characterised (as shown in Fig. 7) by one of the most high
profits (J;) has, at the same time, the highest cost (Js).

From among all the Pareto-optimal solutions, the observers with the gain ma-
trices Kag, K42 and Kss given in Table 1 were chosen for the further study. The
unstable system under consideration was stabilised with the aid of a state feedback
controller using knowledge about the estimated system state. The first coordinate of
the fault vector f(t) of (1)—(2) was subjected to an additive fault in a ‘sigmoid’ form
shown in Fig. 8.
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Fig. 7. The selected two-objective characteri-
sation of the Pareto-optimal solutions.
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Fig. 8. The applied fault signal f(t).
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Table 1. Examples of the observer-gain matrices.

Observer gain matrix Eigenvalues Objective functions
—-51.669 9.810 3.728 J1 =1.343
A1 = —3.603
9.972 0.000 —5.008 Jo = 0.175
Az = —11.308
K3g = 21.916 0.000 —b5.788 . Js = 62.616
Az,e = —b5.164 £ 53.315
1.000 19.479  0.000 J1 = 3.437
As = —19.479
1.685 0.000 5.826 Js = 25.302
—47.222  9.810 —19.461 Jy = 13.079
A1 = —1.568
-0.517 0.000 -0.275 Jy = 0.508
Ag = —8.712
Ky = 0.012 0.000 1.861 . Js = 62.260
Xs4 = —3.281 + j2.175
1.000 17.823 0.000 Js =3.114
As = —17.823
—1.259  0.000 7.919 Js = 18.501
—-75.242 9.810 —17.838 J1 = 6.589
A1 = —1.870
2.303 0.000 2.080 J2 = 0.245
Ag = —8.917
Kss = 3.359 0.000 5.517 . Js = 62.269
X34 = —5.201 + j1.606
1.000 19.208 0.000 Ja = 4.057
As = —19.208
0.183 0.000 9.445 Js = 31.996

Simulations were performed in the presence of system and measurement distur-
bances, d(t) and n(t), respectively, both modelled as zero-mean Gaussian white-noise
processes. The system parameters of the simulated (‘true’) plant were (multiplica-
tively) perturbed by uniformly-distributed £10% deviations from the parameters’
nominal values.

Results of simulated performance of the residual generator are shown in Figs. 9—
11 for the observers using the gain matrices K3s, K42 and Kss, respectively. They
clearly exhibit a detectable slowly-growing error.

As shown in Figs. 9(c), 10(c) and 11(c), the two fault-dependent coordinates
(r1,73) of the residual vector r(t) demonstrate significant changes analogous to the
generic fault signal applied. It can easily be seen that the system observations ob-
tained with the gain matrix K42 have a strongest detection ability. In the case of the
gain matrix Kg, the second (r;) and third (r3) co-ordinates of the residual vector
r(t) are practically non-distinguishable. Also, the sensitivity of these residuals to the
simulated fault is lacking. The system observations with the gain matrix K55 have
similar characteristics to the ones obtained by means of the matrix K 4.

The observation system can thus be used for reliably detecting sensor faults from
noisy measurements. The ultimate fault detection can be achieved, e.g. by using
appropriate thresholds.
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7. Conclusions

Within this work the diagnostic (FDI) considerations have been restricted to a robust-
state-observer design-problem. The presented synthesis of such a detection filter is
based on a multi-objective optimisation of a vector profit-and-cost index, taking into
consideration faults, initial conditions of the state estimation process, and external
disturbances. These objectives are used with the purpose of achieving a robust resid-
ual generator. The multi-objective optimisation task is solved with the use of the
concept of Pareto optimality. The search for Pareto-optimal solutions is performed
by means of evolutionary (genetic) algorithms. Such an approach allows for carrying
out a global search in the space of optimised parameters that is immune to possible

5 10 15 20 25

time (second) time (second)
(a) (b)
0.04

0.02F

-0.02

-0.04

-0.06

-0.08

time (second)

(c)

Fig. 9. Observation signals for the gain matrix Kas: (a) controls u(t),
(b) measurements y(t) and their estimates, (c) residuals =(t).
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multimodality of partial objective functions. At the same time, the multiple solutions
yielded by the Pareto-optimal approach, which are generally criticised for their am-
bivalence or non-uniqueness, are applied in the process of ranking the individuals of
parental pools. Within the ranking selection a niching mechanism is employed, the
result of which has its simple robustness interpretation, connected to sustenance of a
high population-density in niches, with respect to which a general policy of ‘uniformly
breeding’ is implemented. An exemplary synthesis of a residual generator, based on
a diagnostic state observer, is presented and suitable simulation results are shown,
which confirm the efficiency of the Pareto-optimal approach in the residual generator
design.

time (second) time (second)

(a) (b)

time (second)

()

Fig. 10. The system’s observations with the gain matrix Kas: (a) controls
u(t), (b) measurements y(¢) and their estimates, (c) residuals r(t).
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time (second) time (second)

(a) (b)

time (second)

()

Fig. 11. The system’s observations for the gain matrix Kss: (a) controls
u(t), (b) measurements y(t) and their estimates, (c) residuals =(t).

Appendices

A. Selection of the Parental Pool

A proportional deterministic (1-5) and stochastic-remainder (6-7) method for the
selection of individuals based on their ranks (scalar uniform-fitness degrees) can be
described as follows:

1. Assign the fitness degree to each individual in the population p(v;), i =
1,2,...,N.
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2. Calculate the total fitness
) N
Psum = ZP(VZ‘), 1=1,2,...,N
=1

3. Assign individual probabilities of selection

v; )
Pselect (Vi) = at Z), 1=1,2,...,N

psum

4. Assign the ‘proportional’ number of selected individuals
e(Vi) = psetect Wi)N, i=1,2,...,N
5. Copy N = Zfil le(vi)] individuals to a parental pool (according to the
integer part of e(v;)).

6. Calculate the ‘distribution’ of a sequence of individuals according to the frac-
tional part of e(v;)

) =3 {evn) - Lew)] }

=1

7. Perform the multiple (N = N — Nint) ‘turning’ of the simulated ‘roulette wheel’
according to the following steps:
(a) generating a random number r € [0, 1];
(b) selecting an individual that fulfils the condition
q(vi)
g(vn)
(¢) copying the selected individual to the parental pool.

r <

B. Some Implementation Annotations

In the first attempt, in order to reduce the computational load, it is the gain matrix K
that was solely subject to optimisation in the considered case.

In the implemented optimisation procedure, it was assumed that the crossover
probability was equal to 0.8 and the mutation probability was 0.09. These values were
applied based on the general advice that the crossover probability should be in the
range [0.6,1], while the mutation probability should be ‘small enough.’ As regards
the genetic algorithms with binary parameter representations, Goldberg (1989) sug-
gests that the mutation probability should be inversely proportional to the number of
individuals in the population. With the floating-point representation applied, in order
to compensate for a singular operation of mutation (with respect to each individual
coordinate), this basic probability of change was increased by a factor of ten.
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It is convenient that there are several procedures in the popular MAT-
LAB/SIMULINK* package that can be used for the purpose of the discussed opti-
misation problem. The procedure PLACE, for instance, can compute an observation
gain matrix K in such a way that all the eigenvalues of A — KC' comply with the
specification represented by vector v;. The procedure INFNORM can calculate the
infinite norms (21)-(23) for the state-space models of the respective transfer func-
tions. The procedure NORM, or SVD, can be utilised to estimate the maximum
singular values according to (24), (25). The procedure PLACE is available from the
CONTROL TOOLBOX sub-package. Simulation of the designed continuous-time
observation system can be carried out in the SIMULINK platform.
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