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DYNAMIC NEURAL NETWORKS FOR
PROCESS MODELLING IN FAULT
DETECTION AND ISOLATION SYSTEMS f

Jozer KORBICZ*, KrzyszToF PATAN*
ANDRZEJ] OBUCHOWICZ*

A fault diagnosis scheme for unknown nonlinear dynamic systems with modules
of residual generation and residual evaluation is considered. Main emphasis is
placed upon designing a bank of neural networks with dynamic neurons that
model a system diagnosed at normal and faulty operating points. To improve
the quality of neural modelling, two optimization problems are included in the
construction of such dynamic networks: searching for an optimal network ar-
chitecture and the network training algorithm. To find a good solution, the
effective well-known cascade-correlation algorithm is adapted here. The residu-
als generated by a bank of neural models are then evaluated by means of pattern
classification. To illustrate the effectiveness of our approach, two applications
are presented: a neural model of Narendra’s system and a fault detection and
identification system for the two-tank process.

Keywords: fault detection, dynamic neural networks, non-linear modelling,
learning algorithms, FL-classifier, two-tank system.

1. Introduction

With increasing demands on the reliability and safety of technical processes, various
Fault Detection and Isolation (FDI) approaches have been proposed. The most fre-
quently applied quantitative model-based approach (Chen and Patton, 1999; Gertler,
1999; Isermann, 1997; Korbicz and Cempel, 1993; Mangoubi, 1998; Patton et al.,
1989; Pieczyniski, 1999) relies on the idea of analytical redundancy that makes use of
an analytical mathematical model of the system. However, in practice it is difficult to
meet the demands of such a method due to the inevitable model mismatch, noise, dis-
turbances and inherent nonlinearity. In this case, the use of knowledge-model-based
techniques, i.e. artificial intelligence (Frank and Koppen-Seliger, 1997) either in the
framework of diagnosis expert systems (Fathi et al., 1993; Korbicz et al., 1993) or in
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combination with a human operator is the only feasible way. Up to now the most
known artificial-intelligence-based fault-diagnostic methods and techniques (Jain and
Martin, 1999) are fuzzy-logic sets (Frank, 1994; Marcu, 1996), neural networks (Fi-
cola et al., 1997; Koivo, 1994; Korbicz, 1997; Terra and Tinos, 1999) and genetic
algorithms for solving various optimization problems in FDI systems (Chen and Pat-
ton, 1999; Obuchowicz and Politowicz, 1997). Taking into account the attractiveness
and advantages of various analytical and artificial-intelligence-based approaches, in re-
cent years the integration problem of quantitative and qualitative techniques has been
studied especially intensively (Korbicz and Patton, 1998). To make the FDI scheme
able to integrate quantitative and qualitative information the knowledge-based ap-
proach is the most appropriate (Fathi et al., 1993). Recently a novel approach for
achieving this, based on B-Spline neural networks, has been proposed by Benkhedda
and Patton (1997). Such networks have the ability of neural networks combined with
the linguistic description of fuzzy logic. The main disadvantage of the quantitative
model-based FDI applications is the requirement that the model of the diagnosed
process be as accurate as possible. In this respect, the linear systems theory pro-
vides numerous methods in order to get a mathematical model, but they fail where
nonlinear processes should be applied.

One of the most important classes of FDI methods especially dedicated for non-
linear processes is the use of artificial neural networks. They are useful when there are
no mathematical models of the diagnosed system, so analytical models and parameter-
identification algorithms cannot be applied. But a lot of problems occur in identifi-
cation of dynamic systems, because the known standard neural networks (Freeman
and Skapura, 1991) can be applied to model static systems. To overcome this dif-
fulty in FDI and control systems, many solutions have been proposed. In most cases,
multilayer perceptron network models with artificially introduced time delay line are
studied (Janczak and Korbicz, 1999; Narendra and Parthasarathy, 1990; Zhou and
Bennett, 1997). Similar results are obtained by using recurrent neural networks for
nonlinear system modelling (K&ppen-Seliger and Frank, 1999; Saludes and Fuente,
1999). An alternative neural network architecture for fault detection systems — the
GMDH one — is proposed by Korbicz and Ku§ (1999). It differs from the known
neural network techniques in that its structure is defined during the training pro-
cess. Moreover, the structure complexity depends on the required accuracy of process
modelling (Pham and Xing, 1995). One of the most interesting solutions to the dy-
namic system identification problem is the application of various dynamic neuron
models (Ayoubi, 1994; Kuschewski et al., 1993; Marcu and Mirea, 1997; Patan et
al., 1998). The relatively complex dynamic neuron models allow one to design an
effective feedforward multilayer network of dynamic neurons with less complex archi-
tecture than standard Multi-Layer Perceptrons (MLP) with time delay line (Narendra
and Parthasarathy, 1990). Because the dynamic network has a multilayer feedforward
architecture, the Extended Dynamic Back-Propagation (EDBP) algorithm can be de-
fined for network training (Ayoubi, 1994; Patan et al., 1998).

The aim of this work is to propose a neural-based FDI system for dynamic non-
linear processes. The main emphasis is placed upon the designing of a neural residual
generator using the Back-Propagation Dynamic MLP. Recent investigations in this
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Fig. 1. General scheme for fault diagnosis.

field (Korbicz et al., 1998) have shown that the neural-residual generator based on
the dynamic MLP can be an effective tool for fault detection in dynamic systems.
However, the choice of a neural network architecture is not a trivial problem. The
network architecture of dynamic neurons as well as a set of training algorithm parame-
ters influence the identification quality significantly. The efficiency of structure choice
depends on the training process quality. This process seems to be an optimization
problem which is intrinsically related to a very rich topology. In fact, two optimiza-
tion problems are included in the construction of the dynamic network: searching
for an optimal network architecture and a network training algoritm. To solve such
problems, algorithms of global optimization, e.g. evolutionary algorithms or simulated
annealing, should be implemented (Galar, 1995; Michalewicz, 1996). Moreover, the
well-known cascade-correlation algorithm (Fahlman and Lebiere, 1990) can be applied
to design the dynamic network. The cascade correlation is both an architecture and
a supervised learning algorithm for artificial neural networks.

Finally, the effectiveness of our neural dynamic network approach is demonstrated
by applying it to modelling Narendra’s system (Narendra and Parthasarathy, 1990)
and the two-tank system fault diagnosis.

2. Fault Diagnosis Scheme

The fault diagnosis procedure for a dynamic system consists of two separated stages:
residual generation and residual evaluation (Fig. 1). In other words, the automatic
fault diagnosis can be viewed as a sequential process involving the symptom extraction
and the actual diagnostic task. As usual, the residual generation process is based on
the comparison between the measured and predicted system outputs. As a result, the
difference or so-called residual is expected to be near zero under normal operation but
on the occurence of fault a bias from zero should appear. In turn, the residual evalu-
ation module is dedicated to the analysis of the residual signal in order to determine
whether a fault has occured and to isolate the fault to a particular system unit.
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Fig. 2. The FDI scheme based on a neural network model.

One of the most known approaches to residual generation is a model-based con-
cept. In the general case, this concept can be realized using different kinds of models:
analytical, knowledge-based and data-based ones (Képpen-Seliger and Frank, 1999).
Unfortunatly, the analytical model-based approach is usually restricted to simpler
systems described by linear models. When there are no mathematical models of the
diagnosed system or the complexity of a dynamic system increases and the task of
modelling is hard, analytical models cannot be applied in the FDI system or can-
not give satisfying results. In this case data-based models, such as neural networks,
fuzzy sets or their combination (neuro-fuzzy networks) can be considered. Figure 2
illustrates how the FDI system is realized through the use of neural networks. In the
bank of neural models (MODEL 0... MODEL N) each model should be designed
for normal system conditions (MODEL 0) and for abnormal ones, i.e. for separated
faults (MODEL1... MODEL N).

Using such a bank of models the residuals can be determined by comparison of
the system output y(k) and the output of neural models yo(k),y1(k),...,yn (k). In
this way, the residual vector » = [ro 71 ... rn] which characterizes each fault can
be obtained. Then the residual vector = is processed by the fault analyzer. Various
approaches and techniques (thresholds, statistical and classification methods) can be
involved for residual evaluation. Among these approaches the fuzzy and neural clas-
sification are attractive from different viewpoints (Képpen-Seliger and Frank, 1999;
Marciniak and Korbicz, 1999). The objective of this paper is to design a bank of
neural models with dynamic neurons. Moreover, the problem of comparision of fuzzy,
neural and analytical classifiers will be studied for the two-tank fault diagnosis system
as well.

3. Feedforward Multilayer Network with Dynamic Neurons

The main feature of dynamic Artificial Neural Networks (ANNs) is that they have
memory. This means providing the mapping network with dynamic properties that
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Fig. 3. Dynamic neuron with internal generalized filter.

make it responsive to time-varing signals, i.e. neural networks with internal dynamics.
To introduce internal dynamics into the standard MLP network architecture, two
solutions can be applied. As the neuron models are static, the introduction of multiple
recurrent connections with delays between layers gives us a possiblity to change the
static MLP network into a dynamic one (K6ppen-Seliger and Frank, 1999; Zhou
and Bennet, 1997). An alternative solution can be obtained by designing the MLP
network with dynamic neuron models (Ayoubi, 1994; Marcu and Mirea, 1997; Patan
and Korbicz, 1997). This approach will be presented below.

3.1. Dynamic Neuron Model

The extended structure of the dynamic neuron model proposed by Ayoubi (1994)
is considered here. This structure of the dynamic neuron model is an extention of
the static model by adding an Infinite Impulse Response (IIR) filter. Such a model
with internal filter introduces some dynamics to the neuron transfer function. Due
to the internal filter the general neuron activity depends on its internal states and
therefore the neuron processes past values of its own activity y(k) and inputs u;(k)
for i = 1,2,...,I. Asisshown in Fig. 3, the dynamic neuron structure includes three
submodules: adder, internal filter and activation module.

The mathematical description of each module is as follows:

Adder
I
z(k) = wluk) =) wiu;(k) (1)
i=1
where w = [w; ws ... wr]T denotes the input weight vector, wu(k) =

[u1 (k) uz(k) ... ur(k)]¥ is the input vector, and z(k) is the result of the weighted
summation.

Internal filter
g(k) = —a1g(k — 1) — - — apy(k — n) + boz(k) + biz(k — 1)

+ -+ bpz(k—n) (2)
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Fig. 4. Dynamic MLP network architecture; [] denotes the input element,
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where z(k) and %(k) are the filter input and output, respectively, k is the discrete
time, @ = [a; ... an)T and b= [bo by ... by]T are the feedback and feedforward
synaptic vector weights, respectively.

Activation module

y(k) = F(1(k)) = F(gy(k)) (3)

where F'(-) is a non-linear activation function that produces the neuron output y(k),
and g¢ is the slope parameter of the activation function. In a dynamic neuron, the
slope parameter can change its value and therefore can be defined during the learning
process similarly to weights w, a and b.

3.2. Network Architecture

It is well-known that taking into account the dynamic neuron model (1)—(3), one can
design a more complex structure, i.e. a neural network. On the other hand, from
neural network theory it follows that the crucial problem is the learning algorithm for
the new designed network. Therefore, by using the known feedforward MLP network
structure, the dynamic MLP can be obtained by replacing the static neurons with
dynamic ones (Fig. 4). In comparision with the Elman recurrent networks (Saludes
and Fuente, 1999) and the external recurrent MLP (Zhou and Bennett, 1997), the
Dynamic MLP (DMLP) under consideration does not require past values of the in-
put vector (process measurements). Owing to internal dynamic neuron properties,
the DMLP processes the modelled system measurements at the current time instant
k. Therefore the dimension of the network input space is substantially reduced in
comparison with the Elman and recurrent MLP networks.

From (Hornik et al., 1989) it is known that multilayer feedforward networks
and Radial Basis Function (RBF) networks are universal approximators of static
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non-linearities. In turn, Jin et al. (1999) proved that the outputs of a class of
continuous-time dynamic recurrent networks with an approximate initial stay may be
used to approximate uniformly the output trajectories of the considered multi-input
and multi-output nonlinear system over finite-time intervals. For the DMLP network
considered here it can be proved by applying the Leontaritis and Bilings theorem
(1985) that it is a universal identifier. They proved that under some assumptions,
any non-linear, discrete and time-invariant system can always be represented by a sim-
plified version of the NARMAX model (Non-linear Auto Regressive Moving Average
with eXogenous inputs).

4. Learning Methods and Architecture Optimisation for
a Dynamic MLP

Let us consider an M-layered network with dynamic neurons described by differen-
tiable activation functions F|]. In Fig. 4, s, denotes the number of neurons in the
m-th layer and u?*(k) is the output of the s-th neuron of the m-th layer at discrete
time K (m=1,...,M; s=1,...,5y). The activity of the s-th neuron in the m-th
layer is defined by

n Sm—1
W (k) = F g?(zbi > v Zaw yj ) @
=0

The main objective of the learning process is to adjust all the unknown net-

work parameters v = [w,a,b,g], where w = [wg]m:lw,M; s=1,.,5m; p=1,....m_1
is the weight matrix, a = [0fm=1, M; s=1,.,5,; i=1,..,n and b =
B m=1, ., M; s=1,....Sm; i=1,.., are the filter parameter matrices, and g =

[g;’}]mzl,..,,M; s=1,..,5, 18 the slope parameter matrix, based upon a given training
set of input-output pairs.

It is well-known that the learning method for the feedforward MLP network is
the error backpropagation. However, if an internal recurrence is presented (Fig. 3,
Filter module), the localised calculation of the gradient becomes difficult, because
the present output of the network y(k) depends on the past outputs y(k — 1),
y(k — 2),...,y(k — n). In order to solve this problem, the well-known dynamic
backpropagation algorithm (Baldi, 1995) with extension for the network of dynamic
neurons (Patan and Korbicz, 1997) will be discussed. Taking into account some draw-
backs of such optimization schemes (in the case of feedforward and recurrent neural
networks these learning algorithms may get stuck in local minima during the gradi-
ent descent (Bianchini ef al., 1994)) an alternative approach will be proposed. The
Evolutionary Search with Soft Selection (ESSS) algorithm and forced direction of mu-
tation (Obuchowicz and Korbicz, 1998) seems to be a good solution to overcome the
problems with the EDBP algorithm.

4.1. Extended Dynamic Back-Propagation Algorithm

In both static and dynamic neural networks, the objective is to determine an adaptive
algorithm or a rule which adjust the parameters of the network based on a given set
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of input-output pairs. The idea of error backpropagation is widely applied for that
purpose in static contexts and with extension to dynamic ones. To define an extended
dynamic BP algorithm, the standard approach (Freeman and Skapura, 1991) can be
applied. Assuming that unknown parameter vectors w,a,b and g are considered as
elements of a parameter vector v, the learning process involves the determination of
the vector v* which minimizes the performance index J,(k) based upon the error
function e(k):

T = |le®)|” = |vik) — ()| (5)

where y?(k) is the desired output of the network and y(k) stands for the actual
response of the network on the given input pattern u(k).

The adjustment of the parameters of the s-th neuron in the m-th layer according
to the EDBP algorithm has the form (Patan et al., 1998)

st (k+1) = v (k) + ndg* (k) Sy (k) (6)

where 57, is the sensitivity function and

es(k)F' (714 (k)) for m=M

05" (k)= q Sma (7)
Z (O (k) g o ) B (7 (k) for m=1,...,M —1
=1

In turn, the sensitivity function SJ%(k) for the elements of the unknown gener-
alised parameter v is defined as follows:

(i) sensitivity with respect to feedback parameter al?:
Sais(k) = —gd'y5 (k — 1) v (8)
(ii) sensitivity with respect to feedforward parameter b;:
bis(k) = gz (k — 1) (9)
iii) sensitivity with respect to weight parameter w,:
g b
st =ar (Supge-o-asse-0)
=0 i=1

(iv) sensitivity with respect to slope parameter g™:

S (k) = (k) (11)

4
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4.2. Algorithms of Evolutionary Search with Soft Selection
and Forced Direction of Mutation

The idea based on soft selection has been applied in a few well-known algorithms,
e.g. evolutionary strategies, evolutionary programming, genetic algorithms, simulated
annealing, and evolutionary search with soft selection (Galar, 1985; Goldberg, 1989;
Michalewicz, 1996).

The ESSS algorithm (Galar, 1985) possesses a good ability of saddle crossing,
thus it gives a chance to find a global optimum of the performance index. The
efficiency of the ESSS algorithm is poor when the performance index changes in time,
as is the case e.g. for the error of DMLP network outputs. In order to overcome
these disadvantages, a new algorithm of the so-called ESSS with Forced Direction
of Mutation (ESSS-FDM) was proposed by Obuchowicz and Korbicz (1998). The
structure and main elements of this algorithm are presented below.

The structure of the ESSS-FDM algorithm

Input data

7 is the population size, tmax stands for the maximum number of iterations (epochs),
o denotes the standard deviation of the normal distribution, and p is the momentum
parameter. Moreover, ® : R™ — R, is a non-negative fitness function, n is the
number of features, and v is the initial point of searching (the set of the DMLP
parameters).

Step 1. Initialization
(i) P(0) = {o?,09,...,00}, (v}); = (v§),; + N(0,0),
(i) ¢f = 2(vp)

Step 2. Repeat

(i) Estimation

Pty = ®(P(T) ={d,&,....¢t}, o =2(L), k=12,...,n
(ii) Choice of the best element in the history

£t ot ¢ tH1 1
{vb,vf, 08, .. vk} = oft, P =max{q}, k=0,1,...,9
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(iii) Selection

®(P(t)) = {h1,ho,..., by}, P =min{ %l o q L > ¢ }
1=14

where {(x}]_; arerandom variables uniformly distributed on the interval [0, 1).

(iv) Modification
P(t) - P(t+1)

(U]tc-'-l)i:(vhk) +N(0,0), 7::1’21"‘7’”’ k=1,2,....n

(P(t)) ( (t - 1))
e PE-1)|’

Ei(P(t)) = 5 kot (v0)i

where N(m, a) is a normally-distributed random variable with expectation m
and standard deviation o.

Until ¢ > tmax-

In the ESSS-FDM procedure, selected vectors (individuals) are mutated by
adding to each component a normally-distributed random variable with a given vari-
ance o and an expectation m' # 0, in contrast to the ESSS algorithm, where m! = 0.
The direction of the vector m! is parallel to the latest trends of population drift.
Similar techniques are known in the backpropagation process (momentum technique)
(Freeman and Skapura, 1991). The exogenous parameter p, which is called the mo-
mentum, determines the proportion between the standard deviation ¢ and the length
of the vector m? : u = ||m!||/o.

4.3. Architecture Optimization

The choice of an optimal architecture for an ANN is an important problem in neural-
based FDI systems. Recently, a variety of structure optimisation algorithms have
been proposed. In general, they can be divided into three classes (Doering et al.,
1997):

i) bottom-up approaches: starting with a relatively small structure, these proce-
dures increase the number of hidden neurons and thus the power of the growing
network;

ii) top-down approaches: these procedures start with a network structure that is
supposed to be sufficiently complex to model the relation between input and
output variables; after training they try to reduce the number of hidden neurons
as much as possible;

iii) discrete optimisation methods: each network structure is assigned an evaluation
value and the network structure space is searched by a given algorithm.
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To design an optimal architecture of a cascade network of dynamic neurons,
the well-known cascade-correlation algorithm, i.e. the so-called Fahlman algorithm
(Fahlman and Lebiere, 1990), will be adopted here.

4.3.1. Cascade-Correlation Algorithm

The cascade-correlation approach is an architecture design and a supervised learning
algorithm for artificial neural networks. Instead of adjusting the parameters of the
network of a fixed topology, the basic idea of the cascade-correlation algorithm is
to reduce iteratively the error of the output units by inserting hidden units that
correlate well (or anti-correlate) with the error signal. By freezing the network while
optimizing the new hidden unit candidate the algorithm avoids the moving target
problem of the standard BP algorithm. This algorithm realizes simultaneously two
optimisation problems related to neural networks: the choice of optimal parameters
and architecture design. The network of dynamic neurons obtained is the so-called
Cascade Network of Dynamic Neurons (CNDN).

Outputs
A

ol

Hidden @
neurons (/")
&

A

<

3

Inputs
%D
—

Fig. 5. The cascade network of dynamic neurons.

This algorithm starts without hidden neurons. The direct input-output connec-
tions are trained on-line using the gradient descent method. If the network perfor-
mance is satisfactory, then the procedure is stopped. Otherwise, to reduce the residual
errors, new hidden neurons are added to the network. If a neuron is added to the
network, its input weights and ITR parameters are frozen, and all the output weights
are once trained using the gradient descent method. This procedure repeats until the
error is acceptable.

The neuron creation process begins when the candidate receives trainable input
connections from all of the external network inputs and from all pre-existing hidden
units. The output of this candidate is not connected to the active network yet. The
adjusting of the candidate by input weights and its IIR parameters is performed to
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maximize the following performance index:
SM P

v=3 1> (Vo= V)(Bn — Ei) (12)

i=1 [p=1

where S M is the number of outgut units, P is the number of training patterns, V =
(1/P) Ep_ Vyy Ei = (1/P) 2 p=1Epis Vp denotes the response of the candidate to
an input up and Ep; is the output €rror for up. In order to maximize ¥, the gradient
descent method is used.

In Fig. 5 an example of the cascade network with two inputs and two outputs is
shown. The small circles denote the adaptable weights between neurons and the rect-
angles stand for preprocessing inputs. This is a feedforward series-parallel structure.
Each neuron receives signals from all inputs and all hidden neurons. Such a struc-
ture has some advantages over standard feedforward networks. The first advantage is
preventing the moving target problem. This problem often occurs in standard feed-
forward networks where each neuron adapts its parameters in a constantly changing
environment receiving only small input and output network data. In fact, instead of
quickly adjusting its parameters, the hidden neurons oscillate around the constantly
moving target. In a cascade network each hidden neuron is trained separately. Thus,
it receives all input and output learning data and that is why it can adjust its param-
eters in a correct way. Another advantage is the optimal character of this structure.
Hidden neurons are added to the network architecture one by one until the output
network error is acceptable. In this way, a neural network which is optimal in the
sense of modelling quality can be designed. Let us note that the proposed network
is neither optimal in the sense of the number of hidden neurons nor the number of
parameters.

5. Fault Analyzer

Another important module in the FDI system under consideration (Fig. 2) is the
residual evaluation one. It selects the best fitting group of neural prediction models
for either normal operation or one of the learnt faulty situations. This decision-
making process can also be considered as a classification problem (Leonhardt and
Ayoubi, 1997). For fault classification a few methods can be utilised: geometric,
neural and fuzzy ones. All of them use a reference pattern for learning.

5.1. Nearest Neighbour Classifier

This classifier belongs to a simple group of classification algorithms which is based on
geometric distance computations. The task is to match each pattern of the residual
vector r;, i = 1,2,...,P with one of the preassigned classes of faults f,, j =
1,2,..., N to which it has the shortest distance. In a Nearest-Neighbour (NN)-
classifier the geometric distance d; is defined by

Z = ref v (13)

J=1
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where r; =[r; 72 -+ T] is a fault pattern vector, i = 1,2,..., N indexes each
fault, and 7 denotes the reference pattern vector. An NN-classifier works based on
the best ‘guess’ or estimate of the class type, which is obtained from comparing the
current query pattern with all the patterns in the knowledge base, and selecting the
pattern which is the closest. This classifier works well in many cases and when the
class clasters overlap as well. The generation of the NN-algorithm is known as the
k-nearest-neighbour algorithm (Looney, 1997).

5.2. Neural Network Classifier

In comparison with a geometrical classifier a more robust decision is achieved using
a neural network as the pattern classifier (Marcu and Mirea, 1997; Terra and Tinos,
1999). Before applying the neural network to evaluate the residuals generated by
a bank of neural models, the network has to be trained for this task. To do that a
residual data base r;, i =1,2,..., N and the corresponding fault signature {r;, f;}
data base have to exist.

Various neural network architectures can be applied to the neural classifier re-
alization. One of the most often used neural architectures is the multilayer percep-
tron (Marcu and Mirea, 1997; Zhou and Bennett, 1997). This neural network with
non-linear neurons (e.g. sigmoids) is static, and it is proved to be a universal approx-
imator of any non-linear, but static function. Its training can be performed using the
well-known backpropagation algorithm. Such a network maps the patterns from the
feature space into a decision space. One of the major difficulties in application of neu-
ral networks to fault-detection schemes is the lack of analytical information about the
performance, stability and robustness of the network. Other network architectures
can be utilised for the classification problem as well. For example, Terra and Tinos
(1999) employed an RBF-type network, and the Restricted-Coulomb-Energy (RCE)
network was implemented by Koppen-Selliger and Frank (1999).

Taking into account the fact that a common neural network of a finite size does
not often load a particular mapping or its generalization is poor, a parallel structure
of neural experts was proposed by Marciniak and Korbicz (1999). The basic idea of
this approach is to develop n independently trained networks with relevant features
to classify a given output pattern by utilising combination methods to decide the
collective classification.

5.3. Fuzzy Classifier

According to a general concept (Koppen-Seliger and Frank, 1999; Marcu, 1996), the
fuzzy residual evaluation is a process that transforms quantitative knowledge (residu-
als r1,72,...,7N) into qualitative one (fault indications fi, fa,..., fn). The principle
of fuzzy residual evaluation consists of three steps: fuzzification, inference and fault
indication (defuzzification) (Frank and Képpen-Seliger, 1997).

The fuzzification of the residuals is a mapping of the representation using non-
fuzzy values into a representation by fuzzy sets via membership functions. The output
is a fuzzy degree of membership, which is always from the interval [0,1]. By using
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membership functions, the input space can be divided into a certain number of linguis-
tic variables (e.g. ‘small’, ‘medium’, ‘Large’). The evolution of membership functions
can be assigned on the basis of heuristic process knowledge, statistical distribution
functions, subjective knowledge, or by learning with the aid of neural networks.

The task of fault decision is to infer f; of the set F' of the possible faults from
a set R of residuals. It is important to note that the residuals r;, i =1,2,..., N
are defined by their fuzzy sets, and the relationships between the residuals r; and
the faults f; in terms of IF/THEN rules can be given. Then the rules described by
using the theory of fuzzy logic form a knowledge base of the type (K&ppen-Seliger
and Frank, 1997)

IF (effect =rj;) AND IF (effect =r;5) AND ... THEN (cause = f;)

where 15, k& =1,2,...,k describes the k-th fuzzy set of the j-th residual. Those
rules form the knowledge base of the resulting diagnostic expert system. In other
words, a mapping of the residuals onto the faults with the aid of the rules in the
knowledge base is the main task of the inference procedure.

A proper presentation of a faulty situation to the operator is the next step of
the procedure. In general, each fuzzy fault indication signal is a singleton whose
amplitude characterizes the degree of membership to only one, preassigned fuzzy set.
The representation of a fault indication signal for each fault to the operator in a
fuzzy format by the desired degree of membership to the set fault;, 1 =1,2,...,n is
assumed to be given.

6. Applications

In this section, two illustrative examples to show the effectiveness of the proposed
approach in the FDI system are considered. The ESSS-FDM algorithm as a training
method for a network of dynamic neurons has been implemented in a neural model
of Narendra’s dynamic system (Narendra and Parthasarathy, 1990). The compari-
son benchmarks between the dynamic network under consideration and other neural
network architectures is presented as well. The next example concerns a laboratory
process: a two-tank system. A diagnosing system is designed to detect and evaluate
incipient faults. The modelling using the dynamic networks designed by the cascade-
correlation procedure is the most important phase in implementation of the proposed
fault diagnosis scheme. For fault classification three different techniques have been
implemented: analytical, neural networks and fuzzy logic one.

6.1. Narendra’s Dynamic System

Assume that the measured process is described by the following difference equation
(Narendra and Parthasarathy, 1990):

y(k) = £ (y(k = 1), 906 — 2), ulk), ulk — 1), y(k - 2)) (14)
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where the non-linear function f(-) is given by
T1T2T3Ts(z3 — 1) +
f(z1,22, 23,24, 25) = 12235 (73 — 1) + 24 (15)

_ 1+ 23 + 23
To check the efficiency of the dynamic MLP as a tool for modelling dynamic systems,
the network under consideration and the chosen Elman network, along with the recur-
rent network with external feedbacks, will be compared. The network structures and
learning parameters were chosen experimentally. After finishing the learning process,
all the networks were tested using the same input given by

sin(2mk/250) for k < 250 "
16

0.8 sin(27k/250) + 0.2sin(27k/25) for k > 250

In order to compare modelling results, let us define the performance index
2
P
Dot (yd(p) - y(p))
J = 5 (17)
P
Zp:]_ (yd(p))

where y%(p) and y(p) denote the desired and network outputs, respectively, and P
is the size of the testing inputs.

The test results of both the recurrent and Elman networks are shown in Fig. 6.
The system output is marked by a solid line and the neural network output is rep-
resented by a dotted line. In Tables 1 and 2 characteristics of both the networks
are indicated. In each case the backpropagation algorithm was implemented. The

simulation experiment was performed on a PC with Intel PII 333 MHz processor and
128 MB RAM.

Table 1. Characteristics and parameters of the Elman network.

ELMAN NETWORK

Network characteristics |

—

size of network 1-15-1 1-20-1 1-50-1
number of parameters 61 81 201
number of iterations 20000 20000 20000
learning time ~ 1,05 min | ~ 1,12 min | ~ 1,64 min
performance index J 0,0781 0,0224 0,0469

Table 2. Characteristics and parameters of the recurrent network with external feedbacks.

RECURRENT NETWORK WITH
Network characteristics EXTERNAL FEEDBACKS
size of network 5-10-7-1 5-15-10-1 5-20-10-1
number of parameters 145 261 341
number of iterations 20000 20000 20000
learning time ~ 1,51 min | ~ 1,63 min | ~ 1,62 min
performance index J 0,0371 0,0356 0,0206
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0 100 200 300 400 500 c 100 200 300 400 500
(a) (b)

Fig. 6. Outputs of the process and neural model in the testing case: (a) Elman network of
class N12—20—1, (b) recurrent network with external feedbacks N2_s0_10-1-

To model Narendra’s dynamic system, a dynamic MLP network belonging to
class NZ_;_; was chosen (one hidden layer with five neurons). Each neuron contains
a second-order IIR filter. Hence, 52 adaptable parameters have to be adjusted in
the training process. The parameters of the ESSS-FDM algorithm were as follows:
the size of population 1 = 20; the momentum g = 0.0545; the maximum number
of iterations tmax = 5000; the variance of modification ¢ = 0.075 for t < 200 and
o =0.015 for ¢ > 200. A set of 5000 training patterns for the on-line training process
was generated. Figure 7 shows the system and neural model outputs for different
chosen inputs.

The implemented three networks were trained using the on-line backpropagation
learning method. It was found that in the case of the recurrent network the learning
time was very small (< 2min) and the quality range of learning, expressed by the
performance index J, in the best case was ~ 0,02. Experiments showed that it is
very hard to train any recurrent network in order to obtain a smaller value of the
performance index.

In the case of the dynamic MLP network trained with the ESSS-FDM algorithm,
a very good quality (J = 0.0058) was obtained. From Fig. 7 it follows that the
performance of the system modelling is high for different inputs. Unfortunately, the
ESSS-FDM algorithm is more time-consuming than the EDBP one. Based on this
approach a good quality model of the dynamic process can be designed. It was found
that dynamic MLP network with ESSS-FDM learning algorithm can be applied in
the cases where high modelling quality is required and the learning time does not
matter. In other cases, the EDBP algorithm is recommended to train the dynamic
MLP network. Moreover, it can be seen from Tables 1 and 2 that the size of the
recurrent networks is pretty Large and after learning, during normal work the time of
identification of these networks will be longer than in the case of the dynamic MLP.
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6.2. Diagnosis of the Two-Tank System

Process Description. The experimental setup Two-Tank System consists of two
cylindrical tanks with identical cross sections being filled with water and with a delay
spiral pipeline (see Fig. 8). The nominal outflow @, is located at Tank 2. The pump
driven by a DC motor supplies Tank 1, where @1 is the inflow of the liquid through
pump to Tank 1. Both the tanks are equipped with sensors for measuring the level of
the liquid (h1, ho). Valves Vi, Va, V3, V4 and Vg are electronic switching ones. The
aim of the two-tank system control is to keep up the water level in Tank 2 constant.

= SPIRAL
* PIPELINE

Fig. 8. Two-tank system with a delay spiral pipeline.

The connecting pipeline and tanks are additionally equipped with manual ad-
justable valves and outlets to simulate clogs and leaks. Four classes of process be-
haviour were taken into consideration in this experiment. They are as follows: f, —
normal behaviour, f; — valve V5 is closed and blocked, f» — valve V3 is open and
blocked, and f; — a leakage in Tank 1.

Residual Generation. In the proposed FDI system four classes of system behaviour
(normal condition fu and three faults f;~f3) are modelled by a bank of neural ob-
servers designed by the cascade-correlation algorithm. MODEL 0 reflects the system
under normal conditions and MODEL 1, MODEL 2 as well as MODEL 3 express
faults fi, fo» and f3, respectively.

The characteristics of the neural models are presented in Table 3. The notation
N,_1 means that the cascade-correlation network consists of v hidden neurons and
one output neuron. Good modelling results for relatively small network sizes were
obtained.

Based on cascade-correlation network observers the residual signals were gener-
ated (see Fig. 9). Each model was sensitive to one of the system behaviour class
and generated a residual signal near zero. The value of the residual ry, (assigned to
the normal condition) significantly differs from zero when one of the faults occurred
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Table 3. Characteristics of the neural models.

NETWORK CLASS OF THE SYSTEM BEHAVIOUR
PARAMETERS Normal
conditions Fault No.1 | Fault No.2 | Fault No.3
Name of the network | MODELO | MODEL1 | MODEL?2 | MODEL 3
Size of the network N3, No_1 No_1 No_4
Order of the filter first first second first
0.05 MODELO 0.1 Normal condition Fault No.1
0 /wn 11 T 1r O (.
i e
- q Y IRREARA SN R
0.05 Normal condition Fault No.1 -0.1 |I-| ‘ (J WH H ! MODELI
0 1000 2000 0 1000 2000
(a) (b)
Nomal condition Fault No.2 0.1 MODEI3
0.05 ' ({awmwwmw ¢
0 = 0 ot
AR j s
-0.05 0.1
MODEL?2 *" INomnal condition Fault No.3
0 1000 2000 0 1000 2000
(c) (d

Fig. 9. Residuals behaviour for different cases.

(Fig. 9(a)). During our experiment, at the beginning the diagnosed system worked
properly and only after 1000 iterations some faults occurred. The residual 7y, as-
signed to the fault f; generates a deviation from zero under the normal operation of
the system and is almost zero when f; occurs (Figs. 9(b)-9(d)).

Residual Evaluation. The residuals should be transformed into the fault vector f
to detect and locate the faults. This operation can be seen as a classification problem.
Each pattern of the symptom vector r = [rg r1 7 73] is assigned to one of the classes
of system behaviour {fo, fi, f2, f3}. Such a decision can be achieved using various
pattern classifiers based on artificial intelligence techniques (neural networks and fuzzy
logic) and on the analytical approach (nearest neighbour).

Neural Classifier. In fact, the neural classifier should map a relation in the form
T :R* - R™ : ¥(r) = f. This is a static mapping and a multilayer feedforward
network can be successfully applied in the residual evaluation process. Each bit of
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the created binary vector f is sensitive to a particular fault. The coding of the faults
is shown in Table 4. The representations of the fault vector f presented in Table 4
match all the known kinds of system conditions. In the case of normal operation
the classifier should generate f = [0 0 0]. Any other vector representation (e.g.
f =1[1 1 1]) shows that the system operates under unrecognized conditions. To
perform residual evaluation, the well-known static multilayer feedforward network
can be used. The applied network belongs to class Nj, ;. The training process
was carried out off-line for 20000 steps using the backpropagation algorithm with
momentum and adaptive learning rate. The learning data consist of 200 patterns
— fifty patterns per one class of system behaviour. The activation functions in the
hidden layers were of the hyperbolic tangent type and in the output layer of the linear
type. Taking into account the fact that one of the assumptions was a binary response
of the classifier (Table 4), its output should be close to the nearest integer, while the
classifier output differs from the desired value less than the assumed accuracy called
the confidence level (Fig. 10).

Table 4. Coding of the faults.

Fault vector f =[f1 f2 fs]
i | fa ] fa

Kind of fault

Normal conditions

Valve V5 closed and blocked
Valve V; opened and blocked
Leak in Tank 1

(o] B New) Naw)
=IO OoO|O

oloj—=| o

1.02 . T T T

1.015¢ Confidence interval

1.01

1.005 ¢

0.995] *

0.99 ¥

0.985

0.981

0.975}

0.97 s . . .
150 160 170 180 190 200

Fig. 10. Rounding of the classifier output.
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Table 5 illustrates the relation between the value of the confidence level and the
percentage of non-classified and badly classified system behaviours. This result relates
to the case of detection of fy.

Table 5. Relation between the confidence level and non-
classified and badly classified system behaviours.

Confidence | Non-classified | Badly classified

level behaviours behaviours
0.1 7.8% 15.4%
0.05 10.5% 14.1%
0.02 13.9% 12.1%
0.01 16.8% 10.3%
0.004 21.9% 8.1%
0.001 97.7% 2.2%

The applied classifier indicates a simple structure and a non-complicated training
algorithm. However, it has one main disadvantage: it needs rounding the classifier
output with a fixed confidence level. This leads to the undesirable effect of non-
classified system behaviour. In fact, alongside with increasing the confidence level,
the number of non-classified behaviours is decreased, but badly classified ones are
increased too. Summarizing, such a classifier should be used in the case when each
single system behaviour is assigned to a suitable set of process behaviours.

Nearest Neighbour Classifier. This analytical approach works by saving the set of
exemplars or prototype patterns which were already classified in a data set. For this
technique, our ‘knowledge’ is the set of labelled paterns denoted by {rp, fo}7_;. In
the case of a diagnostic system, the ‘knowledge’ base consists of 200 patterns, fifty
patterns for each class of system behaviour (the same data set is in the case of the
neural classifier). The output of the NN-classfier was labelled as follows: 1 — normal
conditions, 2 - occurence of fi, 3 — occurence of f2, and 4 — occurence of f;. In
Fig. 11 classification results are presented for the case when the NN-classfier was
applied.

In all simulations, faulty situations occur after about 1030 time steps. Table 6
presents the percentage of badly classified system behaviours by the NN-classifier.

Table 6. Percentage of badly classified system behaviours.

Class of the Badly classified
system behaviour behaviours
normal conditions 1.56 %

fault f; 11.3 %
fault fs 19.6 %
fault fs 7.7 %




540 J. Korbicz, K. Patan and A. Obuchowicz

4= —
=
=
= 3
o
5
&
2 2
&
1
0 500 1000 1500
Time steps (a)
4} =
-
=
ja®
5 3 S ———
[=]
5
k:
2 o I
E
(@]
1
0 500 1000 1500
Time steps (b)
4»-
-
=
2
= 3t
o
3
&
g ot e e ek
&
1
0 500 1000 1500 2000
Time steps (c)

Fig. 11. Three faulty situations and their classification by the NN-classifier:
(a) occurence of f1, (b) occurence of fo, and (c) occurence of fs.
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Fig. 12. Placement of the membership functions for the input.

As can be seen from Tables 5 and 6, the NN-classifier is more efficient than the
neural network one. Moreover, any behaviour is ascribed to one of the known classes
of system behaviours. Therefore, this classifier has another advantage over the neural
one. It excludes the occurence of non-classified system behaviours. In spite of that,
the number of badly classified behaviours is still considerable.

Fuzzy Logic Classifier. In our diagnostic system the Fuzzy Logic (FL) classifier has
four inputs (residual signals) and three outputs (number of faults). Each input is
divided into seven linguistic variables described by suitable membership functions
(Fig. 12). Each linguistic variable is labelled by terms ‘Large negative’, ‘medium neg-
ative’, ‘small negative’, ‘zero’, ‘small positive’, ‘medium positive’ and ‘Large positive’.
All the membership functions were true Gaussian ones. In turn, the output variables
were divided into two linguistic variables called ‘healthy’ and ‘faulty’ (see Fig. 13).
The fuzzy inference system returns outputs of the range from 0% to 100 %. Tak-
ing into account courses of the residual signals, fuzzy logic rules can be determined.

An example of such a rule related to the diagnostic system under consideration is
presented below:

Ry: IF residual 0 is zero AND residual 1 is small negative
AND residual 2 is medium negative AND residual 3 is medium positive
THEN output 1 is healthy, output 2 is healthy, output 3 is healthy

The defuzzification operation was carried out using the midst of the maximum
method. The results obtained using the FL-classifier are presented in Fig. 14. As is
seen from Fig. 14, this method recognizes faulty situations very well. For example, let
us consider the behaviour of the system presented in Fig. 14(a) after 2000 time steps.
The output vector [70%, 30 %, 30 %] is obtained. This means that the probability
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Fig. 13. Placement of the membership function for output.

of Fault 1 is 70 %, probability of Fault 2 is 30 %, and probability of Fault 3 is 30 %.
With certainty we can confirm that fault f; occurs in the system. Using fuzzy
reasoning better results than in the case of the NN-classifier can be obtained. A Large
improvement is seen especially in the case of fault fs. It spite of a high efficiency of
the FL-classifier it is necessary to notice that the choice of the number of linguistic
variables, as well as generating fuzzy rules, is not a trivial problem. Therefore, to solve
this problem, one can combine the linguistic ability of fuzzy logic with the learning
ability of neural networks. Thus, a neuro-fuzzy classifier can be obtained.

7. Conclusions

This paper has presented a scheme for fault detection and diagnosis in dynamic non-
linear systems. The key task in implementation of this scheme is to obtain the neural
network of dynamic neurons with internal feedbacks. The cascade-correlation algo-
rithm has been used for the network architecture and parameter allocation. This
algorithm is more effective than the extended dynamic backpropagation one, which
usually gets stuck in unsatisfactory local minima of the error function, and is not
time-consuming unlike algorithms of global optimization. The inconvenience of the
cascade-correlation application is related to the fact that the cascade architecture of
the dynamic network is not optimal in the sense of the number of hidden neurons.
The redundancy of the network parameters can lead to a high dependence between
the realized network function and the actual realization of the training set.

The residuals generated by using a bank of dynamic neural nets are classified by
three types of classifiers: neural, fuzzy and nearest neighbour ones. The study demon-
strates that dynamic neural networks provide an efficient tool for system modelling
and identification. In turn, for pattern recognition in the sense of residual evaluation,
fuzzy logic is a more efficient tool.
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Fig. 14. Three faulty situations and their classification by the FL-classifier:
(a) occurence of fi, (b) occurence of f2, and (c) occurence of fs.
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Further research will be focused on investigation of the behaviour of the proposed
fault detection system in the case when more than one fault or combination of faults
occur, e.g. valve V, is blocked in a certain position. Moreover, another classifier
structure, i.e. neuro-fuzzy one, will be tested too to improve recognition quality of
the FDI system.
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