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ITERATIVE CONSTRUCTION AND
OPTIMIZATION OF FUZZY MODELS

NOUREDDINE GOLEA*, KuieErR BENMAHAMMED**

In this paper, a constructive approach to the fuzzy model selection problem
is developed. First, the selection of membership functions is decoupled from
parameter calculations using an orthogonalization procedure. Since each mem-
bership function depends only on its own parameters, the selection of rules is
performed in a sequential manner. At each learning step, a new membership
function is created and its parameters are optimized. The resulting parameter
calculation boils down to the solution of a triangular system. This approach re-
duces significantly the computational complexity, and allows for the derivation of
a simple optimization algorithm. In addition, optimization of the membership
functions is related to the approximation accuracy. Simulation results, when
compared with the orthogonal least-squares algorithm, show that this approach
is less sensitive to the size of the training data and converges rapidly.
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1. Introduction

Fuzzy systems have recently found extensive applications in a wide variety of domains
(see e.g. Lee, 1992 and references therein). This is essentially due to two main features:
first, fuzzy systems allow for simple inclusion of qualitative knowledge and, second,
they do not require the existence of an analytical model of the system. In most
applications of fuzzy systems, the main design objective can be transformed to the
search for a desired model from the input space to the output space. Thus, the
problem of designing fuzzy models can be viewed as a function approximation one.
Recently, the approximation capability has been proved for a large class of fuzzy
systems (Kosko, 1992; Wang and Mendel, 1993; Ying, 1994), i.e. we have learnt that
they can approximate any continuous function on a compact set to an arbitrary degree
of accuracy. Although at first sight this result appears to be attractive, it does not
provide much insight into the following practical problem: for a prescribed accuracy
on a given compact space, which fuzzy model structure and parameters achieve the
best approximation? In fact, the above result was obtained without any condition on
the fuzzy model structure. Conceptually, a fuzzy model with few rules will be unable
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to capture the underlying function from which the data were generated, while a fuzzy
model with too many rules will fit the noise in the data and again result in a poor
approximation of the underlying function. To tackle this problem, various learning
schemes have been proposed over the last years, which attempt generally to realize
two major tasks:

i) Selection of the appropriate fuzzification for input/output spaces and the num-
ber of rules, i.e. structure selection.

ii) Selection of a set of free parameters that would maximize the fuzzy model
performance for a given approximation problem.

A conventional approach to this problem is to cover uniformly the input space
with membership functions and to use linear optimization techniques to find the miss-
ing parameters. However, the cost of using linear algorithms and unimodal error sur-
faces is the need for an exponentially increasing number of rules in high-dimensional
spaces, and therefore this approach is only advised in lower-dimensional spaces. In
(Horikawa et al., 1992; Wang, 1995) nonlinear optimization algorithms are used to
learn the parameters of a fixed a-priori fuzzy model structure. The empirically chosen
structure may be suboptimal, and many trials may be necessary to find the appropri-
ate one. Another possible approach is to realize a self-organizing choice of appropriate
rules based on an unsupervised clustering algorithm (Lin and Cunningham, 1995; Eu-
ntai et al., 1997; Juang and Lin, 1998). This allows the membership functions to be
grouped in statistically important input/output data regions. The free parameters
are then determined using a supervised learning algorithm. However, the membership
functions found in an unsupervised manner are not always optimal, and the supervised
learning algorithm cannot fully exploit the complete set of functions that the fuzzy
model is capable of implementing. New approaches include techniques that select
the parameters of the appropriate membership functions as a subset of the training
samples. In (Wang and Mendel, 1992; Hohensohn and Mendel, 1996), the orthogonal
least-squares (OLS) algorithm and an incremental index are used to select the appro-
priate rules. The orthogonality of the rules allows the contribution of each rule to
the approximation to be calculated independently. However, the performance of the
OLS algorithm is very sensitive to the training data size, and the set of selected rules
cannot be larger than the training set. Other approaches use structure identification
and clustering algorithms to select the rules. They either start with one rule and add
new rules as needed, or start with a large number of rules and perform the selection
by pruning unnecessary rules (e.g. Sugeno and Kang, 1988; Yoshinari et al., 1993;
Nozaki et al., 1996). Recently, a good performance for a small-sized fuzzy model has
been achieved by selecting the rules using genetic algorithms (Karr, 1991; Homaifar
and McCormick, 1995).

In this work, the fuzzy model construction is formulated as a nonlinear least-
squares problem depending on both the membership functions and resulting parame-
ters. Because the parameters enter the squared error criterion in a quadratic manner,
their calculation is decoupled from the membership function optimization using the
generalized Gram-Schmidt orthogonalization. As each membership function depends
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on its own parameters, the appropriate membership functions are learnt sequentially.
At each step, a new membership function is added and its parameters are optimized,
until a required level of accuracy is obtained. This approach provides two advantages:
First, membership function creation and optimization are related to the approxi-
mation performance, i.e. the fuzzy model complexity is controlled by the specified
approximation accuracy. Second, this approach provides a suitable solution to the
nonlinear optimization problem, since the number of the parameters to be optimized
at each step is independent of the fuzzy model size. The simulation results for the gas
furnace data prediction and the control of a complex nonlinear system, reveal that
this approach reduces significantly the time and storage requirements, and exhibits
good performance for small training data size.

2. Problem Statement

2.1. Fuzzy Models

In the following we assume that fuzzy models are multi-input single-output systems:
X — Y, where X = X; x Xo X -+ x X, C R" is the input space and ¥ C R
is the output space. A multi-output model can always be separated into a set of
single-output models.

Consider a fuzzy model (see Fig. 1) which consists of four principal components:
fuzzifier, fuzzy rule base, fuzzy inference engine, and defuzzifier. The rule base consists
of the fuzzy rules in the following form:

Ri: If uy is Ay and ug is Ajp and ... and u, is Ajy Then v is B;
or
Ri: If u is A; Then v is By, (1)

where u = (ug,u2,... ,u,) € X and v € Y are linguistic variables. Their numerical
values are = (21, %2,...,%n) € X and y € Y, respectively. A;; (1 =1,...,M;j =
1,...,n) in X; and B; (i =1,...,M) in Y are fuzzy sets characterized by the
membership functions A;;(z;) and B;(y), respectively. A; is the fuzzy set in X
describing the input vector & with the membership function

Az(m) = An (.’El)*Aig(ﬂig)*---*Ain(In), (2)

where % is a T-norm. The most common T-norms are ‘product’ and ‘min’ (Lee,
1992). Each rule R; can be viewed as a fuzzy implication (relation) R; : A; — B;,
which is a fuzzy set in X x Y with the membership function

Ri(z,y) = Ai(z) * Bi(y). (3)

The fuzzy inference engine is a decision-making logic that employs fuzzy rules
from the rule base to determine a mapping from the fuzzy sets in the input space X
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Fig. 1. Fuzzy system components.

to the fuzzy sets in the output space Y. Let A be an arbitrary fuzzy set in X. Then
each rule R; of (1) determines a fuzzy set Yaog, in ¥ based on sup-star composition

Yaor: (y) = sup { A(e) » Ri(2,9) }. (4)
zeX
If we choose % in(2) and (3) to be an algebraic product, (4) becomes

Yaon: (y) = sup { A(2) A (@) B (v) }. (5)
zeX

The fuzzifier maps a crisp point x into a fuzzy set A in X. In general, there are
two possible choices of this mapping, namely a singleton or a nonsingleton. In this
work, we use the singleton fuzzifier mapping, i.e. A(@’) =1 if 2’ =z and A(z') =0
if 2’ # x.

The defuzzifier performs a mapping from the fuzzy sets in Y to crisp points in
Y. Here, we choose the defuzzifier to be the weighted-sum defuzzifier, which maps
the fuzzy set (5) to a crisp point

M
Y= ZinAORi (’LUZ) s (6)

i=1
where w; is the point in Y at which B;(y) achieves its maximum.

The choice of membership functions is quite subjective, but if their parameters
are to be optimized, they must be differentiable. From the approximation theory
point of view (Poggio and Girosi, 1990), a Gaussian membership function is a good
choice. In this paper, we use the following Gaussian membership function:

Aii(z) = exp ( — P2 (z(t) - cij)z). (7)

The fuzzy system with the Gaussian membership function (7), the product infer-
ence (5), the singleton fuzzifier, and the weighted-sum defuzzifier (5) is of the following
form:

M n
y= exp |- p(z;(t) —cy)” | wi. ®)
=1 j=1



Tterative construction and optimization of fuzzy models 903

2.2. Approximation Problem

According to the universal approximation property, a given set of inputs x(t) =
(z1t),25(t),-..,%n(t)) and the corresponding desired output d(t) can be approxi-
mated, to any chosen accuracy, by a ‘correctly constructed’ fuzzy model, such that

M
d(t) = ZAi(fﬂ(t)a 0;)wi + e(t), 9)

=1
where 0; = (¢i1,---,Cin,Pi1,--- ,pin)T is the parameter vector controlling the shape

and the location of the membership function A;(-), and e(t) is the modeling error at
sample t.

For t=1,...,N, (9) can be written in the following matrix form:
e=d-®(0)w, (10)
where
e=[e1) e e 17, (11)
d=[d1) d@ - dv) ], (12)
w=[w w - wy 17, (13)
(@) = [ ¢1(61) é(02) - du(On) |, (14)
with
6:(0:) = [ A4:(65,2(1)) Ai(05,2(2) - Ai(0s,@(N) D
and
@:(91,92,---,9M). (16)
The squared-error criterion is given by
J(©,w) = [d— ®(@®)w]’ [d-&(©)w]. (17)

The objective is to minimize (17) by a proper choice of the fuzzy model structure
and parameters. Since the resulting parameters w enter (17) in a quadratic form,
their computation can be decoupled from the selection of the membership functions
A;(0;) (represented by the vector ¢,(0;)). To perform such decoupling, the algorithm
developed for nonlinear separation of variables (Golub and Pereyra, 1973) will be
adopted.
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3. Decoupling Algorithm

In order to decouple J(®,w), the concept of orthogonal vectors is used (Schilling
and Lee, 1988). A given vector d € RV can be uniquely decomposed as

d=d; + ds, (18)
where d; and dp are orthogonal vectors with the following inner-product property:
didy =0, (19)
di being a unique vector contained in the range space spanned by ®(®) and d»
being a unique vector that is orthogonal to it. The determination of the orthogonal
vectors involves the computation of the N x N projection matrix P(@®) which spans

the same space of ®(®). It can be shown that P(®) is given by the following
expression:

P(©) = 3(0)[37(0)3(®)] ' 87(0). (20)
Then the orthogonal vectors in (18) are given by

d, = P(®)d,

d2 = [In ~ P(©)]d, (21)
and the decomposition of the vector d is given by

d=P(©)d+ [Iy - P(®)]d. (22)

A convenient form of the projection matrix P(®) is computed using the gen-
eralized Gram-Schmidt orthogonalization (Cadzow, 1990), where the N x M matrix
®(0) is decomposed as

%(0) = Q(®)R(0), (23)
where

QO) = ¢,(81) 45(01,62) ... a4y (01,0s,....60n) | (24)
is the N x M matrix with orthogonal columns, such that

QT(©)Q(e) = Iy (25)

and R(®) isan M x M upper triangular matrix.
The matrix P(@) is obtained by substitution of (23) in (20), which gives

P(©) =Q(0)Q7 (). (26)



Iterative construction and optimization of fuzzy models 905

Substituting (22) in (17) and developing the result, we get
7(©,) = ([Iy - P©)d) [Iy - P(©)]d
+[P(@)d - 3(©)w]” [P(©)d - &(©)w)]
+ [P(@)d - ®©)w]" [Iy — P(©)]d

T
N ([IN ~ P(®)] d) [P(©)d — ®(®)w] (27)

using the properties of the projection matrix (i.e. PO)T = P(®), P(®)* =P(O),
and P(®)®(®) = &(®)), we can prove that the third and fourth terms in (27) are
zero and (27) can be simplified to :

J(®,w) = d* [Iy—P(©)]d+ [P(0)d-&(8)w]” [P(©)d-3(©)w]. (28)
The first term of (28) denoted by
Jo(®) =d"[Iy — P(©)]d (29)

is independent of the parameters w and can be minimized by selecting an appropriate
set of membership functions. The second term of (28) is in the sequel denoted by

Jw(w,©) = [P(@)d - 3(@)w]” [P(©)d - &(©)w)]. (30)

For any selection of the parameters @°, J,,(w,®°) can be made zero using the
following selection of w:

w’ = R71(0°)Q"(8°%d. (31)

The result (31) is very important, because it indicates that the modelling error de-
pends only on the value of the criterion (29), i.e. on the choice of the membership
functions. Thus, the criteria (29) and (30) provide a more convenient form to con-
struct the fuzzy model that best fits the modelled data, by learning independently its
appropriate set of membership functions and consequent parameters using a simple
learning scheme.

4. Tterative Construction

The fuzzy model construction is achieved in an iterative manner, by decomposing the
problem into a sequence of simpler ones which consist in calculating parameters of
individual rules. Thus, at each step one membership function is introduced and its
parameter vector 8; is adjusted to minimize (29). The computational steps of this
approach are summarized in the following:

o In the first step, the first membership function ¢,(61) (i.e. A1(61)) is intro-
duced, the orthogonalization procedure provides the projection matrix P;(6,),
and the criterion (29) is given by

Jo(6:1) =d" [Ix — P1(61)]d. o (32)
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e In the second step, the first membership function is fixed as ¢;(67), and the
second membership function ¢,(#2) is added, which gives P5(62) (fixed pa-
rameters are omitted where it is convenient), so we get the following criterion:

Jo(0) = d” [In — PY]d — d"P»(6,)d (33)
which can be rewritten as
Jo(02) = J§; — dT P»(8,)d. (34)

o In the k-th step we introduce the membership function ¢ (8;). We get P (61)
and the following criterion:

Jo(0r) = J3,_, — dT Py (60y)d. (35)

Expression (35) provides an iterative form to minimize (29), by considering the
optimization of the parameter vector of one membership function at each step.
Since the number of the parameters to be optimized during each learning step is
the same, the computational cost is relatively constant and does not scale with
the fuzzy model size.

o The iterative construction is stopped at the M,-th step whenever

Jo (6

o) <. (36)
€ being a chosen tolerance parameter. The division by the data energy has a
clear normalizing effect on (36), thus the normalized stopping criterion values
always lie in the interval [0,1]. Note that any other statistical criterion that
provides a compromise between the ‘model fit’ and the ‘model complexity’ can
be used as the stopping criterion.

5. Parameter Optimization

As the parameter vector @} enters (35) in a nonlinear fashion, nonlinear optimization
techniques will be used to perform parameter adaptation. At the k-th learning step,
the parameter vector 8y is updated according to the following formula:

0x(l+1) = 04 (1) — yH (O, 1), (37)

where [ is the iteration step and -y is the learning step size chosen to guarantee the
convergence of the iterative process. The mapping H(-) indicates the search direc-
tion, depending on the optimization algorithm used. The steepest descent algorithm
involves small computational requirements, but it converges slowly. Newton-type algo-
rithms provide a rapid convergence rate with more computation complexity (Eykhoff,
1979).
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If the gradient algorithm is to be used, then

H(0) = VJp(6y), (38)
where VJi(8%) is the gradient with respect to the parameter vector 6y given by
P (0,
VJi(0r) = _gr2Pr08) 4 (39)
00y,

From (39) it is seen that H (@) involves the computation of the partial derivatives
of P.(0)) with respect to the vector 6. By taking the derivative of the two sides
of the identity

P(0;)®(0x) = ®(6x) (40)
and arranging the resulting terms, we get

oP(0y) _ 0®(6y)

——W@(Bk) = [Iy — P(6y)] 50, (41)

The general solution to (41) was developed by Golub and Pereyra (1973), but a more
useful formula was derived by Kaufman (1975), which offers the same convergence
characteristics, where the expression for the required partial derivatives is as follows:

PO (1w - po) a2+ 00), “2)

®F(0:) = (87 (0:)®(01)) " @7 (0y) is the pseudo-inverse of B(6y).

In the sequential learning context, a much simpler form of the required partial
derivatives can be derived. For that purpose, identity (40) at the k-th learning step
is decomposed as

P(6x)0,(60r) = ¢01,(60k) (43)

and the projection matrix P(0}) is written in the following iterative form:

k—1
P(6r) =Y _ P} + Py (6y). (44)

i=1

Then the approximate partial derivatives expression is given by

oP, (0 o, (65 Tg
Par = 1~ Pon) G o ((Zi)(rﬁz)(f)k)'

00,

Expression (45) presents, when compared with those already derived, the advan-
tage to be computationally simpler, and its computation is undertaken by using the
elements already used in the orthogonalization procedure, i.e. there is no need for
computing the inverse of R (Golub and Pereyra, 1973) or the pseudo-inverse of &
(Kaufman, 1975). Note that the expression derived for partial derivatives remains
valid when the gradient algorithm is replaced by any other nonlinear optimization
algorithm, e.g. Gauss-Newton or Marquardt algorithms.

(45)
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6. Multivariable Case

The foregoing approach can be easily extended to the approximation problem for
multivariable systems. Consider the set of inputs z(t) = (21(2), z2(%), ...,z (t)) and
the corresponding desired outputs (dy(t),ds(t), ..., d,(t)) which can be approximated
by the following MIMO fuzzy model:

ZA 0:)wi; +e;(t), i=1,...,p. (46)

Then the sum of squared errors is given by

Z [d; — ®(@)w,]” [d; — ®(O)w,], (47)
J=1
where
T
di=| a1 4@ .. 4w ], (48)
W = [ w1 Way Wy ], (49)
and
'wj:[wl Wws ... Wy ]T. (50)

The application of the decoupling algorithm to (47) yields the criteria
P
Jo(®) => d] [Ix — P(®)]d; (51)
j=1
and

P
. T
Jw(W,0) =) [P(@)d; — #(©)w;]" [P(O©)d; - (@O)w;]. (52)
j=1
The minimization of (51) is performed in a similar manner by iterative construc-

tion and optimization of the membership functions. At the k-th learning step, the
criterion to be minimized is given by

p
Jo(Ok) = J4_1 — Y_ d] P(0))d; (53)
j=1
and the construction of the fuzzy model is stopped when
Jo (014
;9( MT) (54)
j=1 d] d]

For the selected membership functions (i.e. ®@°), the criterion (52) is made zero by
choosing

w)=R1O)QT(®%d;, j=1,...,p. (55)

Thus, the proposed approach can be extended to perform the approximation of mul-
tivariable systems with essentially no major modifications.
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7. Simulation
7.1. Modelling the Gas Furnace Data

In this subsection, Box and Jenkins gas furnace data are used (Box and Jenkins,
1970). The data consist of 296 input/output measurements of a gas furnace system:
the input measurement u(t) is the gas flow rate into the furnace and the output
measurement is the CQOs concentration in the outlet gas.

The objective is to contrast the performance of the constructive and OLS al-
gorithms to build fuzzy models (FM) that can predict the gas furnace data, such
that

§(t) = FM[=z(t), ©,w], (56)
where the input vector x(t) is

w(t) = (y(t - 1)7 y(t - 2): y(t - 3)) u(t)7u(t - 1),’U,(t - 2)) (57>

Two fuzzy models of the same complexity (M, = 20) were built using the con-
structive and OLS algorithms. The fuzzy models are of the form (8), i.e. with product
inference, singleton fuzzifier and weighted-sum defuzzifier. To simplify the computa-
tion, the width is set to p = 0.05 for all the membership functions.

The steps of the constructive algorithm are as follows:

1. At the k-th step, introduce a membership function ¢, (0%), where 8y is chosen
randomly from the training data.

2. Using the orthogonalization procedure, compute the projection matrix P (k).

3. Update the vector parameters Oj using (37) and (45), until (Je(8x(1)) —
Jo (8l — 1)) < e1.

4. If (Jo(0x)/YTY) < e and/or k = M,, then stop, else set k =k + 1 and go
to Step 2.

5. Compute the consequent parameters using (31).

As regards the notation, ¢; and ey are chosen tolerance parameters, and Y is the
vector of the training outputs.

The OLS algorithm consists of the following steps:
1. At the first step (k = 1), based on the training data, construct a set of M
membership functions: ®(®) = [¢,(01) @,(62) ... @ (Oar)] such that
rank(®(©)) =M.

2. Using the orthogonalization procedure, compute the projection matrix P(®).
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3. For the set of membership functions, compute the following index:

Y'py .
Ind; = —7——, i=1,...,M.
Yy

4. Select a membership function ¢, (6;,) with the largest index Ind,.

5. Remove ¢, (0;,) from the matrix ®(®) and set M =M — 1.

6. If (Jo(0r)/YTY) < e, and/or the number of the selected membership func-
tions is equal to M,, or M = 0, then stop, else set £ = k+ 1 and go to Step
2.

7. Compute the consequent parameters using (31).

The OLS algorithm is derived here using the already developed tools. A different
version can be found in (Wang and Mendel, 1993), but the ultimate performance is
the same.

A standard measure of fit is given by the normalized mean-squared error (NMSE)
defined as

t~

NMSE =

[y(t) - 5(®)], (58)

where ¢? is the variance of y(t) over the test duration L.

To test the effect of the training data size N on the performance of both the
constructive and OLS algorithms, the fuzzy models were trained with the following
sizes: N = 50, 100, 150, 200, 250, and 290. Figures 2(a)—(c) show that the constructive
algorithm provides good performance with less sensitivity to the training data size
when compared with the OLS algorithm. The NMSE values for different training
data sizes illustrate numerically this superiority (see Fig. 3).

The multistep prediction performance of both the algorithms was examined using
the fuzzy models trained with data size N = 290 and the following input vector:

T
2(t) =[5t — 1,5t - 2), (¢ - 3), u(t), ult — 1), u(t - 2)] . (59)

Figure 4 shows that the iterative output of the fuzzy model trained using the
constructive algorithm tracks closely the true data over the testing set. Figure 5
depicts the numerical evaluation of the NMSE achieved by the two fuzzy models for
multistep prediction. For values of N less than 290, the prediction performance of
the OLS algorithm degrades rapidly and no comparison can be made.

Figure 6 shows the two-dimensional plot of the membership functions selected
by the OLS and constructive algorithms. The parameters of the constructed model
(N = 290) are shown in Table 1. A comparison with other training algorithms tested
on the gas furnace data is shown in Table 2.
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Table 1. Fuzzy model parameters (N = 290).

Rule No. | A4;;  Ap A Ais Ais Ase w;
1 55.61 56.90 57.88 —0.608 —0.018 0.448 2027.6
2 45.50 48.48 52.18 -2.817 -—-2.525 -—1.910 —-161.9
3 54.05 53.67 52.75 2.698 3.088 3.091 —389.7
4 57.55 55.21 5282 -0.636 —1.291 -1.733 192.5
5 51.71 53.25 54.51 1.656 0.757 —0.666 710.8
6 49.73 49.60 49.57 0.711 0.262 -0.430 | —-3671.5
7 49.57 49.63 50.05 -—0.124 —1.027 -1.684 1387.7
8 55.04 56.08 56.97 -—0.836 —0.519 —0.303 901.8
9 54.21 53.12 53.57 0.488 0.845 1.063 | —2715.4
10 55.86 55.84 55.16 0.018 0.016 0.215 | —5944.3
11 47.24 4724 48.13 0.011 0.169 0.674 728.3
12 58.78 58.58 57.99 -0.860 -1.036 —1.111 660.2
13 46.94 47.84 48.23 1.896 2.018 1.810 1598.9
14 46.30 47.17 47.96 1.596 1.856 2.027 | —1049.4
15 56.00 56.99 57.98 0.037 0.204 0.253 | —1833.1
16 55.39 55.02 54.31 0.888 1.215 1.622 2567.9
17 53.63 51.86 51.62 0.245 0.284 0.032 2216.8
18 56.99 55.99 54.69 0.929 1.004 1.135 1310.1
19 53.79 53.80 53.75 0.316 0.229 0.116 1706.5
20 54.60 56.39 57.99 -—-2.502 -1.786 —1.343 -78.4
Table 2. Comparative results (N = 290).
Model Number Number NMSE (dB)
of rules | of parameters
Box and Jenkins 1970 — 10 —-13.89
Tong 1980 19 — —6.57
Pedrycz 1984 81 — —9.89
Xu and Lu 1987 25 — ~9.68
Lin And Cunnigham 1995 4 354 —22.97
OLS algorithm 20 140 —19.55
Constructive Algorithm 20 140 —23.75
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7.2. Nonlinear System Control

In this subsection, we consider the application of the constructive algorithm to a
nonlinear system control (Mukhopadhyay and Narandra, 1993). The nonlinear system
considered here is represented mathematically as

y(t + 1) = f(y(t)a y(t - ]-)7 y(t - 2)>u(t - 1)) + u(t)’ (60)
where u(t) and y(t) are the input and the output of the system, respectively. The
functional form of the nonlinear function f(-) is given by

_y@® [yt —1) - 0.5u(t — 1)]
1) = 1+y(t—1)2

The control problem can be stated as that of designing a control input that forces
the nonlinear system (60) to follow the reference model given by

Ym (t + 1) = 0.6ym(t) + r(t) (62)
with the reference input r(t) = sin(2x¢/50) + sin(27t/20). If the nonlinear function

f() is known, then it is an easy task to obtain the perfect following by using the
control input

ut) = ym(t +1) = f(-). (63)
When this is not the case, the nonlinear function must be replaced by some approxi-

mation fA() In the following, we investigate the performance of the constructive and
OLS algorithms to construct fuzzy models that approximate the nonlinear function,

such that

+sin (y(t—1)) exp (—y(t—2)?). (61)

() =FM (), 0, w], (64)
where the input vector x(t) is .
z(t) = (y(8),y(t - 1),y(t — 2),u(t - 1)). (65)

To perform the nonlinear function identification, a training set {x(t),y(¢)} of
size N is generated from (60) by choosing u(¢) randomly with a uniform distribution
in the range [—1,1]. Two fuzzy models with the same size (M, = 100) are built, as
previously described, using the constructive and OLS algorithms. The identification
was carried out for the training set sizes N = 500 and N = 1000.

Figures 7(a) and (b) depict the nonlinear system response when the control in-
put (63) is computed with the nonlinear function f(-) replaced with one of the fuzzy
models already constructed. It is clear that the constructive algorithm achieves a
better tracking performance in all the cases. It is apparent from Figs. 8(a) and (b)
that the OLS algorithm is remarkably sensible to the training data size, and the
fuzzy model obtained by this algorithm does not approximate the nonlinear function
well throughout the region of interest. The NMSE for the constructive algorithm is
—23.62dB and —25.14dB for N = 500 and N = 1000, respectively, while the NMSE
for the OLS algorithm is —7.49dB and —15.05dB for N = 500 and N = 1000, re-
spectively. Note that the constructive algorithm learns faster than the OLS when the
training data size tends to be large. The parameter optimization can be accelerated
if qualitative knowledge is used to determine the initial values.
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Fig. 7. Tracking performance: (a) N = 500, (b) N =
1000 (solid line: reference model, dashed line: con-
structive algorithm, dotted line: OLS algorithm).
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Tracking error

50 100 150 200 250

Tracking error

50 100 150 200 250

Fig. 8. Tracking error: (a) N = 500, (b) N = 1000 (solid line:
constructive algorithm, dotted line: OLS algorithm).
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8. Conclusion

This paper has presented a systematic approach to the fuzzy model construction
problem, due to which the appropriate structure and parameters can be found au-
tomatically. Both the structure and parameter identification schemes are executed
simultaneously during the training process. This technique reveals two notable fea-
tures: First, the rule selection task is decomposed into a number of sequential sub-
tasks, which results in savings of computing time and space, and second, optimization
of each membership function is related to the fuzzy model performance. The effec-
tiveness of the proposed method was demonstrated with both real process data and a
simulated nonlinear system. The simulation results have shown that the constructive
algorithm is less sensitive to the training data size, which is an important feature
required by many applications.
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