Int. J. Appl. Math. and Comp. Sci., 1999, Vol.9, No.4, 939-954

MEAN SQUARED LOAD CRITERIA FOR
SCHEDULING INDEPENDENT TASKS

GiNTAUTAS DZEMYDA*

Results of this paper extend the set of criteria which characterize the scheduling
quality as well as the set of possible scheduling strategies. A new view on the
minimum makespan criterion is presented in terms of the mean squared load
of processing units. This leads in turn to the development of new scheduling
algorithms. The interaction between processes of minimizing the new criteria
and the maximum finishing time (makespan of the schedule) was discovered. We
show the possibility of minimizing the maximum finishing time by minimizing
the new criteria that characterize the mean squared load of processing units.
Moreover, the optimal workload of processing units determined with the use of
the proposed criteria is usually smoother (more balanced) than that found for
traditional ones.

Keywords: parallel processing, scheduling, combinatorial problems, minimum
makespan problem, mean squared load

1. Introduction

The set of r independent tasks 7' = {7}, ...,7,} has to be processed using p identi-
cal processing units (processors) P;, i =1,...,p, p <r. Task T; corresponds to the
deterministic process which uses any single processor in a time p;. The processing of
a task cannot be interrupted. Our aim is to find a schedule (an assignment of tasks to
processors) which ensures a ‘balanced workload’ of processors. In this paper, we show
that this generally formulated goal can be achieved using various scheduling criteria
and thus it can be interpreted in several alternative ways. Next, we propose a new
class of such criteria based on the mean squared load of processors which also creates
a completely new class of scheduling problems. Finally, we discuss and investigate
newly formulated problems as well as solution algorithms.

2. Minimum Makespan Problem

One of the early recognized criteria for a balanced processor workload is the makespan
(maximum completion time). It tends to minimize the workload of the most loaded

* Institute of Mathematics and Informatics, 4, Akademijos St., 2600 Vilnius, Lithuania, e-mail:
dzemyda@ktl.mii.lt

940 G. Dzemyda

processor. For that purpose, let us denote
e by A = (A1,...,Ap) a partition of the set T, where A; is a group (set) of
tasks scheduled for the [-th processing unit, and

o by pu(I) =3 ey p: the sum of processing times for some subset 7 C 7'
The makespan is given by

Crmax(4) = 1n§11a§)§7 p(Ar). (1)
The problem of scheduling independent tasks on identical processors with cri-
terion (1) is classical in scheduling theory (Hochbaum and Shmoys, 1987). It is
also called the problem of minimizing the makespan of a schedule or the minimum
makespan problem (Hochbaum and Shmoys, 1987). The problem is strongly NP-hard
already for p = 2. Various computer architectures, ways of exploiting parallelism and
the occurrence of applied problems influence the scheduling strategy (Blazewicz et
al., 1991; Brucker, 1998; Hochbaum and Shamir, 1990; Hochbaum and Landy, 1997;
Hubsher and Glover, 1994; Lam, 1988; Lilja, 1991; Nawrocki et al., 1998). Therefore,
one can make out a schedule in several ways using different criteria. In what follows,
we briefly summarize main results for the minimum makespan problem.

The classical largest-processing-time scheduling (LPT) (Graham, 1969) produces
schedules which tend to maximize the mean finishing time at each point in the sched-
ule, but minimize the maximum finishing time (1). The LPT strategy minimizing the
maximum finishing time was proposed and investigated by Graham (1969): A free
processor always starts executing the longest remaining unexecuted task. Denote by
G such a scheduling algorithm. The scope of G is, in fact, to search for a new order
of tasks Tj, 4 = 1,7, where they are arranged in decreasing order of their execu-
tion times. Therefore, the schedules produced by G have no empty groups of tasks:
A #£0, 1=1,p.

Graham’s algorithm produces a schedule that has a makespan M at most (4/3—
1/3p)Crax(A), where C .. (A) is the optimal value of Chpax(4), i.e.

4 1

cx <SM<L<|z——]|Cx .
ox(4) < < (5= 3 Cnsl)

Other efficient algorithms for solving the minimum makespan problem are (a) MULTI-
FIT which delivers a schedule with makespan at most 1.22C%,. (4), 1.2C;, (A4), or
even (72/61)Cr .. (A) (see (Hochbaum and Shmoys, 1987) for more details on these
three cases), and (b) the dual approximation algorithm (Hochbaum and Shmoys,
1987), which produces a solution with makespan at most (6/5+27%)C%, (A), where

max
k is the number of iterations of binary search.

The advantages of Graham’s algorithm are its simplicity and, as shown in fur-
ther sections, that it produces a schedule that cannot be improved by transferring a
single task from one group of tasks to another. MULTIFIT and dual approximation
algorithms can find better schedules when compared with those found by G. These
algorithms, however, are much more complex.

In this paper, we present a new view on the criterion of minimum makespan in
terms of the mean squared load of processing units.

Mean squared load criteria for scheduling independent tasks 941

3. Mean Squared Load Scheduling Criteria

In the sequel, we propose new criteria providing a balanced workload of processors,
which combine the deviation between the ‘current’ and an ‘ideal’ load of processors
in a more sophisticated way. The ‘ideal’ load is defined by

p(Ar) = = p(Ap) = p=u(T)/p, (2)
where i = u(T')/p is the mean load of a processing unit. Equation (2) makes a basis
for new scheduling criteria: we should tend to minimize the absolute values of the
differences between all the pairs of the first p terms in (2).

We introduce three intuitively clear criteria that characterize the load of process-
ing units from different standpoints:
(a) the mean sum of all the squared differences between all the pairs of the first p
terms in (2):

p—1 p
2

Ci(4) = D2 (u(Ae) - p(A))’, 3)
rlp-1) = k=1+1
(b) the variation of the load of processing units:
1 :
o) =23 (ulAn) =)", @)

=1

(c) the mean squared load of processing units:
1P
C(4) = 2D (A, (5)
=1

It is necessary to minimize these criteria by seeking a best partition of tasks
Ty,...,T.. The coefficient 2/p(p — 1) introduced in (3) is related to the number of
different combinations of indices I and % in (3), which is equal to p(p — 1)/2.

As shown below, criteria C;(A) and Cy(A) are directly related to C(A).
Property 1. Criteria C(A), Ci1(A) and C>(A) are equivalent, i.e. if A* is the

optimal partition for C(A), then A* is the optimal partition for C1(A) (as well as
for C2(A)) and vice versa.

Proof. The result becomes obvious if we make the following transformations in the
expressions for C;(A4) and C2(A):

1 ? 2
L) = o1y 2 2 (W) = A40)

= e A0 ~ 23 () S m(A) +p Yk (A)

p(p—1)

p(p—1)

942 G. Dzemyda

1 p p

Cald) = 3 (A0~ 2 Y- (A +

=1 =1

Consequently, we get expressions in which only C(A) depends on the partition of
tasks. This completes the proof. [|

From the transformations above in the expressions for C;(4) and Cs(A), we
obtain the following relation between the two criteria:

Ci(4) = —L2Cal4). ©)

Property 2. The problem of minimizing C(A) is NP-complete already for p = 2.

Proof. Instead of a full formal proof, we will outline its key elements only. To this
aim, we refer to the known NP-complete problem

2PARTITION: Given a set of items N = {1,...,n} with sizes
S1,...,8n, respectively, where Y0 s; = 2b, does there exist a subset
I C N such that 3, ;s =07

and the decision version of our scheduling problem

SCHEDULING: Given a set of tasks 7'= {1,...,r} with respective pro-
cessing times pi,..., ur, which should be processed on p processors, and

anumber y, does there exist a workload of processors A = (4;,...,4,)
such that C'(4) <y?

We will show that 2PARTITION can be transformed to SCHEDULING in polynomial
time using the transformation p =2, r =n, u; =s;, i =1,n, y = 2b%.

Let us consider the solvability of both the problems:

2PARTITION — SCHEDULING: Assume that there exists a solution of the
2PARTITION problem. Then there exists a subset I such that Y, ;s; =
Yoic N\ S = b. We construct a solution of the SCHEDULING problem putting
A= (A1,4;), Ay =1, Ay = N\I. One can verify that C(A) = p2(I) + p?(N\I) =
2b2, which means that the required solution to SCHEDULING also exists.

SCHEDULING — 2PARTITION: Assume that there exists a solution to the
SCHEDULING problem. Then there exists a workload A = (A;, Ay) such that
C(A) <y. Since A)UA; =T and p(T) = 2b, we have C(A4) = p2(A1)+p?(T\A) =
#* (A1) +[2b—p(A1)]?> <y = 2b%. The last inequality has the unique solution p(4;) =
b. We construct a solution to the 2PARTITION problem putting I = A;. One can
verify that) . ;s; = b, which means that the required solution to 2PARTITION
also exists. This completes our proof. |

Mean squared load criteria for scheduling independent tasks 943

Property 3. The problems of minimizing Cmax(A) and C(A) for p=2 are equiv-
alent, i.e. if A* is an optimal partition of C(A), then A* is optimal for Chpax(A)
and vice versa.

Proof. Without loss of generality we may assume that p(A;) > p(Az). Then
Cmax(4) = p(A;) and, since p(A4;) + p(ds) = u(T), we have p(Ar) > w(T)/2
and

20(4) = w2 (A1) + 12(A2) = (A1) + [i(T) — (1))’
= 2Cr2nax(A) ~2u(T)Cmax(4) + :UJ2 (T).

The right-hand side of the last equality is non-decreasing for p(A:) > u(T)/2,
therefore minimizing Cmax(A) we minimize C(A). Conversely, the last transforma-
tion has a one-to-one inverse

Cmax(4) = 5 [1UT) ++/CTA) = 12(D)|

for u(A;) > p(T)/2 and therefore a similar conclusion can be drawn. This completes
the proof. |]

The following example shows the non-equivalence of different loading criteria
and superiority of C(A) over Cpax(4) for p greater than 2: p=3, r =5, uy =
v =pg4 =1, us = 3. Let us consider two different partitions A = (41,...,4p)
and B = (By,...,Bp): A1 = {1}, A = {2,3,4}, A3 = {5} and B, = {1,2},
By = {3,4}, B; = {5}. In this case, Cmax(4) = 5, Cnax(B) = 5, C(4) = 6.33,
C(B) = 5.67, C1(4) = 2.67, C1(B) = 0.67, C2(4) = 0.89, and C2(B) = 0.22.
It is clear that Cpax(A) = Cmax(B), but C(4) > C(B), Ci(A) > Cy(B) and
Cs(A) > C3(B). Moreover, partition B is intuitively smoother (more balanced) than
A in terms of the newly introduced criteria. Figure 1 illustrates graphically the
workload of processing units from the standpoint of the number of scheduled tasks.

Criteria C(4), C1(A) and C>(A) extend the set of possible scheduling strategies
and allow us to create special scheduling algorithms. C(A) is simpler when compared
with C;(A) or Cy(A). Therefore, we shall describe the minimization of C(A) in more
detail.

Number
of tasks

Fig. 1. The workload of processing units.

944 G. Dzemyda

4. Mathematical Programming Formulations

Mathematical programming formulations for machine scheduling are surveyed in
(Blazewicz et al., 1991). In this section, we will follow the notation introduced therein.
It is more complicated in comparison with that in other sections of our paper, but it
makes it possible to formulate mathematical programming problems more precisely.

Problem (1) can be formulated as follows (Blazewicz et al., 1991):

Minimize YV (7)
subject to
r Y4 .
> wh=1 (j=T7), ®)
k=1 i=1
T
doah <1 (k=T i=Tp), 9)
j=1
T T
> e <Y (i=Tp), (10)
k=1 j=1
w5 €{0,1} (i, k=Tr i=1p). (11)
Here z¥; is the decision variable which takes values 1 or 0: zf; =1 if job j is the

k-th job processed by processing unit i, and 0 otherwise. Denote by M1 problem
(1)—(11).
The problem of optimization of C(A), Ci1(A) and C5(A) (i.e. the problem of
minimizing the mean squared load of processing units) may be formulated as follows:
2

¥4 T T
Minimize % DD wyaly (12)

i=1 \k=1j=1

subject to
T Y4
k=1 =1
d>ak <1 (k=Tri=Tp) (14)
j=1
e €{0,1} (j,k=T,r i=T1p). (15)

Denote by M2 problem (12)—(15). All the functions in Problem M1 (both the
objective function and constraints) are linear. Problem M2 has linear constraints
but its objective function is nonlinear.

Mean squared load criteria for scheduling independent tasks 945

In general, Problems M1 and M2 have different optimal values of decision

variables sz However, let us look for similarities of these two problems and for

common strategies of optimization.
Rewriting the system of inequalities (10), we obtain

2

Zi“ﬂfj <Y’ (i=1p). (16)

k=1 j=1

This does not change the solution to Problem A 1.
Let us sum up all the p inequalities of (16) and divide the result by p:

5 (S5) | -

i=1 \k=1j=1

Inequality (17) relates the objective functions of Problems M1 and M2: On the
left-hand side of inequality (17) we have the objective function of Problem A2, and
on the right-hand side we have the squared objective function of Problem M1. A
solution to Problem M1 should satisfy this inequality. Therefore, the global solution
Cr.<(4) to Problem M1 satisfles the condition

2

Z (ZZMJ zy) ;nx()]2 (18)

'L—'l k=1 j=1

because, in this case,

l<z<p22'u7 ij max(A)

k=1 j=1

and

2
1<1<p (ZZP’J ZJ) max(A)]

k=1 j=1

Remark 1. From (7), (10), (12), (17), and (18) it follows that if we tend to minimize
the mean squared load of processing units C(A), then we can expect a reduction in the
makespan Crax(A4). However, if we tend to minimize the makespan, then the mean
squared load of processing units may grow (and vice versa). This can be shown by
the following example. Let us consider p =5, T = {T1,...,T1a}, p; =1, j = 1,14,
partition 4 = (A1,...,4,): A1 ={1,2,3,4}, 4> = {5,6,7,8}, A3 = {9,10,11,12},
Aq = {13}, As = {14}, Cmax(4) = 4, C(4) = 10, and partition B = (By,...,Bp):
B, = {1,2,3,4,5}, By = {6,7}, B3 = {8,9}, By = {10,11}, B = {12,13,14},
Chmax(B) =5, C’(B) =9.2. It is clear that Cmax(4) < Cmax(B), but C(A) > C(B).

946 G. Dzemyda

Remark 1 indicates a search direction for new strategies of reduction in the
makespan Ciax(A): minimization of Crax(A) via minimization of C(4) (C1(4) or
C3(A) as well, see Property 1).

Following the notation of the Introduction and Section 2, we get u(A4;) =
> k=1 2oje1 M7, @ = 1,p. Therefore, from (7), (10), (12), and (17) we can de-
duce the following common strategy of solving Problems M1 and M2: At each step
of the optimization algorithm, reduce the maximal squared sum from among u?(A4;)
(and the maximal sum from among u(A;) as well), i = I, p. Doing so, we reduce the
values of Crax(A) and we can expect a reduction in C'(4) (naturally, in C1(A) and

C>(A), to0).

The following theorem makes it possible to determine the cases where the value
of C(A) is reduced. Let A = (A;,...,4,) be a given partition of tasks T7i,..., T,
Without loss of generality, assume that the groups are numbered so that u(4;) =
maxi<i<p f1(4;) and the number of tasks scheduled to the processing unit Py is
greater than 1 (if this number is equal to 1, the minimum makespan has been found:
it is equal to p(4;)). Let X = (Xy,...,X,) be a partition of the group A;. In this
case, we have (A1) = Y7, u(X;) and so we will try to reduce the load of P; by
passing subgroups Xj, i = 2,p to units P;, i = 2, p, respectively.

Theorem 1. Let Ay,..., A, be a partition of T = (Ty,...,T,) such that u(A4;) >
p(4s), i =2,p, X = (X1,...,X,) be a partition of Ay, and B = (By,...,Bp) be
the redistributed partition: By = X, = A\\|J}_, X;, B; = A;UX;, i =2,p. Then:

1. C(B) < C(A) if and only if

p P
3 Xi Xj
20 m(X) [(As) + u(X5)] z gz 1(X3)u(X;5)
p(dp) > =2 5 + J#zp ed 9)
'ZZZ.U(Xi) 2 :Z)N(Xz)
2. If
M(Al)Zu(Ai)+ﬂ(Xi)+%Zu(Xj)’ =77 0
i

holds with at least one strict inequality, then C(B) < C(A), i.e. the value of
C(A) will be reduced after the redistribution of tasks.

Proof. Cases 1 and 2 will be proved separately.

Mean squared load criteria for scheduling independent tasks 047

Case 1. Let the assumptions of Theorem 1 be satisfied. We shall look for conditions
when C(B) < C(A). It follows that

p[C(A4) = C(B)] = p2(41) = k3(B1) + Y [W3(Ai) — w(BJ)]

=2

+ Z,u Z I:M(Ai) + ,u(Xi)] ’
= 2/L(A1)Zu([Zu X)}
=2 plADu(Xi) = 3 i (Xi) > 0, (21)
Hence
[imxn]#ﬁ:umi) (X0) + 3 #2(X0)
M(Al) > i=2 z:2p =2
2 ;}“(Xi)
> 35 WX~ 5 #(X0+2 3 i A)u(Xi) +2 35 ()
— 1=2 j= =2 . i=2 . (22)
2 g,z 1(X5)
From (22) we get (19), which completes the proof of this case.
Case 2. Multiplying (22) by 237, u(X;), after some transformations, we get
22X) >Z{ Z Xi2u(Ai)p (Xi)}. (23)

Let us analyze the expressions in the brackets. If all p — 1 expressions

1 p—
p(Ar) - I:N(Ai) +pu(Xi) + 5 > u(Xj)} , 1=2,p
j=2
i#i
are nonnegative and at least one of them is greater than zero, then (19) is valid, i.e.
the value of C(A) will be reduced if the second proposition of Theorem 1 holds. This
completes the proof of the theorem. u

948 G. Dzemyda

Equation (20) may be rewritten as follows:

p(A1) > p(As) + p(X5) + %[M(Al) — (X)) - p(X3)], i=2p

and

p(A1) > 2u(A;) + p(Xs) — w(Xa), i=2,p.
Both the forms of (20) make it possible to perceive the process of reduction in C(A)
more deeply.

Based on Property 3 and Theorem 1 we shall derive some special results applied
subsequently to the algorithms presented in Section 5. The following two propositions
work under the assumptions of Theorem 1 and refer to the case where ‘at most two
subsets of X are non-empty’ (this also includes the case p = 2).

Let A be a partition of T and the redistribution of tasks be performed between
two groups (say, 4; and As).

Proposition 1. The necessary and sufficient condition for C(A) to be reduced is

(A1) > p(A2) + p(X2). (24)

Proposition 2. If (2{) is satisfied, then the values of both C(A) and Cyax(A) will
be reduced.

Mathematical formulation M2 (12)-(15) is not the only possible. We present
below the one that is not related to the algorithms discussed in this paper, but it can

be useful in the development of scheduling algorithms. Let z;,...,z, be variables
taking discrete values from 1 to p: z; € {1,...,p}, i = 1,n. Introduce a function
f(z1,...,z,) that is related to C(A4) according to the formula

fz1,...,20) = C(A4), (25)

where T; € A; as z; = I. Then the scheduling problem may be formulated as a
combinatorial optimization problem

i e). 26
sy a2 (26)
i=1,n

5. Algorithms that Minimize both C(A) and Cp.x(A)

Three propositions are presented below without proofs that are sufficiently simple
and related to the results of Theorem 1 and Propositions 1 and 2. The results of
these propositions are helpful in constructing simple minimization algorithms. More-
over, Propositions 3-5 determine necessary and sufficient conditions for the largest
processing time to be reduced in the case of two groups of tasks.

Mean squared load criteria for scheduling independent tasks 949

Proposition 3. Given a partition of tasks T1,...,T, into groups Ai,...,Ap, trans-
ferring a task Ts € Ay to A; (I # k) implies a reduction in C(A) if

1(Ax) — s > p(Ar).

Proposition 4. Suppose that tasks T1,...,T, are partitioned into groups Aa, ..., Ap
and analyze two subgroups A and A; of tasks from Ay and Ay (I # k, A}, C
Ay, A} C A)). Interchanging A} and A} between Ay and A; involves a reduction
in C(A) if . '

1(Ar) — pn(Ar) > p(Ar) — pl4D). (27)

Formula (27) determines the necessary properties of two groups of tasks Ay and
A; and two subgroups of tasks A} C Ay and A C A; for the reduction in C(A)
via interchanging the subgroups between the groups.

The following assertion follows as a partial case of Proposition 4.

Proposition 5. Given a partition of tasks T1,...,T, into groups Ai,...,Ap, analyze
two tasks Ts € Ay and T; € Ay (I # k). Interchanging Ts and T between Ay and
A; implies a reduction in C(A) if

w(Ag) = p(Ar) > ps — pg >0,

Two algorithms for minimizing C(A) are presented and investigated below. They
are based on the following strategies:

e an analysis of tasks in consecutive order and a search for a group where to
transfer a separate task so as to decrease the value of C'(4) (Algorithm P1),

e an analysis of pairs of tasks from different groups for their further interchanging
(Algorithm P2).

These algorithms are a realization of the well-known descent search: ‘go as long
as the goal function decreases.” They use special strategies in determining when a task
must be transferred from one group to another or an interchange of tasks between
two groups must be performed. The algorithms terminate when the actions by the
selected strategy no longer decrease the value of C(A).

Algorithm P1:

o At first, all the groups A, ..., A, are filled out using an algorithm of the initial
partitioning of tasks.

¢ Analyze the tasks in consecutive order and search for a group A, of transferring
an individual task T (let Ts € Ay, 1 # k) in order to reduce the value of C(A4):
the transfer starts if

w(Ax) — ps > i w(A).
£k

950 G. Dzemyda

e The algorithm stops when the transfer of any task no longer decreases the value

of C(4).

Algorithm P2:

e At first, all the groups A4,..., A, arefilled out using an algorithm of the initial
partitioning of tasks.

e Analyze the pairs of tasks (T, € Ay, T; € A, 1 # k, s < j) in consecutive
order and seek a pair of groups A and A; for a possible interchange of tasks
T, and T; so as to reduce the value of C'(A4): the interchange starts if

p(Ag) — p(A) > ps — p; > 0.

¢ The algorithm stops when the transfer of any task no longer decreases the value

of C(A).

Algorithms P1 and P2 require an initial partition of tasks. Let us denote by U1
the following algorithm of initial partitioning:

o Initially, all the groups Ai,..., A, are empty.

e Consider tasks Tj, i = 1,7 in consecutive order and put the current task 7.
into a group with the smallest number of tasks.

Algorithm U1 is very simple and yields a schedule that is far from being optimal.
Graham (1969) determined the best possible bounds for U1: algorithm U1 produces a
schedule that has a makespan at most (2—1/p)C# .. (A). If Graham’s algorithm G is
used to get the initial partition of tasks for a further analysis employing the algorithms
based on Propositions 4-5, then the result of G may be improved.

Taking into account the results of the previous section we can draw the following
conclusion: The algorithms which minimize C(A) by using the results of Proposi-
tions 3-5 also tend to minimize the maximum finishing time Cp.x(A), because at
any step, for an arbitrarily selected pair of groups (4;, 4;), i # 7, they try to min-
imize the maximum finishing time of tasks in these two groups, max{u(A4;), u(4;,)}.
Different schedules yielding different values of C(A) may yield the same value of
Crmax(4).

6. Experimental Comparison of Algorithms

Four algorithms have been investigated: G, U1+P1, G+P1 and U1l+(P1+4P2). The
second and third algorithms use U1 and G, respectively, for the initial partitioning
of tasks; further optimization is performed by P1. (P1+ P2) means a combination
of P1 and P2: P1+ P2+ P1+... aslong as any transfer of a task from one group
to another or any interchange of two tasks from different groups do not reduce the
value of C(A) (and the value of Cpax(A), cf. Property 3).

Mean squared load criteria for scheduling independent tasks 951

The experiments were carried out on sets of 100 randomly generated problems
for different numbers 7 of tasks (up to r = 1500), and the results were averaged.
The quantities p; € [1,100], i = 1,7 were generated at random, i.e. the situation
was explored where the tasks with various execution times appeared with the same
probability in the interval [1,100].

Figure 2 illustrates the difference between the values of Crax(A) obtained by G,
Ul+P1 and Ul+(P1+P2),in case = 3. Grey rectangles correspond to the difference
Cmax[U1 + (P1 + P2)] = Cmax[G], and white rectangles correspond to the difference
Cimax|U1 + P1] — Cinax[G], where Crax[S] denotes the value of Ciax(A) obtained by
algorithm S. Taking into account that the average values of Cinax[U1 + (P1 + P2)],
Cmax[G] and Crax[U1+ P1] obtained during the experiments are equal to 6751.76,
6752.26 and 6752.56, respectively, we may conclude that the partitioning quality of
these three algorithms is approximately the same. Attempts to make more complex
tests by setting the values p; of five randomly selected tasks to be equal to 250 and
generating other values of p; at random in [1,100] led to similar results as in Fig. 2.

0.8 -
0.6 |
0.4 -
0.2 |
0.0
-0.2
-0.4 -
-0.6 -
-0.8 -
-1.0 +

100 200 300 400 500 600 700

Fig. 2. The difference between the values of Cmax(A)
obtained by G, Ul + P1 and Ul + (P1+ P2).

Figure 3 shows dependences of the average computing time ¢ (in seconds on a
100 MHz PC) on the number r of tasks to be scheduled and on the number p of
processing units for G and U1l + P1, respectively. This implies that the speed of
Algorithm U1 + P1 depends essentially on p. The speed of G weakly depends on
p because the main burden in G is related to the arrangement of tasks in decreasing
order of their execution time. In our experiments, the quick-sort algorithm was used.
Such sorting is independent of p.

The experiments showed that:

e Algorithm G yields a partition of tasks that cannot be improved by P1, but
can be improved by P2. This means that G delivers a schedule that cannot be
improved by transferring a single task from one group to another, but can be
improved by interchanging tasks between two groups.

e The partitioning quality of Algorithms G, Ul + P1 and Ul + (P1 + P2) is

952 G. Dzemyda

0 500 1000 1500

4.5
4.0 4
3.5 +
3.0 +
2.5 +
20+
15+
1.0 +

0.5 -

r r

t f 0.0 } t
0 500 1000 1500 0 500 1000 1500

Fig. 3. Dependence of the average computing time t
(in second) on the number r of tasks and on
the number p of processing units.

similar; G yields a slightly better partition than that of U1+P1; Ul+(P1+P2)
yields a slightly better partition than that of G.

o Algorithm U1 4 P1 operates significantly faster than U1 + (P1 + P2) (about
15-200 times depending on the number of tasks) because P2 is very time-
consuming.

o Algorithm U1 + P1 operates faster than G in the case of a small number p
of processing units (p = 2, 3, and, in some cases, p = 4 and even p = 5). The
advantages of Ul + P1 over G are observed mostly for a larger number of
tasks.

Mean squared load criteria for scheduling independent tasks 953

7. Conclusions

The results of this paper extend the set of criteria which characterize the scheduling
quality as well as the set of possible scheduling strategies. An interaction between
the processes of minimizing the new criteria and the maximum finishing time (the
makespan of the schedule) has been discovered. We showed a possibility of minimizing
the maximum finishing time by minimizing the new criteria that characterize the mean
squared load of processing units. Moreover, the optimal workload of processing units
found with the use of the proposed criteria is usually smoother (more balanced) than
that found for traditional ones.

Some possible approaches to the minimization of the proposed criteria have also
been discussed. The algorithms investigated are a realization of the well-known and
sufficiently simple descent search. Therefore, their efficiency is similar to that of the
classical algorithms. Ome of the reasons of such a choice is that a solution of the
scheduling problem is usually a part of some more general problem. Sometimes this
general problem requires much more computing time as compared with the solution
to the scheduling problem, and the scheduling accuracy does not play the essential
role. This is a domain of application of simple and easily realizable algorithms.

Clearly, the proposed algorithms are not the only possible ones to minimize the
new criteria. More sophisticated strategies may also be acceptable, e.g. application of
approximate methods that use task insertions and task swaps (Hubsher and Glover,
1994) or formulation of the problem as a combinatorial optimization one of type
(25)—(26) and its solution by using simulated annealing (Dzemyda, 1996). In this
paper, we apply only some possibilities from those provided by Theorem 1. Further
investigations could lead to developing new, more effective algorithms.

Acknowledgement

The author wishes to thank the anonymous referees for many detailed and helpful
comments, as well as for stimulating ideas for further investigations. The author
would like to express his particular gratitude to Prof. Czestaw Smutnicki (Wroclaw
University of Technology, Institute of Engineering Cybernetics) for the discussion
regarding the final version of the paper.

References

Blazewicz J., Dror M. and Weglarz J. (1991): Mathematicel programming formulations for
machine scheduling—A survey. — Europ. J. Op. Res., Vol.51, No.3, pp.283-300.

Brucker P. (1998): Scheduling Algorithms. — Berlin/Heidelberg: Springer.

Dzemyda G. (1996): Clustering of parameters on the basis of correlations via simulated
annealing. — Control and Cybernetics, Special Issue on Simulated Annealing Applied
to Combinatorial Optimization, Vol.25, No.1, pp.55-74.

Graham R.L. (1969): Bounds on the multiprocessing timing anomalies. — SIAM J. Appl.
Math., Vol.17, No.2, pp.416-429.

954 G. Dzemyda

Hochbaum D.S. and Shmoys D.B. (1987): Using dual approzimation algorithms for schedul-
ing problems: Theoretical and practical results. — J. Assoc. Comp. Mach., Vol.34,
No.1, pp.144-162.

Hochbaum D.S. and Shamir R. (1990): Minimizing the number of tardy job units under
release time constraints. — Discr. Appl. Math., Vol.28, No.1, pp.45-57.

Hochbaum D.S. and Landy D. (1997): Scheduling with batching: Two job types. — Discr.
Appl. Math., Vol.72, Nos.1-2, pp.99-114.

Hubsher R. and Glover F. (1994): Applying tabu search with influential diversification to
multiprocessor scheduling. — Comp. Op. Res., Vol.21, No.8, pp.877-884.

Lam M. (1988): Software pipelining: An effective scheduling techniques for VLIW machines.
— Proc. SIGPLAN’88 Conf. Programming Language Design and Implementation,
Atlanta, Georgia, USA, pp.318-328.

Lilja D.J. (1991): Architectural Alternatives for Ezploiting Parallelism. — Los Alamitos,
CA: IEEE Computer Society Press.

Nawrocki J.R., Czajka A. and Complak W. (1998): Scheduling cyclic tasks with binary
periods. — Inf. Process. Lett., Vol.65, No.4, pp.173-178.

Received: 16 December 1998
Revised: 12 June 1999
Re-revised: 27 September 1999
Re-re-revised: 11 October 1999

