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REGIONAL GRADIENT CONTROLLABILITY
OF PARABOLIC SYSTEMS

EL HassaNE ZERRIK*, ALt BOUTOULOUT™
AsmaE KAMAL*

The purpose of this paper is to show for parabolic systems how one can achieve
a final gradient in a subregion w of the system domain Q. First, we give a defi-
nition and delineate some properties of this new concept, and then we introduce
the concept of regionally gradient strategic actuators. The importance of the
spatial structure and location of the actuators in achieving regional gradient
controllability is emphasized. Consequently, we concentrate on the determina-
tion of a control which would realize a given final gradient on w with minimum
energy. The developed approach is original and leads to numerical algorithms for
constructing optimal controls. This approach is also illustrated by an example.

Keywords: parabolic systems, regional gradient controllability, G-strategic ac-
tuator

1. Introduction

The analysis of distributed parameter systems is related to a set of concepts such
as controllability, observability, stability, etc. that permit to better understand those
systems and consequently enable us to manage them in a better way. Many works
which deal with the problem of steering a system (S) to a prescribed state defined on
a space domain 2, were related in (Curtain and Zwart, 1995), also see the references
therein. Later, the concept of regional controllability was developed in (Zerrik, 1993).
It consists in steering the system to a prescribed state defined only in a subregion
w C Q. It was extended by Zerrik et al. (1998) to regional boundary controllability,
where w is a part of the boundary 92 of 2. An extension that is very important in
practical applications is that of regional gradient controllability, i.e. we are interested
in steering the system gradient to a desired function given only on a part w of (.

The principal reason behind introducing this concept is that it provides a means
to deal with some problems from the real world, e.g. in thermic isolation problems it
happens that the control is only required to cancel the temperature gradient before
crossing the brick. The purpose of this paper is to give an account of some original
results related to the regional gradient controllability problem.

* MACS Group, AFACS UFR, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco,
e-mail: zerrik@fsmek.ac.ma
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The paper is organized as follows. Section 2 is focused on the system under
consideration and mathematical formulation of the regional gradient controllability
problem. In the next section, we introduce and characterize the concept of regional
gradient strategic actuators. Section 4 is devoted to the determination of an optimal
control to achieve regional gradient controllability. In Section 5, we give some useful
results regarding computation of optimal controls. In the last section, we concentrate
on the relation between the considered subregion and actuator location.

2. Regional Gradient Controllability

2.1. Problem Statément

Let £ be an open, bounded and regular subset of R* with boundary 8Q. We consider
e a parabolic system (S) defined in x]0,7[ where T > 0 is given,
e a given initial state yq,

¢ a subregion w of  which may be connected or not,

controls which may be applied via various types of actuators (pointwise, zone,
internal).

We set Q = Ox]0,T[, ¥ =90x]0,T[, and consider

?a.g.(mjt) = Ay(,t) + Bu(t) i Q,
y(&1) =0 on %, ' W
y(z,0) = yo(z) in &,

where A is a second-order linear differential operator with compact resolvent, which
generates a strongly continuous semi-group (S(t))¢>o on the Hilbert state space L?(f2).
In what follows, A* signifies the adjoint operator of A, B € L(RP,L*(Q)), u € U =
L%(0,T; RP) and yo € L3().

Let y.(-) be the solution to (1) when it is excited by a control w and suppose
that (1) has a unique solution such that y,(T) € H*(Q). If w C Q, we consider

X. : (L2Q)" — (L*(w))"
Z = Xw?Z = 2w,
where x, denotes the adjoint operator, given by

. y in w,
XwY =
0 in Ow,
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and
X, L*(Q) — L(w)
z = Xw?Z = 2w
Let V be the operator given by
ViE Q) — ((0)"

z—)Vz:(az EZ—-)

5:;;, sy 81;”
with adjoint V*.
Let us recall that an actuator is conventionally defined by a couple (D, f), where:

i) D C Q is the support of the actuator,

ii) f is the spatial distribution of the action on the support D. In the case of a
pointwise actuator (internal or boundary), D is reduced to the location {b} of
the actuator and f = &(- — b) where & is the Dirac mass concentated at zero.

For the definitions and properties of strategic and regional strategic actuators,
we refer the reader to (El Jai and Pritchard, 1988; El Jai et al., 1995).
2.2. Definition and Characterization

Definition 1. System (1) is said to be exactly (resp. weakly) regionally gradient
controllable on w if for all g4 € (L?(w))™ and for all £ > 0, there exists a control
u € U such that

XoVyu(T) = ga  (resp. |Ix, Vyu(T) = gall 12y <€) 2)

In what follows, we shall say that such a system is regionally G-controllable on w (G
stands for the gradient).

Without loss of generality, we may consider the case where yo = 0. Let H be the
operator

H:U— HY(Q)
defined by

YueU, Hu= /T S(T — 7)Bu(r) dr. (3)
0

Then system (1) is exactly (resp. weakly) regionally G-controllable on w iff
Im x,VH = (L?(w))™ (resp. Im x, VH = (L*(w))™).
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It is clear that

1.

2.3.

The above definitions mean that we are only interested in the transfer of the
system gradient to a desired function on the subregion w C 2, so the control u
depends implicitly on w.

. The above definitions do not allow for pointwise or boundary controls since, for

such systems B ¢ L(R?, L*(2)) and the solution y,(-) € L*(9). However, the
extension can be carried out in a similar manner if one takes regular controls
such that y,(7) € H*(Q) (El Jai and Pritchard, 1988).

. A system which is exactly (resp. weakly) regionally controllable (Zerrik, 1993)

is exactly (resp. weakly) regionally G-controllable.

. A system which is exactly (resp. weakly) regionally G-controllable on w is exactly

(resp. weakly) regionally G-controllable in w; for any w; C w.

. Let

T
ﬂw=Ale&“

be the transfer cost. Then for any w C 2, the regional gradient transfer cost in
w is smaller than the regional transfer cost in w. Indeed, let yg € H*(Q2) and
consider

W, ={u €U such that y,(T") =yq in w}
and

Wy = {u € U such that XquL(Tj =Vyq in w}.
Then W, C W, and hence

%lél J(u) < 11r/v11;1 J(u).

. One can find various systems that are G-controllable but which are not control-

lable. This is illustrated in the following counter-example.

Counter-Example

Let 2 =]0,1[ and consider the system described by the parabolic equation

Oy %y .
E(w,t) = 'E)—m—Z(z,t) + Xy () in 2x]0,T7,
y(0,t) =y(1,8) = 0 in 10,77, (4)

y(z,0) =0 in Q,
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which is excited by one actuator located in a subdomain [0,b] C ]0,1[ and f =1
constitutes the spatial distribution of the control in [0,5]. This system is equivalent
to (1) with A = 8?())/0z?, yo = 0 and Bu = x,,u. A generates a semi-group
(S(t))tz0 on L?(f) given by

[ee]

Sty = My, piei,

i=1
where
X = —i’n? and  ;(z) = V2sin(inz).
The operator H is such that
o0
(H*y)(t) = B*S*(T —t)y = Y _ XTIy, 0:) (x4, 035
=1
where (-,-) denotes the inner product in L2().

For any b € Q, system (4) is not weakly controllable on © (Ker H* # {0}) (El
Jai and Pritchard, 1988). But we have the following result:

Proposition 1. System (4) is not controllable on § but is G-controllable in Q.

Proof. Let us now show that there exists a state that is not reachable on € but its
gradient is reachable on . Suppose that (¢;);es are the eigenfunctions of A which
are in Ker H*. Then Ker H* = span {(¢;);es} and we have

J=1{j|jbe 2N} #£0,

since b € Q. If jo € J, then p;, € Ker H* and hence ¢;, is not reachable on Q. Let
us show, however, that ¢;, is gradient reachable on (2, i.e. ¢;, € Ker H*V*. We have

H*V*(@jo)

Z eAk(T_t) <V*(pjo ) (;016) <X[Ovb] ? SOk)
k=1

S TV 00, 01 (X0 k) # O
keJ

I

in general. Otherwise (V*@j,, k) =0 VEk & J.

A calculation shows that for any ko ¢ J the condition (V*pj,,¥k,) = 0 is equ-
ivalent to

(Jo — ko) (1 — (‘1)j0+k0) = (jo + ko) (1 — (—l)jovko)

This is not true in general (consider e.g. b = 1/2, jo = 4, ko = 3). Hence, ¢j, is
gradient reachable on Q. [ ]
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Proposition 2. We have the following characterizations:

1) System (1) is ezactly regionally G-controllable on w iff
Ker x, +Imx*x, VH = (L*(Q))".

2) System (1) is weakly regionally G-controllable on w iff

Kerx, +Imx*x, VH = (L*(Q))".

.

Proof. (Part 1) If y € (L%(Q2))™, we have y = y; + y» with 3 = 0in w and yo = 0
in Q\w. As y, € (L?*(w))™, there exists u € U such that yo = x, VHu, so Ker y, +
Im x* xo VH = (L*(Q))".

Conversely, let y € (L?(w))™. We have § = xy € (L*(Q))", and hence there
exist y1 € Kerx, and y» € Im x,x,VH such that § = y; + y5. Consequently, there
exists u € U such that x,7 = xoVHu, soy = x,VHu. Hence Im x,VH = (L?(Q))".

(Part 2) If system (1) is weakly regionally G-controllable on w, then for y € (L2(Q))™
we can write y = 1 +y2 with y; = 0in w and yo = 0 in Q\w. As y, € (L2 (w))?,
V & > 0 there exists v € U such that ||y2 = XwVHul|f2¢,» < € and we have
IXoy2 ~ XoxwVHU| g2,y < €. Therefore x%y» € Imxx,VH and consequently
Ker xo + Im x* x. VH = (L*(Q))".

Conversely, let y € (L*(w))". We have § = x*y € (L*(Q))", so there exist
y1 € Kerx, and yo € Im x* x, VH such that § = y; + y5. Then V & > 0 there exists
u € U such that [ly2 — X Xw VHull12(gy)» < €. Hence ||xuy2 — XoVHull 20 <€
and then [ly = X VHul|(p2(,) <e. Finally, Im x, VH = (L?(w))™. |

3. Regional Gradient Controllability and Actuators

In this section, we develop results that link regional gradient controllability to actuator
structures. Consider system (1) excited by p zone actuators (D;, f;)1<i<p, Where
D; CQand f; € L*(D;) for i = 1,p, i.e.

P
W a,t) = Ayl ) + 3 xp frl®) i Q)

=1
y(,1) =0 on ¥, (5)
y(z,0) =0 in Q.

Definition 2. A sequence of actuators is said to be G-strategic on w C  if the
excited system is weakly regionally G-controllable on w.

Consider a set (¢, ) m=1....« of eigenfunctions of A* in H'(Q}) orthonormal in
7 s Tm

i=1,...
L*(w), associated with eigenvalues A, of multiplicities r,,,. If A has constant coeffi-
cients, we have the following result.
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Proposition 3. Assume that supr, = r < oo. If the sequence of actuators
(Ds, fi)1<i<p is G-strategic on w, then:

1. p>r, and
2. rank M, = 7y,

where

OPm;
: 1< By )fZ>L2(D;) (zonal case),
(Mm)ij = n P
Z Py (bs) (pointwise case),
=1 sz

for1<i<p, 1<j<Tm.

Proof. The proof is developed for the zonal case. The actuators (D;, fi)i<i<p are
G-strategic on w iff V g € (L (w))" Y u € U, (xo VHU, g)(12(w))» =0 =>g =0.
If there exists m € N such that rank M, # rp,, then there exists a vector
hml
o = : #0

hm,..

such that Mphm = 0. Let ho = 3 Ao, Pmys Ho = (ho, .-+, ho) and ¢, = X5ho.
=1
Assume that the system

d¢ e ,

?ﬁ(mat) =-A go(a:,t) in Q,

p,t)=0 on %, (6)
e(z,T) = ¢y in €,

has a unique solution ¢ € L2(0,T; HZ(Q)) N C3(2x]0,T).

Multiplying (5) by Oy/0z) and integrating the result over the cylinder @, we
have

9¢ ' . Jp o1 B
L a_zk(t)y (t)dtdz = /Q %(t)Ay(t) dtdz + ;/Q —é;;(t)XDi Fius(t) dt dw

and therefore

[ |20

0
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Thus

@D - 2£0(0) de = /Q [aTk(wAy(t) - y(t)A*a%(t)} dt da

P T 850
(02w
Z 0 85Ek LZ(Di)

=1

Integrating by parts and making use of the Green formula, we obtain

- [enit@ae= [ (a%(t)a—‘iy;u) -y (%)(t)) atde

The boundary conditions give

—/ o2 Ty dm—zp:/T<f~ 92> w;i(t) dt
waamk 0 —i:1 o “83)}9 L2(Di) )

with }

680 o Tm acpm.
fi, ——> = BAm(Tit) <h0;(.0'rnj> w <fz» - .
< Oz, [ r2p,) mZ:l ; ) Ok / 12(py)
Now, M, h,, = 0 is equivalent to

Tm

Z (ho, Pm, >L2(w) (Fy, vaj)(L%Di))n =0

Jj=1
for 1 <4 < pwith F; = (fi,..., f;), which gives (XMVHU,HO)(LQ(W))H = 0, since
otherwise there exists Hy # 0 such that (x,VHu, HO)(L2(w))n =0for all wu € U and
so the system is not regionally G-controllable on w. |

Example 1. If we consider the case of a one-dimensional system defined on = ]0, 1]
by the parabolic equation

%(w,t) = g—mg(x,t) +8(z — byu(t) in 10,1[x]0, T,
y(0,8) =y(1,£) =0 on 10,T], (7)
y(z,0) =0 in 10,1[.

System (7) is not controllable on ]0, 1] if

il

bES={§|1§k§n—1, VnEN*}
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Since it is not G-controllable on ]0, 1{ if

2k+1 2n —
ki |0<k < n

1
beSG:{ ,VneW}7

we have S, C S, so there exist actuators which are G-strategic, but not strategic.

¢

4. Regional Gradient Target Control

The purpose of this section is to explore an approach devoted to the computation of
an optimal control for system (1) to a given gradient in the subregion w. Consider (1)
with A containing only constant coefficients and suppose that g4 € (L*(w))™ is given.
Set

G ={g€ L*(Q) such that g=0onw}.

The problem is as follows: Does there exist a minimum-norm control u € U such that
(Vyu(T) — x59a) € G™7
Let

G = {g € L*(R) such that g =0 on N\w}.
The method is similar to the one for the internal regional controllability developed in
(El Jai et al., 1995) (it is an extension of the HUM method, see (Lions, 1988)) and
will be developed for various types of controls.

4.1, Case of Zone Actuator

If we consider system (1) and assume that in the case of a control applied by means of
a zone actuator (D, f), where D C § is the actuator support and f € L*(D) defines
the spatial distribution of the control on D, then we have Bu(t) = x, f(z)u(t) and
the system may be written down in the form

% (a,) = Ay(a,t) + X, F@)ult) in Q.
y(§,t) =0 on X, (8)
y(%,0) = yo (2) in Q.

For @y € G, consider the system

%(m,t) =—A%p(z,t) in Q,
p(€,1) =0 on X, 9
¢(x,T) = po(z) in Q.

We assume that it has a unique solution ¢ € L*(0,T; HZ(Q)) N C3(2x]0, T).
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For a given ¢y € G, we consider system (9) and define the mapping

— T n ?
o €G = |lwoll% :/o (Z <f, a$1>L2(D)) dt (10)

i=1

which is a semi-norm on G.

Lemma 1. If the actuator (D, f) is G-strategic on w, then (10) is a norm on G.

Proof. Consider a basis (¢;) of the eigenfunctions of A*. Without loss of generality
we suppose that the associated eigenvalues A; are of multiplicity one. Since

ool =0 = 2<f, am> LR 5!

the equation

0p;
Ze (T—1) (w0, ®;) L2(w) Z<f, 8zj >L2(D) =0 a.e.on [0,7]

=1

implies

Oy, .
o, 03) PA) Z:< ’ O; >L2(D) S0V

If (D, f) is G-strategic on w, then

n

Z<f, a“”]> £0 Y5,
Q: L2(

i=1

and therefore ¢y = 0 on Q. ]

_ We denote the completion of the set G with respect to the norm (10) again by
G and counsider the system

0
) = A‘I':vt+z<f,axl> f@xo ma,

L*(D)
T(, 1) =0 on T, (11)
¥(z,0) = yo(z) in Q,
which may be decomposed in the following two systems:
v
5 ! —(z,t) = A¥q(z,t) in Q,

Ty (6,1) =0 on X, (12)
¥y (z,0) = yo(z) in O
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and

o < 9 :
e = Aol + Y (£ 92)  flohx, =G
ot =1 i/ L>(D)
Pa(é,t) =0 on X, (13)
‘112(17,0) =0 in Q.
Let /& be the operator defined by
A:G — G*

2 14
w— -P(S5m), 00

j=1

where P = X:Xw. With this notation the regional gradient control problem on w
leads to solving the equation

roo=-3 (Rloa)i - PHED) (15)

=1
Proposition 4. If the actuator (D, f) is G-strategic on w, then (15) has a unique
solution py € G and
u(t) = (F, V‘P)(Lz(p))n (16)

controls the gradient of system (8) to gq at time T in w, where F' = (f,f,..., f).
Moreover, this control minimizes the cost function

Proof. First, we prove that (15) has a unique solution. For that purpose, multiply-
ing (13) by 8¢/8z; and integrating the result over @, we get

dyp ! _ Oy
Bz, (t)Py(t)dtdz = /Q 9z, (t)ATs(t) dt dz

Op
+/Q Bz, Oxp f (F, V@) (12(pyy- dtdz,

which gives

/ [g;i( YT, (t )]: dx—/@ (g;)l(t)\lu(t) dtdzr = g;i( VAT, () dt dz

T
+ ) Fv - dt.
/O <f 5wz>m(p)< ) (L2(D))
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Thus

Op
8:v i

/Q(gi (T)%(T) - gfi (0)Z,(0)) dz = / [&P' (t) Ay (t) — Uy (t)A* ()| dtdz

T
3cp>
+ [ {7 F, V) o pye .
/0 < 81 | oy TV PN 2HO)

Integrating by parts and making use of the Green formula, we obtain

- [ mas= [ (520 520 - 105-(30)0) dae

i BIJA 81/14*

T
+ fa > F;V(P 2 a dt.
/0 < 81 ) gy 7 O 220

Taking account of the boundary conditions gives

_/ s (ryd —/T f (F, V) dt
LT Dde= | (fg oy Y Py A

(Ao, po) = /OT (g} <f, >L2(D))2 dt = [lpoll% -

Consequently A is one-to-one and (15) has a unique solution.
Now, let Uag = {u € U | xoVyu(T) = g4}. For v € U,q we have

<§j§m o(T) - yu*(T)>L2m) <gg‘i( ), yv(O)—yu*(0)>
JAC>
J, o5

+/;?X fg—i(t)(v—u*)dtdm.

Hence

L2(Q)
nl6) = v () + 22O ~ e <t>>] dt da

)" () (yo
DAY ®) —y,. (1) - A*%%(t) (o () = Yur (t))] dtdz

From the Green formula we obtain

Oy . /O _
(FE@ (@) -0, (T)>Lz<m (220,50 yu*(o>>w(m

:/ [g:()(ayv()_ayu*()) 9 (g;i)(t)(yv(t)—yu*(t))} dt de

aZ/A 8I/A*

-I-/O <f’ Ox; >L2(D) (v—wu*)dt.
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The initial and boundary conditions give

= (i, g o(T) = (T”>L2(w) - ' (5 §i>mm (v —u?) .

The summation gives

n 9 T n
- ©0, 75— Yo (T) = Yur (T > :/ < > (v —u*)dt.
i:ZI < ® oz T) L2(w S L2(D)

Hence J'(u*)(v — ©*) = 0 and this establishes the optimality of u*. |

4.2. Case of a Pointwise Actuator

Let us consider system (1) with one pointwise internal control applied at b € {2, where
b denotes the location of the actuator and u € U. System (1) may be rewritten in the
form

%(z,t) = Ay(z,t) + 6(z — b)u(t) in Q,
y(&,t) =0 on X, (17)
y(z,0) = yo(z) in Q.

We assume that the solution to (17) is such that y,(T") € H* ().

Now, for a given g, we consider system (9) and define the mapping

T n
wo € G — i\cﬂo\%:/o (Z gi

i=1

; ))d de (18)

which is a semi-norm on G. Consider the system

%( t) = AY(z,1) *Zazl §(z—0b) inQ,
(gat) - 0 on 27 (]‘9)
¥(z,0) = yo(z) in Q.

For ¢y € G system (9) gives ¢ and system (19) produces ¥(T').

We can consider a decomposition of (19) into

B‘I’l(x t) = A¥y(z,t) in Q,

T(E,t) =0 on %, | (20)
¥, (z,0) = yo(z) in O
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and
8‘1’2 o = 890 .
o (@:1) = AUs(z,8) + ; Be; (b,t)0(z —b) inQ,
s (E,1) =0 on %, 1)
Uy (z,0)=0 in Q.
For wo € G, let A be the operator defined by
(L 0w,
= - = 2
Ao =P (; At (T)) , 22

where P = X Xw- Then the regional gradient controllability problem on w is equiva-
lent to solving

n

noo = =3 (R0 - P)). (29)

i=1

Consequently, we have the following result:

Proposition 5. If system (17) is weakly regionally G-controllable on w, then (23)
has a unique solution @y € G and the control

u(t) = Oy

=Y 52 (24)

gets the system to the desired gradient gq on w.

Moreover, this control minimizes the cost function
1 (T
J(u) = —/ u?(t) dt
2 Jo
With some minor technical differences, the proof is similar to the zonal case.

Remark 1.

e The developed method controls the system to the desired gradient in the sub-
region w and the residual gradient on Q\w will depend on the control applied.

e The same problem can be considered with more than one actuator. A similar
approach leads to a vector control whose each component is associated with one
of the actuators.
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4.3. Summary

The control to achieve regional gradient controllability depends on both the subregion
and nature of the action (actuators). For system (1) under hypotheses of Section 2, the
corresponding expressions are summarized in Table 1, where ¢ is the solution of (9).
The respective formulae are derived from the associated subsystems and relations
given in the previous sections.

Table 1. Formulae to calculate minimum-norm controls.

Actuator Control
Pointwise (b, ) 8—@(b,t)
k=1 Lk
Zone (D, f) < 736—(’D>
k=1 Tk L*(D)

5. Numerical Approach

The numerical approach is realized very easily when one can calculate the eigenfunc-
tions of the system. This case will be discussed in the next subsection. In the general
case, an adapted technique is given and detailed later on.

We have seen that the solution to the regional gradient controllabﬂlty problem
is obtained by the solution to the equation

Ao = —Z (Xw (9a)i — 3@3( )) : (25)

In the next section, we give an implementable approach for solving the above equation.

Assume that there exits a basis (¢;) of eigenfunctions of A*. Without loss of
generality we suppose that the eigenvalues \; are of multiplicity one.

5.1. Important Case

Here, the idea is to calculate the components A;; of A in a suitable basis (¢;). The
problem will be approximated by the solution to the linear system
M
Z/\ijsﬁo,j =z, 1=1M, (26)
j=1
where M is the order of approximation and z;’s are the components of
n
- 0¥,
2=- Y (et - PEL @)
i=1 z
in the considered basis (y;).
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As the actuator is pointwise, we have

T n 2
(/\cpo,wo>=/0 (Z%(b’ﬂ) dt.

k=1
For
oy o~ A (T—t) Oyp;
8—1%(5 t) Z:: <(P0,<P3>Lz () %(b)
we get
B oo n 6(}91‘ B(Pj (6()\;+)\j)T _ 1)
(Ao, o) = E_‘_:‘l (0> i) L2 () (0, 93] L2 (0 ;::1 O e Oy

Finally, the components of A are given by

Z 8901 acp] )e(>\¢+>\j)T -1

Pt (9£Ek 8.’51, ()\i + )\j)

In the case of many pointwise actuators (by)g=1,p, the components of A are given by

eAitA)T _ 1

D n a(p ; _
=22 5, )5 )=
Ozy, 3113[ (/\Z + )\j)

Remark 2. In the zonal case the same developments as in the pointwise case lead
to the following components of A:

e(hith;)

IT i 8(,01 8(»0_7'
Ai A Z <f’ Ozy, >L2(D) <f7 Oy >L2(D) .

k=1

Aij =

5.2. General Case

In the general case, it is not easy to calculate the eigenfunctions of the operator A*.
Here we give a direct approch which allows us to overcome this difficulty and leads
to the desired gradient in w.

We have seen that the regional gradient controllability is equivalent to solv-
ing (25). Consequently, the problem amounts naturally to finding (o which is the
solution to the problem

Min [|xw Vyur (T) = gall(22(w))»

i (27)
o € G.
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This can easily be achieved by the direct minimization algorithm

1. Initial data w, g4, actuator, e.

2. Choose o in G.

3. Solve system (9) — Z gf (b, 1).
i=1 "

4. Solve system (20) — ¥;.
5. Solve system (21) — ¥,.
6. If “XWV\I’(T) - gdli(L2(w))” > €, g0 to Step 2.

n
0
7. The optimal control is given by u* = Z 85 (b,1).

=1

6. Numerical Example

In this section, we consider a numerical example that leads to some conjectures about
the difficult problem of the best actuator location for a given subregion. The results
are related to the choice of the subregion and the desired gradient to be reached.

Consider the one-dimensional diffusion system described by

%(z,t) —0012Y (4 1) 4 8z — bu()  in 10,1 x ]0, 7T,

t Oz?
y(0,t) =y (28)
y(z

=y(L,1) =0 on 10,77,
,0)=0 in ]0, 1[.

We consider 7' = 2 and the actuator located at b = 0.59. The subregion under
consideration is w =]0.1,0.7[, so that Q\w is not connected. Let gq(z) = (x —0.9)(x —
0.6)(x — 0.8)/6 (see Fig. 1) be the desired regional gradient in w.

The approach of Section 5.1 consists here of the following steps:
Step 1. Solve (26) (— o).
Step 2. Solve (9) (= ¢(b, t)).

n

42 (b,t) (see (24)).

Step 3. Apply the control u*(t) = 5
=1 b

The final regional gradient is reached with error ||xw V- (T)—gdﬂiz(w) =0.169x 1074
and transfer cost ||u*||> = 0.144.

Remark 3. Figure 1 shows how the reached final gradient is very close to the desired
gradient in the subregion w.
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Fig. 1. Desired (dashed line) and final (solid line) gradient in w.

Fig. 2. Control function. The control is calculated via (24).
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6.1. Relation between the Subregion and Location of the Pointwise
Actuator

The following simulation results show the evolution of the reached gradient error with
respect to the actuator location. Figure 3 shows that:

e For a given subregion and a desired gradient, there is an optimal actuator loca-
tion (optimal in the sense that it leads to a solution which is very close to the
desired gradient).

e When the actuator is located sufficiently far from the subregion w, the estimated
gradient error is constant for any location.

e The worst locations correspond to non G-strategic actuators in w = ]0,1[, as
developed in the previous sections, where b € S, = {(2k+1)/2n | 0 < k <
n—1/2, 0 <n < 5} (the order of approximation of the system is five).

08

0,6

“ U

0,0 02 04 0,6 08 1.0

Fig. 3. Evolution of the reached regional gradient error with respect to the actuator location.

Figure 4 shows that, for a given subregion and a desired gradient, there is an optimal
actuator location in the sense that it leads to a smaller transfer cost.

6.2. Relation between the Subregion Area and Reached Gradient Error

The reached gradient error depends on the area of the subregion where the gradient
has to be given. This error grows with the subregion area. This means that the larger
the region, the greater the error is. This is illustrated in Table 2. G-controllability is
realized by means of one pointwise actuator located at b = 0.59, but the results are
similar for any type of actuator.
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0,0 02 04 0,6 0,8 1,0

Fig. 4. Evolution of the transfer cost with respect to the actuator locations.

Table 2. Evolution of the gradient controllability error with respect to the subregion area.

l Subregion w | 19d — XwVYur (T)H%z(w) ‘

10.4,0.6 0.953 x 107
11/4,0.7] 0.928 x 10~°
11/2,3/4] 0.401 x 10~°
10.1,0.7 0.169 x 10—*
10.12,0.9] 0.101 x 10~2

7. Conclusion

In this paper, we have extented the results of (El Jai et al, 1995; Zerrik, 1993)
on regional controllability to a realistic situation encountered in various applications
where the gradient control must achieve a certain objective in the subregion of the
geometric- domain where the system is considered. Moreover, we have explored an
approach which allows for implementation of such a control.

Simulation results for real applications are now under consideration. The dual
concept of observability which concerns the problem of gradient reconstruction in a
given subregion of the domain has also been studied and is based on similar techniques
(the results are to be published). ’ ~
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Various open questions are still under consideration. This is the case of the
regional boundary gradient target, as well as the structure (location of the support
and spatial distribution) and number of the actuators which realize such an objective.
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