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STABILITY OF MULTI-DIMENSIONAL DISCRETE
SYSTEMS WITH VARYING STRUCTURE

MicHAEL DYMKOV*, IvaN GAISHUN"*

A new class of multi-dimensional discrete systems with varying structure is in-
troduced. The notions of total solvability, p:-boundedness, ps-stability and
asymptotic stability are defined. For studying properties of the solutions for
the considered systems a curvilinear composition of mappings along discrete
curves is used. Total solvability conditions similar to the Frobenius ones are ob-
tained. Sufficient conditions for p:-stability and asymptotic stability based on
the Lyapunov functional method are also established. A two-dimensional sys-
tem of Volterra equations is presented as an example of equations with varying
structure.
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1. Introduction

Dynamical systems with after-effects appear in various theoretical and applied prob-
lems and have been in the focus of research over the last twenty years. Such systems
are used to simulate a variety of real processes, such as the unsteady motion of bodies
in continuous medium (the phenomenon of aero-auto-elasticity) (Belozerkovskii et al.,
1980), oscillations in long transmission lines (Brayton, 1967), interaction of popula-
tions (Gopalsamy, 1992) and many others. In contrast to classic dynamic processes,
a characteristic feature of such processes is the dependence on the entire prehistory
T < t at each moment t. In particular, for the systems described by equations such
behaviour can be interpreted as varying the domain of definition and the range of
values for these equations in the course of time. For example, a discrete equation
with a varying structure can be treated as a one-step equation in a sequence {FE;}
of generally distinct spaces rather than in some fixed space; in this case, at time ¢
the right-hand sides of the one-step equation are functions from the space E; into
another space FE;iq. For continuous cases (i.e. for the systems described by some
differential equations) the varying structure can be determined by using the so-called
scales of convenient spaces (see Treves and Duchateau, 1971). It should be noted
here that in the continuous case an important place is occupied by the linear control
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systems described by differential equations with unbounded operators acting in Ba-
nach spaces. The theory of differential equations in scales of Banach spaces, worked
out by Ovsyannikov (1965) and others, allows many results in the theory of ordinary
differential equations to be generalized to partial differential equations.

On the other hand, the theory of multi-dimensional differential equations (in
other words, Pfaff differential equations) and their discrete versions has attracted
much attention in the last decades (see references in Izobov, 1998; Kaczorek, 1994;
Myshkis, 1998; Perov, 1968). These objects were introduced long ago and their first
applications were connected with differential geometry (Sternberg, 1970). Pfaff equa-
tions were then used in elasticity theory, mathematical physics, magnetohydrodynam-
ics, control theory and other engineering problems (Lyrie, 1975). The main charac-
teristic of such systems is their overdetermination in the sense that the number of
equations is greater than that of the unknown functions. Consequently, the classes
of totally integrable systems are the most interesting since the boundary Cauchy
problem has a unique solution (Gaishun, 1983).

In this paper, we introduce a new class of mathematical objects which unify
discrete equations with varying structure and multi-dimensional discrete equations.
Here the goal is to provide mathematical tools which could contribute to a better un-
derstanding of (physical) phenomena in nonlinear dynamics (Thompson and Stewart,
1986). To investigate some properties of the model, we make use of an analogy to
dynamic systems of simple structure. Specifically, we generalize the concepts of p,-
embedding introduced by Gaishun (1997) and define the notions of p;-boundedness,
pe-stability and asymptotic stability. In order to study these notions, we use a curve-
linear composition of mappings and the Lyapunov functional method.

2. Basic Notation and Definitions

Let Z.y be the set of non-negative integers, Ey = E4, 4,), t = (t1,t2) € Z2 be a

sequence of non-empty sets, and let f((tll),tz) 2 By b)) = Bity41,t0), f((tgl)‘tz) A
E, t,41) be some mappings. The system of equations
m(tl + 17 t2) = f((tll),tz) (a:(tl ) tZ)) )
(1)

m(tl;tQ + 1) = f((tzl)’tg) (ﬂi(tl,tg)), (tl7t2) € Zi—
will be called a discrete multi-dimensional (two-dimensional) system with varying
structure.

Example 1. As an example of multi-dimensional discrete systems with varying struc-
ture we consider below the system described by multi-dimensional discrete Volterra
equations that has been applied to a number of problems e.g. in systems theory (Schet-
zen, 1980), physics and ecology (Tsonis, 1992). Write Z[tl,tz] = {(i1,i2) € Z%, 41 <

t1, 92 < t2}. Let f(Z?t'l t2],E) be the set of all mappings f: Z[tl t) E, where E
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is a non-empty set equipped with an algebraic structure. Consider in E the following
two-dimensional linear discrete Volterra system:

— (1)

€(t1+1,t2) - Z(il’w)ezﬁl‘tﬂ a(il,i2)€(t1—i1,t2—i2)7

o (tit) €23 (2)
(it tat1) = Z(n,m)ez;btz] a(; ,iz)g(tl"ilatr‘@)’

with respect to an unknown function ¢ : Zi — FE. Here agfl),iz)-, s=1,2, (i1,i2) €

Z3 are given elements from E. To transform (2) to (1) we define the mapping

1y + +
F((tl,m) : F(Z[M,tz]’E) - f(Z[t1+l’t2}, E) as
1 ! ; J
(F((tl),tz)w) (81 + 1, 82) = Z agil)wiz)m(SI ST 22)7
(il,iz)EZEtl)sz]
(F((t11),t2)w> (0, 52) = a:(O, S2)) (517 32) € Z[tlatl’] (3)

. 2 1
and the mapping F[(tl)’tz] : F(L, 1, B) = F(Z, 4,01, B) on the analogy of F[(tl)’tz].

Finally, the desired two-dimensional discrete system with varying structure

.’E(tl + 1,t2) = F((tll),tg) (.’L‘(tl,tz)),

R (tl,tg) €72 , (4)
z(t1,t2 +1) = F(({l),tz) (z(t1,t2)),

where z(t1,t2) € ]—'(Z[Qt1 ta]? E) forall (t1,t2) € Z%, is obtained. The resulting system
is equivalent to the original one in the sense that there exists a bijection between the

solution sets of these systems. ¢

As mentioned above, the number of equations for the systems under consideration
is in general greater than that of the unknown functions. Therefore, these systems
are of interest for which there exist unique solutions. In order to characterize these
cases, we give below the definition of totally solvable systems. But first, we assume
that the family of sets E(, ;,) satisfies the following conditions:

E(t1+1,t2) C E(tl,t2)7 E(t1,t2+1) - E(t1,t2)a (t1>t2) € Z—2|~

We say that a mapping ¢(t1,t2) : Z3 — E(o0), ©(t1,t2) € Bty 1), (t1,t2) € Z2
is a solution to (1) if it satisfies (1) for all (t1,ts) € Z2.

Definition 1. System (1) is said to be totally solvable if for any (t°,z°) € Z3 x Ep
there exists a unique solution xz(ty,ts) : Zjo ~ Epo, where x(t1,t3) € Ey, 4,y for
(t1,t2) € Zf = {(t1,t2) € Z%, t1 > ¢9, t5 > 3}, that satisfies the initial condition
(Cauchy condition) z(¢9,t9) = z°.

For brevity, the solution to (1) that satisfies the initial data (t°,2°) is denoted
by z(t,t% 2°). To represent the solutions to (1) in a convenient form we introduce
the notions of a discrete curve (or path) and a curvilinear composition of mapping
along the discrete curve.
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Denote by L(t!,...,t") the set {t',t>,...,t"} of points from Z?2 such that:
(a) for any i = 1,2,...,N — 1 the inequalities t{** > ¢}, s = 1,2 are satisfied, and
(b) (£ —#i)+ (#i* —t4) =1 forall 1 =1,2,...,N—1. Theset £ = L(t},...,tV)
is called a discrete curve (or path) connecting #! with ¢V,

Now, introduce the following compositions of maps:

()@ =20 @), (1)@= =12, @)

p times

(£ e £2) @) = 1V (5P @) |

m

—

Lo ) @) = (§2 00 ™) (),

i=1

where p and p; are some positive integers. The mapping = defined by the formula

.
r@) = | I %% )@
L(t,...,tN) .
a+1_. i+l i .
_ H f(l)t t; (2)t ty (m) (6)

is called a curvilinear composition of functions f() and f® along the curve
L., tN).

In general, the value of w(z) depends on all points (¢!,...,#"Y) of the path
L(t',...,t") that connects t! and V. Hence, some additional conditions are needed
to guarantee the independence of m(z) from the choice of the curve L(t!,...,tV).
It is shown below that under conditions guaranteeing total solvability of (1) the
value of 7(z) depends only on the initial and terminal points ' and tV, respec-
tively. For that purpose, the notion of an elementary transformation for a dis-
crete curve £ = L(t',...,tY) should be defined. Without loss of generality, we
assume that there are points ", t"+! and ¢"*? from £ such that ¢]* —¢] =1,
772 — 45 = 1. We say that the discrete curve £ = L(t!,...,t") is transformed
with an elementary transformation at 7, if £(¢,...,t") is replaced by the curve
L= Lt ... ¢, er+2 N, where £ = (tT + 5T — 15,45 + T — ).
This allows us to define equivalence of discrete curves.

Definition 2. We say that any two discrete curves £ and L' are equivalent if £
and £' can be converted by elementary transformations to the same discrete path.

It can be proved that all the discrete curves connecting ' with ¢V are equivalent.
Conversely, all the discrete curves which are equivalent to £ connect just the same
points ¢' and V.
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3. Solvability Problem

In this section, we investigate the existence and uniqueness of the solution to (1).
As mentioned above, the number of equations in (1) is greater than the number of
unknown functions. This results in the necessity of having some additional conditions
for solvability of (1). As is well-known (Hartman, 1964), for the ordinary Pfaff dif-
ferential equations such conditions are Frobenius ones. Some details for more general
cases can be found e.g. in (Gaishun, 1983). Below, similar conditions are obtained for
multi-dimensional discrete systems with varying structure.

Theorem 1. Equation (1) is totally solvable if and only if the following equality for
the map composition:

(1) 2)  _ (2 (1)
f(bl,t2+1) °© f((tl,tg) = f(t1+1,tg) °© f(tl,t2) (7
is fulfilled for all (t1,t2) € Z3..

Proof. (Necessity) Let x(t1,t2), (t1,t2) € Zi be a solution to (1). For any (t1,%2) €
Z3 we obtain from (1) for the left and right-hand sides of (7)

(f((tll):tg_}.l) o f((tzl):tZ)) ("E(tl)tZ)) = f((jl)’t2+1) (f((f) )(m(tlatZ)))

= (0 iy (2,12 + D) = 2 (1 4+ 1,82 4 1),

(f(t1+1 t2) f((tll),tz)) (x(tht?)) ft1+1 i) (f(tl t2) ( (tlitz))>

f (t1+1,t2) ( z(t1 + 17t2)) = (Cﬂ(tl + 1,y + 1),

respectively. Thus the necessity is proved.

(Sufficiency) We will directly construct the desired solution. Let ¢ be an arbitrary
point of Z3. Now we calculate the curvilinear composition 7(z) for f(), f® along
two sole discrete paths connecting the points ¢ = (t1,¢2) and ¢ = (t; +1,t2+ 1) and
establish then the conditions to.guarantee the independence of 7 (z) from the choice
of these curves. It is obvious that the obtained result does not depend on the choice
of the paths iff (7) is satisfied. Keeping in mind the definition of the equivalence for
discrete curves, we have that the curvilinear composition 7(z) does not depend on
the choice of the paths connecting ' and ¥ iff (7) is true. Hence

—

@)= | JI s 0% (@). ®)
(t1,tN)
Finally, define the function z = z(¢,t°,2°) by the formula

.
o(t,£0,2°) = | [ ofV24 P24 | (29), 9)

(t01)
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where (t°,2°) is an arbitrary element from Z2 x Ej. It is clear that if we establish
that (9) is a solution to (1), then the theorem will be proved. Indeed, the initial
condition z(t%,%,2°%) = z° is fulfilled by the definition of the curvilinear composition.
Also, since any curvilinear composition satisfies

-
H oft(l)Atl ft(2)At2
L(E et tV)
— —

— H ft(l)Atlft(Q)Atz o H ft(l)Atlft(z)Afg ,

L(t™ tN) L(t1,tm)

from (1) we have
A -
z(t +1,85,1°,2°) = | il 7 N

((t(1)7tg):(t1+1’t2))

—

Aty 2)A
= f((t11)+1,m)° | A e N

((£2,89),(t1,t2))

= f((t11)+l,tz) (:L'(t, to’ g;O)) ’

which means that the function (9) satisfies the first equation of (1). Similary, it can
be shown that (9) satisfies the second equation of (1). It is clear that the function
given by (9) is unique. |

Remark 1. The discrete system (1) can be interpreted as an approximation of the
multi-dimensional system described by integrable differential equations. Accordingly,
the following problem is of interest: What relations are between the solvability prop-
erties of the discrete and continuous systems? It should be pointed here that the
determination of a multi-dimensional differential system with varying structure is not
simple. In particular, a definition of such an object can be given by using the so-called
scales of convenient spaces (Ovsyannikov, 1965; Treves and Duchateau, 1971). It can
be shown that solvability of the discrete system does not imply that of the continuous
one even if we consider systems with ordinary (non-varying) structure.

Example 2. Consider the following two-dimensional differential system:

By 3y 9
— = (14 2 , — = 2(1 < 10

o, = L+ g, =201+ 0) (10)
with respect to an unknown function y = y(t1,t2). It is easy to show that the
Frobenius conditions (Hartman, 1964) are fulfilled, i.e.

01+y%) | 01 +y?) 8(2(1+ 1) +5(2(1+y2))

2\ _
o, T gy 2H)=——5 5y

(1+4%).
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Hence 4y(14+y?) = 4y(1+y?). Thus, the system under consideration is integrable. We
construct a disctere approximation to (10) by substituting the corresponding Euler
differences
1
h
in lieu of the partial derivatives 8y(ty,t2)/0t1, Oy(t1,t2)/0ts in (10). The resulting
discrete two-dimensional system has the following form:

[y(klh, (ks + 1)R) — y(ka b, kzh)}, k= (ky, k) € 22

Jr(k] + 1,k2) = m(kl,kz) -+ h(l + sz(kth)) Ef] (k,I(k)),
;U(kl, ko + 1) :.'L‘(kl,kg) + 2h(1 + .'L'z(kl, kg)) o (k, I(k))

In this case the solvability conditions for (7) are
falks + 1, ks, fi(k,2)) = fi(ki, k2 + 1, fa(k,2)), (K1, k2) € z2,

that implies that the equality 4h> = 2h% must be fulfilled for h # 0. This con-
tradiction means that the discrete system is not solvable for any h > 0. Thus, the
given example demonstrates that the solvability property of multi-dimensional sys-
tems can be disturbed under the passage from a continuous system to its discrete
approximation. ¢

4. Stability and Boundedness Problems

In this section, we use the notion of comparability for dynamical systems to study
some properties of (1). We generalize the concepts of p;-embedding introduced by
Gaishun (1997) and give some sufficient conditions for p;-boundedness, p;-stability
and asymptotic stability.

First, assume that E, .,), (t1,t2) € Z2 is a collection of normed spaces over
the field R (or C) of real (complex) numbers. Let V' be another normed space over
R (or C), and p¢, 1,) @ Bty 00) =V, (t1,t2) € 72, be a given sequence of mappings.
By |-|v, |-|¢ we denote the norms in the spaces V and E, t € Z2, respectively.
Without loss of generality we assume that t° = 0.

Definition 3. We say that the solution z = z(t1, t2,2%), (t1,t2) € Z3 to system (1) is
pi-bounded if there exists a positive number ¢(z°) such that |pg, ¢)(2(t1,t2,2°))|y <
c(z®) for all (t1,t2) € Z3. We say that system (1) has the property of p;-boundedness
if each solution to system (1) is p:-bounded.

Let ft(l)(O) = ft(Z)(O) =0 in (1) for all ¢ = (¢1,t2) € Z3. In this case, it is
obvious that z(t1,t2) = z(t1,%2,0) = 0 is a solution to (1). Here and subsequently,
the zero elements of various spaces are denoted by the same symbol 0 if it is not
confusing.

Definition 4. The zero solution z(t1,t2) = 0, (t1,t2) € Z% to system (1) is
called p;-stable if for any € > 0 there exists a § > 0 such that |z°y < § implies
lp(tl,h)(z(tl,tf_),xo))lv < ¢ for all (tl,tg) S Zﬁ_.
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Definition 5. The zero solution z(t1,t2) = 0, (t1,t2) € Z3 to system (1) is said
to be ps-asymptotically stable if it is ps;-stable and there exists a x4 > 0 such that
lp(tl,tz)(w(tl,tg,zo))w —0 as t; +ty — oo for |20y < p.

It should be noted that any path along which #; + 5 — oo is not fixed in the
above definitions.

In the sequel, the Lyapunov-functional method is used to study the boundedness
and stability problems for system (1). Let v, 1,): Eq,+,) — Ry be a sequence
of functionals (here Ry is the set of non-negative real numbers). We say that a
functional sequence {v, +,)} is pi-positive if there exists a Hahn function w : Ry —
Ry (i.e. a continuous increasing function vanishing at the point s = 0) such that

Vit ta) (T) > w(lp(tlltz)(m)lv) for all (t1,t2) € Z_Q,r, T € Ey, ). (11)

If, in addition, w(s) = co as s — oo, then the sequence {v(t,,45)} s said to be pg-
infinite. Now the sequences {A;v, 1,)}, ¢ = 1,2 of differences of functionals U(ty ,t2)
on the solutions to system (1) are respectively constructed as

A1t 1) (»T(tlatz)) = Uty 41,t0) (fﬂ(tl + 1,t2)) - U(tl,m)(ﬂf(tl,tz))

_ (1) —

= Uty 41,62) (f(tl,tQ)(ﬂv(tl,tz))) Ve, ) (2 (b1, 12)),
Aoty 1) (2(t1582)) = Vit tor1) (B(t1, b2 + 1)) = Vs, 1) (281, 22)

= U(t,t24+1) (f((i)m ($(tlat2))) = Uity 1) (2(t1, 12)).

Note here that the functionals used in studying the stability and boundedness prop-
erties of solutions to (1) are traditionally called the Lyapunov functionals.

Theorem 2. If there ezists a functional sequence {V(t1,42)} such that for any ¢ >0
the inequalities v, 1,)(z) < ¢, (t1,t2) € Z3,z € Et, t,) tmply the uniform bounded-
ness of |p(, 4,)(T)],x € E(4, t,) with respect to (t1,t), and for any x(t1,t3) € B, 1)
the inequalities

AV, 1) (2(t1,12)) <0, i=1,2 (12)
are fulfilled for all (t1,t3) € Zi, then system (1) has the property of p:-boundedness.

Proof. Applying (12) step by step we have v, 4,)(z(t1,t2)) < v(0,0) (2(0,0)) for
any z(t1,t2) € E, 1,). Therefore, according to the assumption of the theorem, the
value |p, +,)(x)| is uniformly bounded on any solution z(t1,ty) = z(t1,t2,2%) of
system (1).

Theorem 3. If for system (1) there exists a ps-positive sequence {v1,00)} of Lya-
punov functionals such that

V(0,0) (fo) < wy (|2%o) (13)
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(w1 is a Hohn function) and the inequalities
Aiv(tl,tg) (m(tlatQ)) S Oy 1= 1: 2 (14)
are valid for all (ti,ts) € Z%, then the zero solution of (1) is pg-stable.

Proof. By analogy to Theorem 2, applying (14) yields that v, 1,)(2(t1,t2))
voo(z(0,0)) for all z(t1,t2) € Eq, 1), (t1,t2) € Z3. Hence we have w(|p¢(z)|v) <
wy (|2(0,0)}o) and therefore |p:(z)|v < w™H(wi(]z(0,0)]p)). Due to the continuty of
the functions w™' and w; and the relation w™*(w;(0)) = 0 there exists a number
d > 0 such that w™'(wi(|z(0,0)]o) < e for |z(0,0)|o) < 4, i.e. |pu, ) ()|v < €,
(t1,t2) € Z3.. ]

VARYAN

Theorem 4. If there exists a sequence {v(y, 1,)} of functionals satisfying inequali-
ties (11) and (13) and the inequality

Aw(tl,tz)(fﬂ(tl,h)) < —ws (|p(t1,t2) (m(tl,tz))lv) (15)

is valid for all (t1,t2) € Z%, where w2 is a Hahn function, then the zero solution to
system (1) is p¢-asymptotically stable.

Proof. According to Theorem 3 the zero solution is p;-stable. Suppose now
that this solution is not p;-asymptotically stable, i.e. in an arbitrary small neigh-
borhood of the zero of the space Ego) there exists an element 2% such that
|p(ﬁ,T2)(:c(7-1,'rg,m°))|V > eo for some positive number gy and some sequence T
of {(m,m)}, (m1,72) € Z%, 71 + 72 = oo. According to (15) we have

U(tl,tz)(x(tlyt'l)) < Y(0,0) (IO) - Z w3 (|p(sl,52)($(31752))|v) . (16)

(51,52)EZ§E51)2)

where Zgélbtf) = {(s1,82) € Z%, 0 < 51 < t1, 0 < s2 < #2}. Furthermore, since

W (|D(ry rz) (x(11,72,2%)) |y > wa(eo) for 7 + 72 €T, we get

Z wWs (|p(51,52) (a}(sl,Sg))‘v) — 00 as ty + i — o0. (17)

(s1,52)EZ{15)

In this case, (16) contradicts (11). Therefore, the zero solution to (1) is pi-
asymptotically stable, which completes the proof. |

Remark 2. The theorems given in this section yield some sufficient conditions for p;-
stability and p;-asymptotic stability for the considered systems. It should be pointed
out that their use is substantially restricted by the absence of methods for construct-
ing convenient Lyapunov functionals. Consequently, it is of interest to continue the
investigation to determine some new classes of the systems whose solutions prop-
erties are identical in some -sense to the properties of some ordinary (non-varying)
discrete systems (the so-called embedding problem). Since stability theory for the
latter has been quite extensively developed, it follows that we can study the stability
of embeddable systems.
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