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QUASI-SLIDING MODE CONTROL
OF DISCRETE-TIME SYSTEMS

ANDRZEJ BARTOSZEWICZ*

A reaching law approach to the design of discrete-time quasi-sliding mode control
systems is considered. First the required position of the system representative
point with reference to the sliding plane is specified, and then novel control
strategies, which drive the system in such a way that the position actually
changes according to the specification, are proposed. The strategies are linear
and consequently the undesirable chattering and high-frequency switching be-
tween different values of the control signal are avoided. Furthermore, the state
of the controlled system is driven to the narrowest possible band around the
sliding plane. The strategies, when compared with previously published results,
are simpler and they guarantee favourable performance of the controlled systems
while using essentially reduced control effort.
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1. Introduction

Continuous-time variable-structure control theory and its applications have been ex-
tensively studied since the early 1950s (DeCarlo et al., 1988; Hung et al., 1993; Utkin,
1977). On the other hand, due to the widespread use of digital controllers, recently
many researchers have proposed discrete-time techniques of a similar nature (Chan,
1994; Furuta, 1990; Gao et al., 1995; Kaynak and Denker, 1993; Pan and Furuta,
1997; Sarpturk et al., 1987; Spurgeon, 1992). In an early paper in this field, Fu-
ruta (1990) proposed a variable-structure algorithm which drives the system state to
an appropriately determined sector in the state space. On the other hand, Gao et
al. (1995) presented an algorithm which drives the system state to the vicinity of a
switching plane. They specified desired properties of the controlled systems and used
the so-called reaching-law approach to design their control algorithm. The algorithm
was further discussed in (Bartoszewicz, 1996) where an additional condition for the
existence of the quasi-sliding mode, as defined in (Gao et al., 1995), was established,
and the vicinity of the switching surface within which the system state remains in the
quasi-sliding mode was evaluated.

The reaching-law approach to the design of quasi-sliding mode control systems
was further investigated in (Bartoszewicz, 1998). In that paper a new definition of
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the quasi-sliding mode was introduced and a novel time-varying sliding plane was
proposed. Consequently, a more efficient control scheme employing the time-varying
sliding plane was designed.

In this paper, the definition of the quasi-sliding mode introduced in (Bar-
toszewicz, 1998) is adopted and a modified reaching law is proposed. The reaching
law helps to obtain essentially the same system performance as in (Bartoszewicz,
1998), but without resorting to the relatively complex schemes involving application
of time-varying sliding planes. Since the advantageous definition of the quasi-sliding
mode is used, the system state does not have to cross the sliding plane in each suc-
cessive control step and consequently the control strategy proposed in the paper can
be linear. As a result, the undesirable chattering does not occur in the system, which
is an important advantage when compared with the results of Gao et al. (1995).
Another feature of the strategy is that it guarantees the convergence of the system
state to the vicinity of the sliding plane in a finite time, specified a priori by the
designer. Moreover, if the disturbance change rate is limited, a modified reaching law
and another control strategy which guarantees better robustness of the system are
proposed.

The remainder of this paper is organised as follows. Section 2 presents the no-
tation and assumptions used throughout the paper. The main results, i.e. the new
discrete-time quasi-sliding mode control strategies are derived in Section 3. In the
same section, the performance of the control strategies is verified by means of a sim-
ulation example. Finally, Section 4 presents conclusions.

2. Preliminaries

Let us consider the following discrete-time system:
z(k+1) = Ax(k) + AAz(k) + bu(k) + f(k), O
1
y(k) = KT (k),

where @ is the nx1 state vector, A is an nxn matrix, b and h are nx 1 vectors,
u is the system input and y is the system output. In this equation the n x n matrix
AA represents parameter uncertainties and the n x 1 vector f denotes external
disturbances. The pair (A,b) is controllable and the relations

AA=bA, f=b],

usually referred to as matching conditions, are satisfied (A is a row vector and f
denotes a scalar). Let us define the function

s(k) = Tz (k) (2)

with vector ¢ chosen in such a way that ¢7b # 0.

The disturbances and parameter uncertainties are bounded so that the following
relation holds:

d < d(k) = cTAAx(k) + T f(k) < dy, (3)
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where d; and d, are known constants. Furthermore, we introduce the notation

dy, dy,—d
:dl—l— b= L

do= A5, 5=l @

Definition 1. By the quasi-sliding mode in the e vicinity of the sliding hyperplane
s(k) = ¢Txz(k) = 0 we mean a system motion satisfying

|s(k)| <e, ()

where the positive constant ¢ is called the quasi-sliding mode band width.

This definition is essentially different from the one proposed in (Gao et al., 1995),
since it does not require the system state to cross the sliding plane s(k) = 0 in each
successive control step. Consequently, it helps to eliminate chattering (i.e. after the
transient period the system state and its output do not change in each successive
control step), and to achieve an essential reduction in the control effort and improved
quality of the quasi-sliding mode control. In the next section, control laws which
guarantee the reachability of the quasi-sliding mode in a finite time specified by the
designer are proposed.

3. Control Laws

In this section, the so-called reaching-law approach to the design of the discrete-time
quasi-sliding mode control is adopted. First, the required evolution of the variable
s(k) is specified and then the control law which drives the system in such a way
that the variable actually changes according to the specification is proposed. The
idea behind the reaching law introduced in this paper is to make the system state
converge to the sliding plane in such a way that (in the absence of disturbance d(k)
or when d(k) = do) the distance of the state from the plane s(k) = 0 decreases by
the same value in each control step (i.e. in the reaching phase s(k+1)—s(k) = const).
Thereby the control signal « can be used more economically and as a result faster
convergence can be achieved.

3.1. Control Strategy Design

Let us consider the reaching law

s(k + 1) = p(k)s(k) + d(k) — do, (6)
where the unknown d(k) is defined by (3) and p(k) is a variable decay factor
n_—_k;_l for k<n-1
plk)=¢ "7 (7)
0 for k>n

The constant n above is a positive integer selected by the designer in order to achieve
a trade-off between a fast convergence rate of the system and the magnitude of the
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control u required to achieve this convergence rate. In other words, by controlling the
rate of decay (tuning n), the convergence to the sliding plane s(k) = 0 is tuned. In
order to illustrate the effect of the variable decay factor on the convergence properties,
we consider evolution of s(k) for the nominal undisturbed system. For any k& < n
we have

s(k) = p(k — 1)s(k — 1) = p(k — 1)p(k — 2)s(k — 2)

p(k = 1)p(k = 2)p(k - 3) - - p(1)p(0)s(0)

n—(k-1)-1n-(k-2)-1n—(k-3)-1 n-2n-1
T on-(k-1 n-(k-2 n-(k-3) n-1

s(0)

= s(0) (8)

n
and consequently

s(k+1)—s(k)= ~T(O)_ = const. (9)

The convergence of the nominal system state to the sliding plane s(k) = 0 is
shown in Fig. 1. The figure presents evolution of s(k) when the variable decay factor
introduced in this paper is applied, and when the decay factor is constant. In order
to assure a fair comparison, the maximum difference between s(k + 1) and s(k) is
equal in both the cases. One can see from the figure that the variable decay factor
guarantees faster and finite-time convergence, while the constant decay factor assures
only asymptotic convergence to the sliding plane.

Furthermore, when the system is subject to disturbance d(k), it can be easily
verified that the reaching law (6) together with definition (7) of the decay factor,
imply the existence of a quasi-sliding mode in the dg4-vicinity of the sliding plane
s(k) = ¢'x(k) = 0 for any k > n. Therefore, the n-th control step could also be
regarded as a boundary point between two different parts of the control process: the
reaching phase and the quasi-sliding phase.

In order to determine a control w which drives the system in such a way that
the reaching law (6) is satisfied, we use (1) to calculate s(k + 1):

s(k+1) = T Az(k) + T AAz(k) + cTbu(k) + T f(k)

= cT Ax(k) + d(k) + cTbu(k). (10)
Comparing this equation with the reaching law (6), we get
p(k)s(k) — do = cT Az (k) + cTbu(k) (11)

and consequently

u(k) = —(cTb) ™ [cTAw(k) dy— p(k)s(k)]

= — (") T [A - p(B) ]2 (k) + do }, (12)
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s(k)

10

Fig. 1. Evolution of s(k): a variable decay factor (a),
and a constant decay factor (b).

where I is the n x n identity matrix. Thereby we have designed a control law which
guarantees that for any k > n the system state satisfies the following inequality:

|s(k)| = |d(k — 1) — do| < 4. (13)

This means that for the system (1) controlled according to strategy (12) the maximum
distance of the system state from the sliding plane s(k) = 0 is less than half of the
same distance (|s(k)| < 264 +¢T, where T > 0 is the discretization period and ¢ is a
positive constant) for the system controlled according to the algorithm introduced in
(Gao et al., 1995). Consequently, the robustness of the strategy is essentially better.

In order to assure a proper work of the controlled system, the vector ¢ must be
chosen in such a way that the resulting quasi-sliding motion is stable. This is equiv-
alent to the stability of the closed-loop system. On the other hand, substituting (12)
into (1) and taking into account that in the sliding mode p(k) = 0, we obtain

x(k+1) = Az(k) + AAz(k) — b(cTb) T Ax(k) — b(cTb) do + f(k)
- [A +AA- b(ch)_lcTA] z(k) + b[f‘(k) - (ch)_ldo]. (14)

Since the last term on the right-hand side does not depend on the state vector x(k),
we conclude that the quasi-sliding motion is stable if and only if all the eigenvalues
of the matrix Q = A+AA—b(cTb)"1cT A are placed strictly within the unit circle
in the complex plane. Furthermore, for any stable system, its steady state accuracy
can easily be evaluated. Suppose that the system is subject to a constant disturbance
f(k) = fss = bfss = const, and let us denote by gs the steady state vector
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of the system. Since @ is a stable matrix, the difference I — @ is invertible, and
consequently one has

zss = (I — Q)flb[fss - (CTb)ildo], (15)

where I is the n x n identity matrix. Equation (15) shows that strategy (12) (in the
presence of constant disturbance) assures convergence of the system to the vicinity of
the state-space origin, rather than to the origin itself. Therefore, in the next section a
modified control algorithm which can effectively compensate for slowly time-varying
disturbances and drive the system error to zero is introduced.

3.2. Disturbance Compensation

In this section, a modified reaching-law control strategy which can guarantee a further
reduction in the distance between the system state and the sliding plane is proposed.
Application of this strategy is a favourable option if the disturbance rate and the
parameter change rate are limited. Suppose that for any &k > 0, |d(k+1)—d(k)] < Ag,
where A4 is a known constant such that Ay < ;. Then we replace the reaching
law (6) with the relation

k
s(k+1) = d(k) = do + p(k)s(k) = 3_ [s(0) —p(i = st =] (16)

2

The sum on the right-hand side is introduced to reduce the effect of the disturbance
d(k). By measuring the variable s(k), useful information about previous disturbances
is extracted, and since the disturbance change rate is limited, this information can
further be used in the control process. In order to determine the performance of the
system driven according to the modified reaching law, we use (16) to evaluate s(k).
For any k > 1 we obtain

k—1

s(k) = d(k—1)—do+p(k—1)s(k—1)= _ [s(i) —p(i—1)s(i—1)], (17)

i=1

where by definition for £ = 1 we have Z;:ll [s(z) = p(i ~ 1)s(i — 1)] = 0. From (17)
it follows that

k-1

Z [s())—p(i—1)s(i—1)] = —s(k) +p(k—1)s(k—1)+d(k—1)—do. (18)

Substituting (18) into (16), we obtain
s(k+1) = d(k) —do + p(k)s(k) — [d(k — 1) — do]
= p(k)s(k) + d(k) — d(k — 1) (19)

Relation (19) implies that the modified reaching law (16) drives the system (1) in
such a way that in the sliding phase, i.e. for any &k > max(n,2) we have

ls(k)| = |d(k — 1) — d(k — 2)| < Aq < bq. (20)
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This conclusion means that the distance of the state of the system (1) from the
sliding plane s(k) = 0 is further reduced and consequently it implies improved system
robustness.

Similarly to the procedure applied before, comparing (10) with the reaching
law (16), we get the control law which helps to achieve the favourable performance
described in this section:

k
u(k) = —(c76) 7 [T Az(k) +do—p(R)s(K)+>_ [s()=p(i~D)s(i=D)]]- (21
i=1
If we set s(0) = p(—1)s(—1), the control law (21) can also be expressed as
u(k) = —(c7b) " [¢" Am(k)+do—p(k +§: ~p(i-1)s(i-1)]]. (22)
=0

3.3. Simulation Example

Let us consider the system described by (1) with the parameters

a= |11 , AA=0, b= 0 , hT=[10]
0 05 1

The initial conditions of the system are z; = 500 and z, = 0. The sliding line ¢’a =

z1 + 235 = 0 is chosen, the convergence time is set to n = 10, and it is assumed that
the system is affected by the constant disturbance f(k) = [f1(k) f2(k)]T = [0 0.1]7.
Figures 2 and 3 show the performance of the system controlled according to the
strategy with the disturbance compensation proposed in this paper. The strategy is
compared with Gao’s control law discussed in (Gao et al., 1995). Figure 2 presents
evolution of the switching variable s(k), and Fig. 3 illustrates the control signal u(k).

It can be seen from Fig. 2 that our strategy guarantees faster convergence of the
system state to the quasi-sliding mode band around the line efz(k) = 0. Further-
more, Fig. 3 shows that the convergence rate in our strategy is faster even though
the maximum value of the control signal u(k) for the strategy is smaller than for
the algorithm proposed by Gao et al. Both the figures demonstrate that our strategy
does not exhibit chattering, which is an important advantage when compared with
Gao’s results. Favourable performance of the strategy is also demonstrated in Fig. 4
which shows the phase trajectories of the system controlled according to our strategy
and according to the algorithm proposed by Gao et al.

4. Conclusions

In this paper, new computationally efficient discrete time quasi-sliding mode control
strategies based on the so-called reaching-law approach have been proposed. The
strategies are linear and consequently they eliminate chattering and guarantee a
favourable performance of the controlled systems. The feasibility of the strategies
is verified both theoretically and by means of a simulation example.
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Fig. 2. Evolution of s(k): the proposed strategy with distur-
bance compensation (a), and Gao’s algorithm (b).

u(k)

Fig. 3. Control signal: the proposed strategy with distur-
bance compensation (a), and Gao’s algorithm (b).
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Fig. 4. Phase plane trajectory: the proposed strategy with dis-
turbance compensation (a), and Gao’s algorithm (b).
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