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ROBUST CONTROL OF NONLINEAR
TIME-DELAY SYSTEMS

CHARALAMBOS ANTONIADES*, PanacgioTis D. CHRISTOFIDES*

This paper focuses on single-input single-output nonlinear differential difference
equation (DDE) systems with uncertain variables. For such systems, a general
methodology is developed for the synthesis of robust nonlinear state feedback
controllers that guarantee boundedness of the states and ensure that the ulti-
mate discrepancy between the output and the external reference input in the
closed-loop system can be made arbitrarily small by an appropriate choice of
controller parameters. The controllers are synthesized by using a novel com-
bination of geometric and Lyapunov-based techniques and enforce the above
properties in the closed-loop system independently of the size of the state de-
lay. The proposed control method is successfully applied to a fluidized catalytic
cracking unit with a time-varying uncertain variable and is shown to outperform
a proportional integral (PI) controller, a nonlinear controller that does not ac-
count for the uncertainty, and a nonlinear controller that does not account for
the state delays.

Keywords: model uncertainty, time-delays, nonlinear robust control, fluidized
catalytic cracker

1. Introduction

The dynamic models of many chemical engineering processes involve nonlinearities,
time delays and uncertain variables and are naturally described by nonlinear differ-
ential difference equation (DDE) systems. Time delays often occur due to trans-
portation lag such as in flow through pipes, dead times associated with measurement
sensors (measurement delays) and control actuators (manipulated input delays), and
approximation of high-order dynamics. On the other hand, uncertain variables usu-
ally arise from unknown or partially known process parameters (e.g., heat transfer
coefficients, kinetic constants, etc.) and external disturbances (e.g., concentration,
temperature, and flow of inlet streams). Representative examples of processes which
involve nonlinearities and time delays include chemical reactors with recycle loops,
fluidized catalytic cracking units, distillation columns, chemical vapor deposition pro-
cesses, etc. The presence of time-delays and uncertain variables, if it is not appropri-
ately accounted for in the design of the controller, may pose unacceptable limitations
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on the achievable control quality and may cause serious problems in the behavior
of the closed-loop system including poor performance (e.g., sluggish response) and
instability (e.g., oscillations).

The problem of synthesizing linear and nonlinear controllers for uncertain sys-
tems that enforce output tracking with attenuation of the effect of the uncertain
variables on the output has received considerable attention in the past. Specifically,
research initially focused on the development of robust control methods to address
this problem for linear systems in both frequency-domain and state-space domain
including He, p-synthesis, etc. (Doyle et al., 1989). In the context of nonlinear sys-
tems, adaptive control techniques were employed to solve this problem locally (i.e.,
for sufficiently small initial conditions and uncertain variables) (Kanellakopoulos et
al., 1991; Sastry and Isidori, 1989; Teel et al., 1991) and globally (Krstic et al., 1995;
Marino and Tomei, 1993) for certain classes of nonlinear systems with constant un-
certain variables. For nonlinear systems with time-varying uncertain variables that
satisfy the so-called matching condition, robust state feedback controllers have been
designed via Lyapunov’s direct method to solve this problem locally (see the papers
(Corless, 1993; Leitmann, 1993) for a review of results in this area). More recently,
robust state (Christofides et al., 1996) and output (Khalil, 1994) feedback controllers
were designed that solve this problem for arbitrarily large initial conditions and un-
certainty (semi-global result). Although these works provided powerful methods for
adaptive and robust controller design for several classes of nonlinear systems, a direct
application of these methods to nonlinear systems with uncertainty and time-delays
may lead to poor performance and/or closed-loop instability.

In the area of control of systems with time-delays, research initially focused on
linear systems with a manipulated input delay which are described by transfer func-
tion models, in which the presence of the time delay prevents the use of large controller
gains (i.e., the proportional gain of a proportional-integral controller should be suf-
ficiently small in order to avoid destabilization of the closed-loop system), thereby
leading to sluggish closed-loop response. To overcome this problem, many researchers
proposed various predictor schemes which completely eliminate the time delay from
the characteristic polynomial of the closed-loop system, allowing the use of larger
controller gains (Brosilow, 1976; Jerome and Ray, 1986; Smith, 1957). These re-
sults were extended to certain classes of nonlinear systems in (Henson and Seborg,
1994; Kravaris and Wright, 1989; Yanakiev and Kanellakopoulos, 1997). For DDE
systems with state, measurement and manipulated input delays, a general method
based on a novel integration of geometric concepts, Lyapunov functionals and predic-
tor schemes was proposed in (Antoniades and Christofides, 1999) for the synthesis of
nonlinear output feedback controllers. Research on control of uncertain DDE systems
has mainly focused on linear systems where important contributions include robust
control using the concept of quadratic stabilization (Cao et al., 1997; Li et al., 1997;
Phoojaruenchanachai and Furuta, 1992) and linear matrix inequalities (Trofino et al.,
1997). In the context of nonlinear uncertain DDE systems, results include stabiliza-
tion via variable structure control (Shyu and Yan, 1993; Thowsen, 1983) and dynamic
disturbance decoupling (Moog et al., 1996).
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This paper focuses on single-input single-output nonlinear differential difference
equation (DDE) systems with uncertain variables. For such systems, we propose a
general methodology for the synthesis of robust nonlinear state feedback controllers
that guarantee boundedness of the states and ensure that the ultimate discrepancy
between the output and the external reference input in the closed-loop system can
be made arbitrarily small by an appropriate choice of controller parameters. The
controllers are synthesized by using a novel combination of geometric and Lyapunov-
based techniques and enforce the aforementioned properties in the closed-loop system
independently of the size of the state delay. The proposed control method is suc-
cessfully applied to a fluidized catalytic cracking unit with a time-varying uncertain
variable.

2. Notation

e L:h denotes the Lie derivative of a scalar field A with respect to the vector
field f. L’J”Zh denotes the k-th order Lie derivative and LgL’]‘Z'lh denotes the
mixed Lie derivative.

o A function W: R* — R>¢ is said to be positive definite if W(x) is positive for
all nonzero z and is zero at zero.

e A function W: R® — R>¢ is said to be proper if W(z) tends to 400 as ||z|/g~
tends to +oo, where || - ||g» denotes the standard Euclidean norm in R".

o A function : R>g — Rso is said to be of class @ if it is continuous, nonde-
creasing and zero at zero. It is of class K if it is continuous, strictly increasing
and is zero at zero. It is of class Ko if, in addition, it is proper.

o A function B: R>g x R>g =+ R>q is said to be of class KL if, for each fixed ¢,
the function f(-,t) is of class K and, for each fixed s, the function ((s,-) is
non increasing and tends to zero at infinity.

3. Preliminaries

We consider single-input single-output nonlinear DDE systems with uncertain vari-
ables with the following state-space description:

T = f(w(t)ax(t - a)wg(t - Oég)) + g(w(t), 'T(t - a))u(t),
.’L’(f) - ﬁ(£)7 6 € [—O{,O],
y(t) = h(z(t)), (1)

where z(t) € R™ denotes the vector of the state variables, u(#) € R denotes the
manipulated input, 8(t —ag) = [61(t —ap1) -+ 0,(t —apqy)] € R? denotes the vector
of the time-varying uncertain variables, y(t) € R denotes the controlled output,
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a denotes the state delay, f(z(t),z(t — a),0(t — ap)), g(z(t),z(t — «)) are locally
Lipschitz nonlinear vector functions, h(z(t)) is a locally Lipschitz nonlinear scalar
function and 7(£) is a smooth vector function defined in the interval [—«, 0]. We will
assume that the vector function f(z(t),z(t — @),0(t — ap)) satisfies f(0,0,0) =0
which implies that z(f) = 0 is an equilibrium solution for the open-loop system of
eqn. (1) (i.e., system of eqn. (1) with u(t) = 0).

There are many chemical engineering processes whose dynamic models involve
uncertain variables and time delays in the state variables, and are naturally described
by nonlinear DDE systems of the form (1). Uncertain variables typically arise from
unknown or partially known process parameters (e.g., activation energies, heat of
reaction, heat transfer coefficients) and external disturbances (e.g., upsets in inlet
concentrations, temperatures). On the other hand, state delays usually occur due to
dead-time in pipes used to transfer material among process units including fluidized
catalytic cracking units (where the state delays occur due to dead time in pipes trans-
ferring material from the regenerator to the reactor and vice-versa) and distillation
columns (where the state delays occur due to dead time in reboiler and condenser
recycle loops). The linear appearance of the manipulated input w in the system of
eqn. (1) is also typical in most practical applications, where inlet flow rates, inlet
temperatures and concentrations are typically chosen as manipulated inputs.

In the remainder of this section, we review several stability concepts and theorems
for DDE systems which will be used in our development (the reader may refer to (Hale
and Verduyn Lunel, 1993) for more details).

We begin with some notation. Given a function § : [—-a,00) — R™ and
t € [0,00), 0:(&) represents a function from [—,0] to R™ defined by 6:(¢) =
0(t + €). We also define [0;(£)| := max_a<¢<o [|0:(E)l[rm, [16:]] = sup,»165(€)| and
[16:]|7 = supg< <t |0s(€)|. Definition 1 that follows provides a rigorous statement of
the concept of input-to-state stability for (1).

Definition 1. (Teel, 1998) Let S8 be a function of class KL, v be a function of class
Q and 6,,0y be positive real numbers. The zero solution to (1) with w(t) = 0 is
said to be input-to-state stable if |zo(§)| < 9, and [|6;:]] < g imply that the solution
to (1) is defined for all times and satisfies:

lz:(€)] < B(lzo(&)],) +~(l16e]]), vt > 0. (2)

The above definition, when 6(¢) =0, V¢ > 0 reduces to the definition of asymp-
totic stability for the zero solution to the DDE system (1). Furthermore, when o = 0,
Definition 1 reduces to the standard definition of input-to-state stability for nonlinear
ODE systems with external inputs (IKhalil, 1996). Finally, we note that from the def-
inition of |z,(£)] and (2), it follows that [|z(t)|[lr~ < |z:(&)| < B(lze(E)], 1) + (164D,
vt > 0.

The following theorem provides sufficient conditions for uniform ultimate bound-
edness of the system (1), expressed in terms of a suitable functional. The result of
this theorem will be directly used in the solution to the robust control problem in
Section 4 below.



Robust control of nonlinear time-delay systems 815

Theorem 1. (Hale and Verduyn Lunel, 1993) Consider (1) with u(t) = 0 and let
v1 be a function of class Koo and e, s, v4 be functions of class Q. If there is a
continuous functional V : C — Rsq such that

n(l2@)r-) < V(2:(6)) < 2 (lz(£)]),
V(ze(8)) < —y3(llz(®)lrn),

lz(®)llr > va(l16e]), (3)
then the solutions to (1) satisfy (2).

Remark 1. Even though, at this stage, there is no systematic way for selecting
the form of the functional V(z.(£)) which is suitable for a particular application, a
choice for V' (z¢(€)), which is frequently used to show stability of a DDE system of
the form (1) via Theorem 1, is

t

V(ei©) =a" (00 + o [ 2" (9)Ba(s)ds, @)

l—o
where E,C are symmetric positive definite matrices and a is a positive real number.
Clearly, V satisfies Ki||z(t)||Z. <V (2:(€)) < Ka|zi(€)|? for some positive K, K.

4. Robust Nonlinear Controller Synthesis

We consider systems of the form (1) and address the problem of synthesizing nonlinear
static state feedback control laws of the general form:

u(t) = R(z(t),v(t), z(t — @), 0(t — a)), (5)
where R(z(t),9(t),z(t — «),0(t — «)) is a nonlinear scalar function, o(s) =
[w(s) vV (s) -+ v=V(s)]T, s € [t—a,t] and v® denotes the k-th time-derivative

of the reference input v € R. The controllers enforce the following properties in the
closed-loop system: (a) boundedness of the trajectories, (b) robust output tracking
for changes in the reference input with arbitrary degree of asymptotic attenuation of
the effect of the uncertainty on the output, and (c) compensate for the effect of the
time delay on the output, independently of the size of the state delays. The struc-
ture of the control law (5) is motivated by available results on stabilization of linear
DDE systems (Nazaroff, 1973; Ross and Flugge-Lotz, 1969) and the requirement of
output tracking with attenuation of the effect of the uncertainty on the output. The
controllers will be synthesized by employing a novel combination of geometric control
concepts with the method of Lyapunov functionals.

In order to proceed with the explicit synthesis of the control law (5), we will
need to make certain assumptions on the structure and stability properties of (1). To
simplify the statement of these assumptions, we introduce the notation:

flz(t),z(t — a),0(t — a9)) = from(z(t),2(t — a)) +6(z(t),z(t — ), 0(t — ag)),
Fnom (-77<t)>x(t - a)) = fnom (:E(t)) +p(1:(t),£[:(t - O‘))’
pz(t),z(t — ), 80t — ap)) = §(a(t), z(t — @), 8(t — ag)) + p(z(t), z(t — @), (6)
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which allows us to rewrite (1) in the following form:

&= from (m(t)) + g(:c(t), z(t — a))u +]3(a:(t), z(t - a),0(t — Olg)),
y = h(z).

(7)

The first assumption is motivated by the requirement of output tracking with the
attenuation of the effect of the uncertainty on the output and will play a crucial role
in the synthesis of the controller.

Assumption 1. Referring to (7), there exists an integer 7 and a change of variables:

[ ((s)
n(s)

}:

where s € [t — a,t], t € [0,00) and x1(z(s)),...

C1(s)
C2(s)

m1(s)

L n—r(8) |

functions such that (7) takes the form:

G
C.r -1
G

o=
oy =

y:

¢r(s) | = X(2(s))

h(z(s))
Lg h(z(s))

=t h(:c( )

fnom

X1 (37(3))

Xn—r (ZE(S))

G (t) + 1 (C(8),n(t), C(t — a),n(t = a), 8(t — av)),

Gr(8) + Br-1 (C(8), m(1), €t —

0)777(75 - a)vg(t - Oég)),

, Xn—r(z(s)) are nonlinear scalar

L% h (X7, n®)) + LgL}:m h(X7H(C@),n()u(?))

+pr (C(#),n(t), ¢t — @), n(t — @)

+ 6, (C(t),n(2), C(t — ), n(t — ), 6(t — ag)),

W1 (C(),n(t), C(t — @), n(t — @), 00t — ap)),

T (C(1), (1), C(t — @), m(t = @), 0(t — ),

G(t), (9)
), Cl(t —a),n(t —a),0(t — ag)) =

where pr(¢(2), n(t), {(t — a),n(t — a)) + 8- ({(t), n(t

pr(C(1),

n(t): C(t - Oé), 77(t -

a),0(t —

ag)) and LyL7~

h(z) # 0 for all z(s) € R*,

€ [t — o, t]. Moreover, for each 6(s) € R?, s € [t — Ozg, t], the states ((s) and n(s),
s € [t— a,t], are bounded if and only if the state z(s) € R*, s € [t—a,t] is bounded.
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Assumption 1 provides the explicit form of a coordinate change (which is indepen-
dent of the state delay present in (1)) that transforms the nonlinear DDE system (1)
into an interconnection of two subsystems, the (-subsystem which describes the in-
put/output dynamics of (1) and the n-subsystem which describes the dynamics of (1)
which are unobservable from the output. Specifically, the interconnection of (9) is
obtained by considering the change of variables (8) with s = ¢, differentiating it with
respect to time and using z(t) = X1 (((t),n(t)), z(t — a) = X7H{(t — a),n(t — a))
(note that this is possible because the change of variables (8) is assumed to be valid
for s € [t — a,t]). The assumption that LgL}_1 h(z) # 0 is necessary in order to
guarantee that the resulting controller is well—gsged in the sense that the controller

does not generate an infinite control action for any values of the states of the process
(compare with the structure of the controller given in Theorem 2).

The coordinate transformation (8) is not restrictive from an application point of
view (one can easily verify that Assumption 1 holds for the fluidized catalytic cracking
unit of Section 5), and it significantly facilitates the controller synthesis task which
will be now addressed on the basis of the low-order partially-linear (-subsystem.

To proceed with the controller design, we need to impose the following stability
requirement on the n-subsystem of the system of (9).

Assumption 2. The dynamical system:

7:)1 = ‘III(C(t):n(t)aC(t - 04),77(75 - a)76(t - 019)),

7:]11——7' - \IIn——T(C(t):T/(t); C(t - CM),’I’](T, - CZ), e(t - Oég)), (10)
is input-to-state stable with respect to the inputs (;(£) and 8:(¢).

The above assumption states that if the states of the (-subsystem, ((§), and
the uncertainty, 6;(¢), are bounded, then the states of the 7-subsystem will also
remain bounded. In practice, Assumption 2 can be verified by linearizing (10) with
C(&) = 0:(¢) = 0 around the operating steady state and computing the eigenvalues
of the resulting linear DDE system (this can be done by using standard algorithms
(for example Manitius and Tran, 1985; 1987)). If all of these eigenvalues are in the
left-half of the complex plane, then (Teel, 1998) Assumption 2 is satisifed locally (i.e.,
for sufficiently small initial conditions, ||(:(£)], and ||6:(&)I]).

Assumption 2 allows for addressing the controller synthesis problem on the basis
of the (-subsystem. Specifically, applying the following preliminary feedback law:

1 ~ r -1
"0 = FEr gy (0 b (7 60)
= pr (€8, m(), ¢t = @), m(t — @), (11)

where () is an auxiliary input, to (9) in order to cancel all the nonlinear terms that
are known and can be cancelled by using a feedback which utilizes measurements of
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z(s) for s € [t — a, 1], we obtain the following modified system:

él = CZ(t) +ﬁ1 (C(t):n(t)7<(t - a)ﬂ?(f - Ol), g(t - Oéo)),

Cro1 = Go(8) + Do (1), (1), ((¢ = @), n(t — @), 8(t — ),
¢'r =u-+ 67‘ (C(t),'l’](t), C(t - a)ﬂ?(t - a)79(t - Otg)),
771 = (C(t)an(t)) C(t - a)a 77(t - a): H(t - ag)) ’

N—r = Vo (C(t)a n(t), z(t — ), n(t — a),@(t - 0‘0)):

y = G(), (12)
where (i (t) = L;‘;_l h(z), k=1,...,7.

Introduce the notation:

010 - 0 07 [0 ]
00 1 00 0
A=10 0 0 00| p=]0],
(000 -~~~ 0 0| 1]

ﬁ(C(t)ﬂ?(t)» C(t - Oé),'l](t - a)7 g(t - Otg))
[ 151 (C(t)a n(t)a g(t - a)an(t - a)’ G(t - CYG)) 1
ﬁi% (g(t)ﬂ?(t): C(t - a)ﬂ?(t - (1), G(t - O‘H))

Pr-1(C(8),n(t),¢(t = @), 0t — @), 0(t — ap))
0

Let &(s) = [(h(z(s)—v(s)) (Ly,,, 7z (s))=vP(s)) -.. (L R(a(s))—ol""(s)"
and 9(s) = [v(s) vV (s) ... v""D(s)]T, s € [t — a,t], where v(¥) denotes the k-th
time-derivative of the reference input v. The (-subsystem of (12) can be written in
the following compact form:

& = Ae(t) + biu(t) + p(e(t) + 0(t),n(t), et — @) + 6(t — @), n(t — ), (t — ap))
+ 06, (8(t) +0(t),n(t), e(t — @) +0(t — a),n(t — @), 0(t — ag)),

y = &1(t). (14)
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The controller synthesis task has been now reduced to that of synthesizing the auxil-
iary input @(t) to achieve the asymptotic attenuation of the effect of the uncertainties
of the &-subsystem in (14), on the output. Specifically, the synthesis of @(t) will be
performed by using the method of Lyapunov functionals, so that the time derivative
of the Lyapunov functional:

¢

V =&l (t)Pé(t) + o / el (s)é(s)ds (15)

t—a

where a is a positive real number, calculated along the state of the closed-
loop é&-subsystem is negative definite. The incorporation of the integral term
f tt_aéT(s)é(s) ds in the functional (15) allows accounting for the distributed parame-
ter (delayed) nature of (1) in the controller design stage and synthesizing a controller
that enforces the requested properties in the closed-loop system independently of the
size of the state delay.

To explicitly synthesize (t), we need to assume the existence of known state-
dependent, possibly time-varying, upper bound that capture the size of the uncer-
tainty for all times (such bounds are usually obtained from physical considerations,
preliminary simulations, experimental data, etc.). Assumptions 3 and 4 formalize our
requirements.

Assumption 3. There exists a known function é&/(&(t) + 9(t),n(t),é(t — a) + o(t —
a),n(t — a),t) such that the following condition holds:

|6, (8(t) +0(t),n(t), &(t — ) + B(t — &), m(t — ), 0t — o)) |
< éo(e(t) +o(t),n(t), et — a) + 0(t — @), n(t — a),t) (16)

where |- |g denotes the absolute value of a scalar, for all &(s) € R", s € [t — a,1],
O(s) R, s €t —ag,t], 5(s) €ER", s€t—a,t], n(s) e R, s €[t —a,t]

Assumption 4. There exist positive real numbers a;,as such that the following
bound can be written:

[5(2(t) + (), (1), &t — @) + B(t — @), 1t — ), 6(t — ag)) |2,

< a8 (t) + agé’(t — @) (17)

for all é(s) e R", s € [t — a,t], O(s) € R, s € [t —ag,t], U(s) €ER", s€[t—a,t],
n(s) e R, s€[t—a,t].

The above assumption on the growth of the vector H(é(t) + v(t),n(t),e(t — o) +
o(t — a),n(t — @),0(t — o)) does not need to hold globally (i.e., for any &(t),n(t)),
and thus, it is satisfied by most practical problems (see e.g. the fluidized catalytic
cracking reactor of Section 5).

We are now in a position to state the main controller synthesis result of this paper
in the form of a theorem (the proof of this theorem can be found in the Appendix).
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Theorem 2. Consider the nonlinear DDE system (1) for which Assumptions 1-4
hold. Suppose that the matriz equation:

ATP 4+ PA - 2PTbR; TP + (a® + a1)Inxn + P2 = —R, (18)

where a® > ay, and Ry is a positive definite matriz, has a unique positive definite
solution for P, and consider the closed-loop system under the robust nonlinear state
feedback controller:

u=R(z(t),z(t — @),1)

- m( — Ry Pe(t) + v (8) - %@ (2(t), 2(t - @), )w(e(t), ¢)

— L% h(a() — pr((t), 2t - a))) (19)

where w(e(t), @) is a scalar function given by:
b Pe(t)

6T Pe(t)|r + ¢

and X, ¢ are adjustable parameters with ¥ > 1 and ¢ > 0. Then there exist positive

real numbers 6,d, ¢* such that if max{|zo(£)], [|v:]], 10|} < 6 and ¢ € (0,¢*], the
output of the closed-loop system satisfies a relation of the form.:

w(&(t), ¢) = (20)

Jim sup |y(t) — v(t)|g < d (21)
independently of the size of the state delays.

Remark 2. Regarding the structure, implementation and closed-loop properties of
the nonlinear state feedback controller of (19), several remarks are in order: (a) it
uses measurements of the states of the process evaluated at ¢ and t — o (i.e., z(t)
and z(t — @)), and thus, it belongs to the class of the requested control laws (5), (b)
its practical implementation requires the use of memory lines to store the values of
z in the time interval [t — a,t], and (c) it enforces stability and asymptotic output
tracking in the closed-loop system independently of the size of the state delay.

Remark 3. In order to apply the result of Theorem 2 to a chemical process ap-
plication, one has to initially verify Assumptions 1-3 of the theorem on the basis
of the process model and compute the parameters a; and ae, and the function
éo(z(t),z(t — a),t). Then, a, Ry, Ry should be chosen so that a® > as and the
matrices Ry, Ry are positive definite to ensure that the matrix equation (18) has a
unique positive definite solution for P. Note that R; determines the speed of the
closed-loop output response (namely, ‘larger’ (in terms of the smallest eigenvalue) R,
means a faster response), while R, determines the penalty that should be imposed
on the manipulated input in achieving stabilization and output tracking (‘larger’ R,
means a larger penalty on the control action). If these assumptions are satisfied, the
synthesis formula (19) can be directly used to derive the explicit form of the controller
(see Section 5 for an application of this procedure to a chemical process example).
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Remark 4. The robust nonlinear controller (19) possesses a robustness property
with respect to fast and exponentially stable unmodeled dynamics (i.e., the controller
enforces boundedness of the state and output tracking with uncertainty attenuation
in the closed-loop system despite the presence of additional dynamics in the process,
as long as they are exponentially stable and sufficiently fast). This property of the
controller (19) can be rigorously established by analyzing the closed-loop system with
unmodeled dynamics using singular perturbations and is of particular importance for
many practical applications where unmodeled dynamics often occur due to actuator
and sensor dynamics, fast process dynamics, etc.

5. Application to a Fluidized Catalytic Cracker

In this section, we illustrate the implementation of the developed control methodology
on the fluidized catalytic cracker (FCC) shown in Fig. 1. The FCC unit consists of
a cracking reactor, where the cracking of high boiling gas oil fractions into lighter
hydrocarbons (e.g., gasoline) and the carbon formation reactions (undesired reactions)
take place and a regenerator, where the carbon removal reactions take place. The
reader may refer to (Arbel et al., 1995; Denn, 1986; McFarlane et al., 1993) for a
detailed discussion of the features of the FCC unit, (Arbel et al., 1996) for an analysis
of the issue of control structure selection and (Antoniades and Christofides, 1999;
Christofides and Daoutidis, 1997; Huq et al., 1995; Monge and Georgakis, 1987) for
application of linear and nonlinear control methods to the FCC unit, respectivly.

Under the assumptions of well-mixed reactive catalyst in the reactor, small-size
catalyst particles, constant solid holdup in reactor and regenerator, uniform and con-
stant pressure in reactor and regenerator, a dynamic model for the FCC unit can be
derived which takes the form (Antoniades and Christofides, 1999):

V‘ra di’;at = —60FTCCCLIL(t) + SORCf (CCat (t)) CTC (t - al)’Tra')’
dC,
Via—g; = 60F7. [Cre(t = a1) = Coe(t)] + 50Res (Ceat (1), Cre(t — 1), Tra),
dTru
Via=gr® = 60F [Tt — an) = Tra(8)] + 0-875%%}% [Trp = Tra(t)]
[
_AH;, —AH,
+0.875(——S_QthRtf +0.5(—?—)Roc(0cat(f)= Cre(t=0u), Tra),
¢ C
dCrc
V;«g dt = 60F,. [Csc(t - 052) - CTC(t)] — 50R. (CTC(t)’Trg(t))’
dT, Sa
Vig—gqp+ = 60Frc[Tralt — a2) = Try(1)] + 0.5~ Rai[Tai — Try(t)]
C
~AH,
- 0.5(——9~)Rcb(0rc(t), Trg(t)), (22)

Se
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where Ceat, Cse, Cro denote respectively the concentrations of catalytic carbon on
spent catalyst, the total carbon on spent catalyst, and carbon on regenerated cata-
lyst, Trq, Try denote the temperatures in the reactor and the regenerator, R,; is the
air flow rate in the regenerator, R; 7 is the total feed flow rate, D:s is the density
of total feed, V4, Vi, denote the catalyst holdup of the reactor and the regenera-
tor, AH,,, AH,, are the heat of regeneration and cracking, AH £y is the heat of
feed vaporization, Fy. denotes the circulation flow rate of catalyst from reactor to
regenerator and vice-versa, S,, Sc, Sy denote specific heats of the air, the catalyst,
and the feed, Ty,, To; denote the inlet temperatures of the feed in the reactor and
of the air in the regenerator, and R, #, Roe, Rep denote the reaction rates of total
carbon forming, of gas-oil cracking, and of coke burning. Analytic expressions for the
reaction rates Rcf, Ro, Ry can be found in (Denn, 1986).

Reactor Regenerator
Product Gas Flue Gas
~f >
Frc s Crc » Trg
é——‘! Op
Vra F;'c 2 CSC s T
] Vig
G+ T s Ge
Ty, Ce
Air Riser \
- Oil Riser Stand Pipe
Stripper
E,
ic
Tui T('p
R, ¥

Feed

Preheater

Fuel Gas

Fig. 1. Fluidized catalytic cracker.
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The presence of the time delay in the terms Cr.(t — o) and Ty4(t — 1) is due
to dead-time in the pipes transferring regenerated catalyst from the regenmerator to
the reactor, and the time delay in the terms Cs.(t — a2), Tra(t — a2) is due to dead
time in the pipes transferring spent catalyst from the reactor to the regenerator. Even
though the proposed method can be readily applied to the case where a; # as, we
pick in order to simplify our development, oy = az = @ = 0.3hr. The values of the
remaining process parameters and the corresponding steady-state values are given in
Table 1.

The control objective is the regulation of the temperature in the regenerator,
Trg, by manipulating the temperature of the inlet air in the regenerator, T,;. The
heat of combustion in the regeneration is assumed to be the uncertain variable,
AH,, = AHyy, + 6(t), where AH,,, is the nominal value of the heat of com-
bustion and 6(t) is the time-varying uncertainty. Setting z = [z1 22 %3 24 25]T =
[Trg Cre Tra Cse Ceat], u = Tai, y = Try, the process model (22) can be written in
the form (7) with:

[ 0.55,Rai 60F,. So Rai 1
Taisv - 111‘ t
A (% FOSgTE ) o)
(=AHg,n)
At c re ,T'r t
0.5 g Rep (Cre(t), Trg(t))
[f1] 60F, 50
B — T8 Cre(t) — =—Rep (Cre(t), Trg(t
A Ve Ve b (Cre(t), Trg(t))
fnom(m(t)) =\|fs]| = _%Tru(t)—{—(].S?S SSJ DRy [Tfp -—Tra(t)] ) (23)
f._4 ra [+ ra _AH
f +0875(—SC‘7;—£_)thRtf
L J5
60F .
—, e
60F;c
i 7, Ceat® ]
60F7‘C Tru (t _ a) 7
Y (—6)
—05chb(CTC(t)7TT9(t))
M- 60F,
p TC e _
1 Vo Cse(t — @)
P2 60F, (—AH.,)
Bz(t),a(t —a),00)) = | 5z | = | “grTrolt —a) + 055 (24)
Pa X Roc(Ceat(t), Cre(t — @), Tra(t))
| Ps | 60Fc 50
v, Cret—a)+ oo
chf(th(t), Cre(t — ), Tm(t))
50
L —‘Z;Rcf (Ccat(t): CTC(t - O‘): Tra(t))
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i g | [ 0.55.Rai ]
92 SeVry
o at-) =g |=| o | (25)
94 0
L g5 B L 0 e

For the system (22), Assumption 1 is satisfied with r = 1, the coordinate trans-

formation (8) takes the form (3 m m2 n3 m4]” = [Ty Cre Tra Cse Ceat] and yields
the following system:

{ =1Lz B(XTH¢M) + Lyh(X 71, 0))ult)
+p1(C(1),n(1), C(t ~ o), n(t — @), 6(t)), (26).
1= T(¢(t),n(t),C(t - a),n(t - a)),
whose explicit form is given below in (27) and (29). To verify Assumption 2, we
consider the n-subsystem of (26) with ((t) = ((t — a) = {; = 1155.96°F, i.e., the

system:

60F,¢ 50 60F,. T
— —R, ,Cs t_
v, ™ VTgR b(n1,(s) + T na(t —a)

_60F

, (-AHy)
m Via

SCVTQ

s
m2 +0.875 ‘; DisRif[Tsp — 12] + 0.875

c

72 (—AH.,)
' xDysRer + 0.5——-———SCVM Roe (7]4,7‘]1(t — O{),?]g) ) (27)
3
; 60F, 60F, p 50
774 _ TC rc . et _

v, et a)+Vchf(774ﬂ71(t a),n2)

60Fc 50
I v n4+chf(n4,m(t~a),nz)

Its linearization around the steadystate

Cre=0.6973wt%, Ty, = 930.62°F,
(28)
Cse=1.5696 wt%, Cear = 0.8723 wt%,

was found, through simulations, to be exponentially stable, which implies that the
n-subsystem of (26) possesses a local input-to-state stability property with respect
to (:(§). Therefore, Assumption 2 holds and the controller synthesis problem can be
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addressed on the basis of the (-subsystem which is given as:

: 60F7«c O-5SaRai
= - t
< ( Voo | SVrg )C()

(—AHrgn)
Schg

- 05

R (ma(8), (1)) + (w—) u(t)

Schg

# (522 e - )+ 054 R ) €(0). (29)

Setting e(t) = ((t) — v, where v is the desired set point, and implementing a prelim-
inary control law of the form (11), the above system becomes:

e = —R; b7 Pe(t) — xéo (e(t) + 0(t),n(t),e(t — a) + (¢t — ), n(t — @), t)

()

x w(e(t), d) + O.SSCVTQ

Rcb (771 (t)a e(t) + Q_}(t)) . (30)

Assumption 4 is trivially satisfied since p(e(t)+v(t),n(t), &t — ) +o(t— ), n(t—
a)) = 0 and the functions & (&(t) + 9(t),n(t), &t — @) + 0(t — &), n(t — ), t) and
w(e(t), ) take the form:

Go(e(t) +(t),n(t), et — a) + 3(t — @), n(t — @), t)

0
= O.ST‘ZQRCI; (m(8), e() +v), (31)

Pe(t)
|Pe(t)lr + ¢’
where 0, denotes the upper bound on the size of the uncertain variable and ¢ is

an adjustable parameter. Utilizing the result of Theorem 2, the following matrix
equation can be formed:

w(e(t),¢) =

ATP + PA - 2PTbR; "W P + a*I,xn + P? = =R, (32)
with Ry = 1/3, a® = 2.5 (a® > ay =0), and
A=0, b=1, R; =205 (33)

Equation (32) has a unique positive definite solution for P of the form:
P=1, (34)
which leads to the following nonlinear state feedback controller:

1 &
u = m[_;}(zl(t) —v) — %0. 55 Vrchb(Jiz(t);ﬂ?l(t))

z1(t) — v
X(Eﬂﬁiﬂ£15>*Lﬁmh@@»*PdﬂﬂJU—aD. (35)
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We performed several sets of simulation runs to evaluate the performance and
the robustness properties of the controller (35) and compare them with the ones
of: (a) a nonlinear controller that does not account for the time-varying uncertain
variables (i.e., controller (35) with & (z(t), z(t — @),t) = 0), (b) a PI controller, and
(¢) a robust nonlinear controller that does not account for the presence of dead-times
associated with the pipes transferring material from the regenerator to reactor and
vice versa (i.e., controller (35) with @ = 0). The user-friendly software package
SIMULINK was used to carry out all the simulation runs (SIMULINK is a toolbox
of the mathematical software MATLAB that includes a delay function which can be
readily used to simulate differential equations with time delays). In all the simulation
runs, the process was initially (¢ = 0.0 hr) assumed to be at the steady-state shown
in Table 1 and a time-varying uncertain variable of the form:

8(t) = 300 cos(0.5t), (36)

was considered. The upper bound on the uncertainty was taken to be 6, =
300 Btulb™'. The controller of (35) was implemented with ¢ = 0.05 and ¥ = 1.1 to
guarantee that the output of the closed-loop system satisfies a relation of the form:

lim sup |y — v|r < 1°F. (37)
t—o0

In the first set of simulation runs, we tested the ability of the controller to main-
tain the output at the steadystate despite the presence of uncertainty. The output pro-
file and the corresponding manipulated input profile are given in Fig. 2. Clearly, the
controller regulates the output at the operating steady state compensating for the ef-
fect of the uncertainty and satisfying the requirement of (37). For the sake of compar-
ison, we also implemented the nonlinear controller (35) with é (z(t), z(t — a),t) =0
and a PI controller with K. = 10 and 7; = 0.1. Figure 3 shows the output profiles
and the corresponding manipulated inputs of all the three controllers; the performance
of the proposed controller is clearly superior to the ones of the other two controllers.

1160 T T T T
1158} 4
u:nss\/——/\/_——/\/_——/\:
@
= 1154 4
1152 4
1150 . L : . . . .
0 5 10 15 20 25 30 35 40
Time (hr)
400 T
300 J
200 4
2
100} 4
° . L A . : . L
0 s 10 15 20 25 30 a5 40

Time (hr)

Fig. 2. Closed-loop output and manipulated input profiles under the controller (35).
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In the second set of simulation runs, we tested the output tracking capabilities
of the nonlinear controller (35) for a 44°F increase in the reference input. Figure 4
shows the output and manipulated input profiles. The controller drives the output to
the new reference input value compensating for the effect of the uncertainty and state
delays, and satisfying the requirement of (37). We also tested the controller (35) with
éo(z(t),z(t — a),t) = 0 and a PI controller with K. = 10 and 7; = 0.1. Figure 5
displays the output and manipulated input profiles of all the three controllers. Again,
the superiority of the proposed controller is evident.

Finally, we also implemented a nonlinear controller which does not account for
the presence of the state delays (no uncertainty was considered in this simulation
run). Figure 6 shows the closed-loop output profile and manipulated input profile;
this controller leads to an unstable closed-loop system because it does not account for

the presence of significant state delays.

Table 1. Process parameters and steady-state values.

E.. = 18000.0 Btu b~ 'mole™!

E., = 27000.0 Btu b~ 'mole™!

E,» = 63000.0 Btu Ib~'mole™*

kee = 8.59 MIb hr*psia~*ton™* (wt%) 100
ke = 11600 Mbbl day~*psia~ ton™ " (wt%) ' °
kor = 3,5 X 10*® | MIb hr~'psia”*ton™"
Vig = 200.0 ton

Via = 60.0 ton

Tps = T44.0 F

Ta: = 175.0 F

Py =25.0 psia

P, =40.0 psia

AHy, = 60.0 Btu lb™*

AH, =773 Btulb™*

AH,y =10561.0 | Btulb™*

S, =0.3 Btu lb™'F~?

S, =0.3 Btu lb~'F~?
Sf=0.7 Btulb™'F!

F.. =40.0 ton hr™*

Rif = 100.0 Mbbl/day

Dy =17.0 Ib gal™*

Q] = 0.3 hI‘

ay; =0.3 hr

Rga; = 400.0 Mib min~!

(Ceat)s = 0.8723 | wt%

(Cse)s = 1.5696 | wt%

(Cre)s =0.6973 | wt%

(Tra)s = 93062 | F

(Trg)s = 1155.96 | F
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Fig. 3. Closed-loop output and manipulated input profiles under the con-
troller (35) (solid line), the controller (35) without accounting for
the uncertainty (dashed line), and a PI controller (dotted line).
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Fig. 4. Closed-loop output and manipulated input profiles under the
controller (35) for a 44° F increase in the reference input.
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Fig. 5. Closed-loop output and manipulated input profiles under the

controller (35) (solid line), the controller (35) without ac-

counting for the uncertainty (dashed line), and a PI controller

(dotted line) for a 44° F increase in the reference input.

5000 T T T T T
4000+ 4
QBOOO— B
] o A _
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Time (hr)
x 10 : T : . ‘

2.5 4
— 2r 1
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> L | J' ' | ]

O.Z— Am\/\/\/\/\/\/\ MMM/\ v/ll! f J H _

0 10 30
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Fig. 6. Closed-loop output and manipulated input profiles under the
controller (35) with « = 0; no model uncertainty is present.
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6. Conclusions

We have considered single-input single-output nonlinear DDE systems with uncertain
variables and proposed a general methodology for the synthesis of robust nonlinear
state feedback controllers that guarantee boundedness of the states and ensure that
the ultimate discrepancy between the output and the external reference input in
the closed-loop system can be made arbitrarily small by an appropriate choice of
controller parameters. The controllers were synthesized by using a novel combination
of geometric and Lyapunov-based techniques. The proposed control method was
successfully applied to a fluidized catalytic cracking unit with a time-varying uncertain
variable and was shown to outperform a PI controller, a nonlinear controller that does
not account for the uncertainty, and a nonlinear controller that does not account for
the state delays. We currently work on the extension of these results to systems of
partial differential equations with time-delays that arise in the modeling of transport-
reaction processes (Christofides and Daoutidis, 1996; Skliar and Ramirez, 1998).
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Appendix
Proof of Theorem 2. Consider the DDE system (7) under the robust con-

troller (19):

&= from (2(t)) + g(2(t), 2(t — a))R(z(t), 2(t — ), 1)
+]3(m(t),x(t—a),9(t—a9)), (Al)

y = h(z).

Applying the coordinate transformation (8) to the above system and setting, for ease
of notation, z(s) = X~1({(s),n(s),0(s)), s € [t — a, ], t € [0,00), we obtain:

G = G(8) + 51 (CH),m(t), {(t — @), n(t — @), 6(t — &),

1 = G () + Pra (C) M), C(t — )t — @), 8(t — ap)),
(= L}nmh(x(s)) + LgL}n_almh(:c(s))R(a:(t),m(t —a),t)

+ Dr (C(t)777(t)> C(t - CK), U(t - Oé),@(t - a9))7
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7:]1 = ‘I’l(C(t),ﬂ(t)a C(t - a)an(t - a)ug(t - ag)),

(A2)
Mn—r = ¥Yn_r (C(t)a n(t),¢(t —a),n(t —a),6(t - 0‘9))7
y = G(t)
Introducing the variables e;(t) = ¢;(t) —v®~Y, i=1,...,r and the notation o(s) =
[w(s) v(s) -~ v D($)T, s € [t — a,t], where v¥) denotes the k-th time

derivative of the reference input v, which is assumed to be a sufficiently smooth

function of time, and B, (((t),n(t), ((t — @), n(t — @),0(t — ag)) = pr(¢(1), n(t), {(t —
a),n(t — @) + 6.(C(),n(),((t — a),n(t — a),0(t — ay)), the system (A2) takes the

form:

é1 = ea(t) + B (e(t) + 0(1), n(t), et — @) + 0t — @), n(t — ), 6(t — ag)),

éT“l = ef(t) +ﬁr—1 (é(t) -+ 'D(t)an(t)a é(t - a) + @(t - a)a’l(t - a)70(t - Olg)),
ér = L’J}Mmh(m(s)) —o( 4 LgL;.:clmh(a;(s))R(z(t), z(t — @),t)

+ Dr (é(t) + 'U(t), n(t)v é(t - Oé) + E(t - O{), U(t - a)) (A3)

+ 67‘ (é(t) + 5“);”7@)7 é(t - a) + ﬂ(t - a)»ﬂ(t - O{),G(t - aé)) 3

i = Wy (&) +0(2),m(t), et — @) + 0t ~ a), 1t — ), 0(t — as)),

finer = Un_p(B(t) + (1), n(t), (t — @) + 0t — @), n(t — ),8(t — as)),

where &(t) = [e1(t) e2(t) -+ e ®)]T and n(t) = [m @) n(t) --- Nn—r(t)]T. For
the above system, we assume, without loss of generality, that [€ 1] = [0 0] is an
equilibrium solution.

We now consider the é-subsystem of (A3):
é1 = ea(t) + pu (€(t) + 0(t),n(t),e(t — @) + 5t — &), n(t — @),6(t — ag)),

ér—1 = er(t) + Bro1(8(t) + (), n(t), &t — &) + 0(t — @), n(t — @), 0(t — ap)),
ér = L% h(a(s)) — ol + LyLE " h(a(s) R(2(t), 3(t - a),t) (A4)
+pr(B(t) +0(t),n(t), &t — @) + 0(t — @), 0t - a))

+ 6, (8(t) +0(t),n(t),e(t — @) + v(t — a),n(t — a),8(t — ag)).
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Using the explicit form of the controller formula (19) and the definition for the matrix
A and the vectors b, p(e(t) + v(t),n(t),e(t — a) + 9(t — @), n(t — a),8(t — ay)), the
above system can be written in the following compact form:

&= As(t) + b( — R\ Pe

— X80 (8(8) + 5(8),1(t), &(t — @) + (¢ — @), n(t - @), yw(e(t), 6))

+ (&) + 0(t),n(t), e(t — @) + 0t — a),n(t — @),0(t — ap))

+ b6, (e(t) + (t),n(t)e(t—a) + v(t—a),n(t—a),8(t—ag)). (A5)
We will now show that if (18) holds and the state of the n-subsystem of (A3) is
bounded, then (A5) ensures that the ultimate discrepancy between the output and the
external reference inputs in the closed-loop system can be made arbitrarily small by
an appropriate choice of controller parameters, which implies that lim; . sup |y(t) —

v(t)lg < d. To establish this result, we consider the following smooth functional
V:C— Rzot

t
V(e(€)) = &7 (1) Pa(t) + o /t &7 ()e(s) ds, (A6)

-

where P is a positive definite symmetric matrix, a is a positive scalar, and V clearly
satisfies, K1|le(t)||g- <V (e:(€)) < Kslei(€)|?, for some positive constants K; and K.

From Assumption 3, we have |4,(e(t) + 9(t),n(t),€(t — o) + o(t — a),n(t — a),
6(t — ag))|lr < Go(€(t) + 6(t),n(t), et — a) + 9(t — @),n(t — a),t). Computing the
time-derivative of V' along the trajectories of (A5), we obtain:

V = &(t)TPe(t) + T (t) Pe(t) + a® (€T (t)e(t) — €7 (t — a)é(t — )

< (éT(t)AT —&T(t)PbR; b7
— xw(e(t),d) " e (2(t) + 5(2), n(t), (¢ — @) + (t — @), n(t — a), )67
(e(t) +0(t),n(t), &(t — @) + 9(t — ), n(t - @), 8(t — ap))

+6, (é(t)+17(t),n(t),é(t—a)+1")(t—a),77(t—a),Q(t—ag))bT)Pé(t)
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+p(&(t) + 8(2),n(t), &t — @) +9(t — o)t — @), 0(t — ap))
+ 08, (2(t) + (1), (), &t — @) + (¢ — @), n(t — @), 6t — as)) )
+a*(ET (t)e(t) — &7 (t — a)e(t — )

< T (t)(ATP + PA - 2PTbR; 0" P + a®Inxn)&(t)
+ 257 (8(t) + 9(t),n(t), e(t—a) + B(t—a),n(t—a),0(t—ap)) Pe(t)
+ 2(—;2&0 (8(t) +B(t), n(t), e(t— ) + v(t—a),n(t—a), t)w(e(t), ¢)
+5T(é(t)+17(t),n(t),é(t—a)—l—@(t—a),n(t—a),@(t—ae)))bTPé(t)
—a%eT (t — @)é(t — a), (A7)

where I,,xn, denotes the n x n identity matrix. Using the inequality 22Ty < 27z +
yTy, where z and y are column vectors, we obtain:

V < &T(t)(ATP + PA - 2PTbR; 0T P + a®Inxn + P?)&(t)
+ 52 (e(t) + 3(t),n(t), e(t — o) + 5t — ), n(t — @), 0(t — o))

|bT Pe|2,
|bT Pe|g + ¢

—2x& (E(t)+0(t),n(t), e(t—a) +0(t—a),n(t— ), t)
+26, (8(t) +3(t),n(t), e(t— ) +0(t—a),n(t—a),0(t—ag))b” Pe
~a’eT (t — a)e(t — a)

<& (t)(ATP + PA - 2PTbR; 'O P + a’ I xn + P?)e(t)
+ 2 (e(t) + o(t),n(t), et — a) + vt — a),n(t — a),0(t — ag))

2x80(2(t) + 0(t),n(t),e(t — a) + 9(t — &), n(t — a), t)|b" Pelg
|bT Pelr + ¢

N 26, (e(t)+0(t),n(t), e(t—) +0(t—a),n(t—a),8(t—ay))|b” Pejg
b7 Pelr+¢

| 208:@)+3(t),n(t), et —a)+o(t =), n(t—a), (¢ —as)) BT Pelw
|67 Pélr+¢

—a’eT(t - a)é(t — a)
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< eT(t)(ATP + PA - 2PTbR; TP + 0’ Lxn + P?)E(t)
+ 57 (8(t) + 0(t), n(t), €t — ) + 3t — ), n(t - @), 6t — )

_2(x=1e(E®)+0(t),n(t), (t— ) +9(t—a), n(t—a), t) |b” Pelg

[bT Pelr+¢
N 2¢6,(&(t) +0(t),n(t), e(t—a)+5(t—a), n(t—a), 8(t—ay))|bT Pelp
[T Pelg-+¢
el (t — a)e(t — a). (A8)

Assumption 4 implies that there exist positive real numbers a;, as such that the
following bound holds:

2

[5(&() + 0(t),n(t), et — @) + B(t — o), n(t — ), 6(t — ag)) ||,

< a8 (t) + a2 (t — a). (A9)
Substituting the above inequality on the bound for V in (A8), we obtain:
V <& () (ATP + PA—2PTbR;'WT P + (0 + a1) Luxn + P?)e(t)
— (a® — ap)&*(t - a)
—2(x — 1)éo (&(t) -+ 0(t), (t), &(t — o) + (¢ — o), n(t — a), ) [T Pelg
+ 200, (e(t) + v(t), n(t),8(t — o) + 9(t — @), n(t — a),0(t — ag)).  (A10)

Now, if a® — ay = a3, where a3 is a positive real number, and there exists a positive
definite symmetric matrix P which solves the matrix equation

ATP + PA—2PTbR;'WTP + (a® + a1) Inxn + P = Ry, (A11)
where R; is a positive definite matrix, then:
V < —eT(t)Rie(t) — az&(t — a)
—2(x — Déo((t) +0(t),n(t), et — @) +9(t — a),n(t - @), ¢)|0" Pelr
+2¢0, (&(t)+0(t), 1(t), &(t— ) +0(t—a), n(t— ), 0(t - ap)). (A12)

Using the inequalities —&” (t) Ry (¢ ) —Am (RL) 2(t) and &, (e(t) + u(t), ?(t) et —

a) +0(t—a),n(t—a),0(t —ap)) < &(e(t) +o(t),n(t),e(t — ) +3(t - a), ), t),
we obtain:

V< ,\mm(Rl)é (t )— azé*(t — a)
—2(x — Do (e(t) + 9(t), n(t),e(t — &) + (¢t — @), n(t — a),t)|b" Pelr

+20¢0 (B(t) + (1), (1), €(t — o) + Bt — a),n(t — ), ). (A13)
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Therefore, V satisfies the following property:

V < —Amin(R1)E (1) — az&(t — @),  aa||e®)||g. > |07 Pe(t)| > %—1 (A14)
where a4 is a positive real number. The above property implies that the ultimate
bound on the state &(t) of (A3) depends only on the parameter ¢ and is independent
of the state 1 and the vector of uncertain variables 8. Specifically, from Theorem 1
we have that the above inequality implies that there exist positive real numbers K,
B, and a class K function <y, such that the state of the é-subsystem of (A4) satisfies:

|e.(6)] < Ke™#eo(&)] +75(9), (A15)

for every value of the delay, a. Now, since |&i(t)lr < [|€®)llrr < |&:()], for
any positive number d, there exists a ¢* such that if ¢ € (0,¢"], it follows that
Tim sup (1) — v(0)lg < d

To complete the proof of the theorem, we need to show that there exists a positive
real number & such that if max{|zo(&)|, |7l ||6:l|} < 4, then the state of the closed-
loop system is ultimately bounded and the output of the closed-loop system satisfies
t]inolo sup |y(t) —v(t)|r < d. This result can be established by analyzing the behaviour

of the DDE system (A3) using a small gain theorem type argument similar to the one
used in the proof of Theorem 1 in (Christofides et al., 1996); the details of this part
of the proof will be omitted for brevity.
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