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A NUMERICAL ALGORITHM FOR FILTERING
AND STATE OBSERVATIONT

SaLiv IBRIR*

This paper deals with a numerical method for data fitting and estimation of
continuous higher-order derivatives of a given signal from its non-exact sampled
data. The proposed algorithm is a generalization of the algorithm proposed by
Reinsch (1967). This algorithm is conceived as a key element in the structure of
the numerical observer discussed in our recent papers. Satisfactory results are
obtained which prove the efficiency of the proposed approach.
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1. Introduction

The problem of filtering and estimation of higher derivatives of measurable signals
in the presence of noise becomes one of the principal ways to achieve control objec-
tives, construct nonlinear observers and fulfil other physical requirements (Diop et
al., 1993; Diop and Ibrir, 1997; Heiss 1994; Ibrir, 1999; Ibrir and Diop, 1999; Khalil
and Esfandiari, 1992; Teel and Praly, 1994; 1995). This problem has not been fully
exploited yet in control and observation theory and thus it necessitates some refine-
ments.

The numerical differentiation problem for non-exact data has received widespread
attention in the literature of numerical analysis and statistics. Many algorithms were
based on the regularization methods to solve ill-posed problems of numerically dif-
ferentiating a signal from its discrete, potentially uncertain samples (Anderson and
Bloomfield, 1974; De Boor, 1978; Craven and Wahba, 1979a; 1979b; Kimeldorf and
Wahba, 1970; Reinsch, 1967; 1971; Rice and Rosenblatt 1983; Wahba, 1975; 1981,
Wahba and Wold, 1975). Other approaches like kernel estimators have been consid-
ered by many researchers to estimate robust derivatives from noisy measurements.
We refer the reader to the monograph (Eubank, 1988) for a survey on nonparamet-
ric regression and smoothing, and especially to works (Gasser et al., 1985; Georgiev,
1984; Hardle, 1984; 1985; Miiller, 1984).

T A part of this work was published in the proceedings of the IEEE Int. Conf. Acoustics, Speech
and Signal Processing, Seattle, Washington, May 1998.
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Fig. 1. A simplified scheme of the scalar numerical observer.

Recall that a numerical observer aims at reconstructing the system states from the
measurement data using numerical differentiation techniques. Preliminary discussions
of this type of observation were presented in (Diop et al., 1993; Diop and Ibrir, 1997).
The structure of the numerical observer possesses two main blocks: The first block
contains a procedure which aims at smoothing noisy data with a-priori information
about statistical properties of the noise. In the other one, an inverting procedure is
implemented that takes the model equations of the system as a basis to express the
remaining states in terms of the input, output, and their derivatives.

The main subject of this paper is to conceive a general smoothing algorithm
to be implemented in the structure of a numerical observer. Detailed steps of the
computational method will be given to evaluate continuous approximations to higher-
order derivatives of a signal given by its noisy discrete values together with the filtered
continuous signal. This work is related to the previous work on smoothing data by
cubic spline functions developed by Reinsch (1967). In comparison with Reinsch’s
algorithm this paper offers a fast solution to the optimization problem with a simple
discrete criterion. The solution turns out to be a spline function of an arbitrary order,
fixed a priori by the user. Higher derivatives are then approximated by differentiating
the obtained spline function.

The presented algorithm seems to be flexible because of the introduction of equiv-
alent smoothness conditions derived from finite-difference methods. Moreover, the
minimum of the functional to be considered is unique and fast convergence of Newton
methods is expected. We divided our work as follows: Section 2 is devoted to the
formulation of the minimization problem. In Section 3, a detailed solution to the
problem is studied. Section 4 presents the approximation error analysis. Finally, the
paper concludes with simulation results and further remarks.

Notation:

e R stands for the set of real numbers.

o R™ is the real vector space of real n-vectors.

R™*™ is the real space of real n x n-matrices.

M,, is the set of n x n complex matrices.

If v is a vector, ||v]| denotes the Euclidean norm of v.

If A is a matrix, [|A]] = max)g)= [|Az||.
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e If A is a matrix, ||4||, is the spectral matrix norm on M,.
o If A is a matrix, [|Al,, = maxicica 25— |ai-

o If A is a matrix, p(A) = max {|v,|: vpis an eigenvalue of A} is the spectral
radius of A € M,.

If z(t) is a continuous function of time, [|z(t)||,, = maxie(qp) |2 ()]-

If z(t) is a continuous function of time, ||z(t)||;, is the Ly norm of z(t).

2. Problem Formulation

t
Let (%) be a dynamical system with output ¢, and let (Cl e Cn) be the noisy
discrete values which correspond to evenly spaced instants (f1,...,tn). One of the
famous methods to smooth the nonexact data is to consider the problem
tn 2
minimize / [8”’”)] dt, (1)
t1

subject to the constraint

2| Ctt) — ¢t ’
Z{()%”

i=1

~

Ssa C [tla 12 ] (2)

Here E(m) denotes the m-th derivative of the function E, 86, 1 = 1,...,n are
positive numbers taken as estimates of the standard deviation in {; and the number
S is used to rescale 6(;’s. Reinsch (1967) suggests that S could be chosen in the
interval [n — (2n)%, n+ (2n)2]. We replace the last constraint by

LI 2
> (S —c)] <no?
i=1
if the noise is supposed to be zero mean with variance o2.

Since the vector ( is available as discrete data, in this paper we replace the
continuous integral (1) by the following smoothness condition:

minimize Z [ (At m] , (3)

i=m

where Ei(m) stands for the finite difference scheme of the m-th derivative of ( at i,
and At means the regular forward difference of ¢, equal to #;+.1 — ¢;. Finally, the
problem is formulated as follows:

minimize Z [ ]

subject to (2).
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3. Solving the Optimization Problem by Spline Functions of
Arbitrary Order

In order to compute the m-th derivative of E at point 4 we will only use points
Ciem+1s Gimm+2; - -+ Gi, Gr1. For example, for m = 2, 3, 4, and 5 the smoothness
conditions are

n—1 9

[@—1 — 20 + E’i+1]“ )

=2

n—1 5

Z [—Zi—? +3G-1 — 3G+ @+1]~ ;

=3

e

!
_

n 2

[Zi—s —4Gin + 6y — 4G + Ei+1] ,

il
[

n—1 N N N N . N 9
> [“C¢~4 + 5Gi—3 — 10Gi—s + 10¢;—1 — 5¢; + Ca;+1} ,

=5

respectively. These smoothness conditions are expressed in matrix form as follows:

I (4)
where || - || denotes the Euclidean norm. For m = 2,3,4 we have
(1 -2 1 0 - 0
60 1 -2 1 --- 0
Tmopen=| 0 L
L0 0 1 -2 1
[ -1 3 -3 1 0 0
0 -1 3 -3 1 0
Tn-spn=1{ . . . . S

T(n—4) xn =

Luckily, we can generalize the form of 7' as an (n—m) X n matrix of the general row

m!

_1ymi—1
(=1) G-—Dlm -7+

j=1....,m+1, (5)




A numerical algorithm for filtering and state observation 859

and the solution to (1) and (2) turns out to be the minimum of the functional
J =0T T A {(C - DD ¢ - O + u? = S, (6)

where A is the Lagrange multiplier and p is an auxiliary variable, D% =
diag(6¢;%, ..., 8¢;%). Looking for the minimum of (6) in the space of the B-spline
functions of order k = 2m, we replace ¢ by

Z aibi,Zm (t)a (7)

such that o = (o, i = 1,...,n) € R", and b; 2 is the i-th positive B-spline function.
We write J in terms of the control vector a as follows:

J:=ao!B'T*T Ba+X{({ -~ Ba)'D*(( - Ba) + p* - S},

with
bie(ty) bog(ty) - bnx(t1)
bii(tz) bor(ta) -+ bnx(t2)
nxn — . . . .
bl,k (tn) bz,k (tn) bn,k(t_n)

The minimum of the functional J(e,u,A) is obtained by differention with respect to
a, p and A, and then equating the result with zero. This gives

(T*T +A\D"?)Ba—-AD"?( =0, (8)

2pX =0, 9)

(¢-Ba) D %((-Ba)+p>-S5=0. (10)

Let v be an (n —m) x 1 vector such that

D*T'u=(-Ba. (11)
Substituting (11) in (8), we get

(T*T + AD72) (¢ — D*T*u) = AD™*¢ (12)
and hence

(TD*T*+XDu=T¢, (13)

where I is the (n —m) x (n —m) identity matrix. From (13) it follows that
u(A) = (T D T +AI)' T, (14)
and the control vector « is

a(\) = B! (¢ - D*Ttu()\). (15)
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The Lagrange multiplier A must not be equal to zero. From (9) we conclude that
n=0 (16)
and
(¢=Ba()'D*(¢-Ba() = 5. (17)

Clearly, A has to satisfy (17). Then the control point of the spline will be
obtained using (14) and (11). Note that

F2(3) := (¢~ Ba)'D™*(¢ ~ Ba) = |[DY(¢ — Ba)|]? = || DT},
It we set @ = DT, then X is obtained as the solution to the nonlinear equation
u'(N) Q' Qu() = S. (18)

By the application of the Newton method, the root Ar of (17) is obtained after a
limited number of the following iterations:

Mg = Ap — 2 FQ‘)(/\I;) V(X)) 1} .
dF=(Ax) VS
dA
We have
dF?

du
— 9t O — ot 2 it -1
o uQQ—d)\ 200 Q"Q(T DT  + A1)t

while F?()\) > S, so the Newton iteration is

Mot = A+ WO Qu {V“tQtQ“—l} (19)

utQ Q(T D2Tt + A, [)—1u NG

Remark 1. The matrix (T D>T*+ X1) is invertible for any A > 0.

Theorem 1. The spline function (7) as the solution to the constrained optimization
problem (1) and (2) is unique.

Proof. The proof of this theorem is based on the fact that F2 (A) is strictly decreasing
in A because the matrix —Q*Q (T D2 Tt + A1)~! is negative definite for all A > 0.
Consequentely, the root of the nonlinear equation F%(\) = S is unique. |

Newton’s iteration involves at each step the calculation of the inverse of the
matrix (T D2Tt + \T )- In order to accelerate the rate of convergence, we compute
the inverse of the matrix (T D?T*+ X I) with the use of the Leverrier algorithm. We
have

Z Ri—l Anﬁm—i
(TDTt+ A1)~ = =2 (20)

n—m
Z pi AnR—m—i

=0
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Fig. 2. Function F2()\) and the root A, of F*()) =no?.

such that
1 .
pi == = trace [I'D*T" Ri_1], (21)
2
R; = pil —TD*T'R;_,. B (22)
where I is the (n —m) x (n —m) identity matrix. The matrices R; (1 =0,...,n —
m — 1) and the coefficients p; (i =0,...,n —m) should be computed before starting

the Newton iteration. Accordingly, fast convergence is expected.

4. Error Bounds

At first, we present the method of computing the optimal knot sequence if the number
of observations n and the degree of smoothness m are given. The number of knots
is fixed at n + 2m and the computational method of calculating the optimal knot
sequence is inspired by the scheme of Micchelli, Rivlin and Winograd (De Boor, 1978).
If we write 7 = (71,..-, Tntom), then

TI =Ty = = Tom =1,
T+l = Tng2 = = Tnt2m = tn,

The n —2m interior knots in [¢;, t»] are choosen to be the breakpoints of the unique
step function A for which

o |h(t)] = 1forall t € [t1, t,] with lim h(t; 4 6t) =1,
0t—0

e h(t) has <n — 2m sign changes in [t1, t,], and
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. " Ff@h(t)dt =0 for every f € {ng = span (B; 2m ), linear space of splines
Jt;
of order 2m}.

The n — 2m interior knots for given observations {t1,...,t,} are computed using
Newton’s method with the initial guess:

tom+ti = (ti—{-l + -+ tivoam—1) /(2m -1, i=1,...,n—2m.

For a further analysis we assume that the regularization parameter is obtained by a
numerical procedure of root finding. According to the amount of noise which corrupts
the measurements, we distinguish three cases.

Case 1. (A low noise level) In the sequel, we take D = I and S = no?. In this
case the amount of noise is small, i.e. the optimal value of A is large. Since the error
between the noisy samples and values of the smoothing spline at the breakpoints is
given by

¢ — Ba=THTT+ \I) "' T¢, (23)
we deduce that

¢ = Ball,, <IITIZ

(@7t +20) 7|l (24)
Since
(TT + A1) = % GTW + I> -

and the spectral radius of the matrix (%TTt) is supposed to be less than 1, we can
expand ($TT* + I)fl in power series:

GT:N + 1) L i(—l)l GTTf)l, (25)

£=0

Then

1 —1 o0 [e3) 4 1

ZTT + I) ( TTt) ( TTL> _—

!(A <2 =2 . S TTGT.
Finally, we have the error bound
LTI, Hzr o]
_ _#___ —
I Ba”oo < 1— “ TTt || ”CHoo

_ %Zm+1 Zm+l lcj 10 ‘HCHOO



A numerical algorithm for filtering and state observation 863

Note that

lTTtH increases with increasing values of the observation n for a fixed
o

smoothing parameter m.

‘(TTt + X )wl H decreases with increasing values of A for fixed values of n
[o.¢]
and m.

Case 2. (A high noise level) In this case A = 0. We have

1

(Tt + A1) = (1+ A(TTt)‘l)_1 (1Tt " (26)

The spectral radius p (/\(TTt)il) < 1. Consequently, we develop the matrix

-1
(I + A(TTt)—l) in power series as follows:

(1 + A(TT*)‘l)'1 =3 (-1)f [A(TTt)*l]Z. (27)
£=0
Hence
I = Ball,, < I7lee 775 ”°°IIC|IOO- (28)
]

Case 3. In case the smoothing parameter is neither too small nor too large, we can
always find an error bound by computing the matrix S composed of the eigenvectors
of TT! and put the expression of the error in the following form:

(—Ba=T!SA+X)"'S™'T¢, (29)
such that
S™ITT'S = A = diag (Xl o X,,_m) .
Finally, we obtain
1T 112 IS lloo 115~ |
I = Bal|, < — 1<l o (30)
o (i)

If we denote by s(t) the resulting continuous spline function of degree 2m — 1 with
control vector «, then the errors made while approximating a higher-order derivative,
by differentiating s(t), are bounded:

ml L 1

[cOw - 0w <5 =

- (31)

Lz[tl,tn}’
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such that ¢ is the exact (-th derivative of the function ¢ (t) which best fits the
exact measurements without noise, and § = max{A7;, i=1,...,n+2m}. From
these bounds we conclude that the interpolation error decreases if the values of the
smoothing parameter m and the number of the measurements n increase indefinitely.
The number of knots is determined according to these two parameters. The errors
made on the interpolating spline and its derivatives are also sensitive to the mesh size
of the optimal knot sequence, cf. (31).

5. Algorithm

Summarizing, the ultimate computational procedure is as follows:

e For a selected order 2m and given breakpoints (ti,...,%,) construct an optimal
knot sequence (7)}, and the corresponding B-spline bases b;om,i=1,...,n.

e From the matrix B such that
Bi,j = bj,gm(ti), 'L':l,...,n, j:].,...,ﬂ.
e Compute the matrix T' such that

(=1)m*+i=iCi=t for i=1,...,n—m and j=1i...,m+1,
TiJ'Z:

)

0 otherwise.

e Compute the matrix
D72 = diag(6¢; %, ...,66,2).

e Compute the matrices @ := DT¢ and R;,i = 0,...,n — m — 1 with the
coefficients p;, ¢ = 0,...,n —m using (20)—(22). If the noise is zero mean with
variance o2, replace the matrix D by the identity matrix and S by no?.

e Compute the root of the nonlinear equation F?(\) = S using (18)-(20).
e Compute the vector u from (14).
e Solve the linear system
Ba=((-D*Ttu)
with respect to the control points of the spline «. Since the matrix B is positive

definite, we write B = R' R for the Cholesky factorization of B. We have to
solve

R'y=((-D*T"u)
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with respect to y, and then
Ra=y

with respect to «.

o Compute the derivatives of the spline using the formulae

DY aibi) =D o b
i i

with
o for 7 =0,
altl = 1 al-al_, (32)
e e S RN}
k—j t'r+k—j —tr
6. Example

Here, we consider the system
C'l = C? )
(= —150(1 + cos(t)) (1 — 10(2 + sin(t)) (o,

Yy = C]_+'LU,

where the scalar output y is supposed to be corrupted by zero-mean white noise with
variance o2 = 0.0012. We consider that the measurements are collected with an even
step At = 0.01S.

Remark 2. Notice that even though the measurements are available at discrete
instants, the numerical observer does not require a sampled-data representation of
the system.

In the simulations presented below, the order of the spline is & = 2m = 6 and
the number of noisy points is n = 151. Figure 3 shows the filtered continuous output
¢ with discrete noisy output. In Figs. 4 and 5 we respectively show the first and the
second derivative of the filtered solution along the exact derivatives. (By the exact
derivatives we mean, the solution of the system considered without additive noise.)

Using our algorithm, we realize that the Newton method converges after 21 iter-
ations, and the Lagrange parameter is approximately 0.0207.
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Fig. 3. The filtered output (solid line) and the noisy output (+).
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Fig. 4. The exact first derivative (+) and the derivative of the spline (solid).
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Fig. 5. The exact second derivative (+) and the derivative of the spline (solid).

7. Conclusions

Based on a-priori knowledge of the nature of the noise, the steps of a numerical
algorithm used as a filter and an observer were examined. The design problem has
been formulated in such a manner that finding the coefficients of the smooth function
and its derivatives requires solving a simple constrained optimization problem. The
simplicity of the criterion to be minimized comes from the fact that new conditions
of smoothness are proposed. In order to solve the design problem, solution to a
nonlinear equation and to some linear systems is required. In comparison with the
algorithms studied in the cited literature, our procedure guarantees a unique solution
to the optimization problem with a simple discrete criterion. Moreover, it reduces the
computation burden and thereby yields a potentially valuable tool to design on-line
state estimators. Finally, it is possible to extend the idea of the equivalent conditions
of smoothness to solve the classical regularization problem discussed in Craven and
Wahba, 1979b. It is also possible to choose the regularization parameter in such a
manner that it is independent of the statistical properties of noise and only depends
on the measurement.
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