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FEEDBACK STABILIZATION OF CONTINUOUS
SYSTEMS BY ADDING AN INTEGRATOR

R. OUTBIB*!, W. AGGOUNE**1

This note is devoted to the problem of global stabilization of continuous systems
by adding an integrator. The goal is to prove that if a continuous non-linear
system & = f(x,u) is globally asymptotically stable at the origin for u = 0,
then the augmented system obtained by adding an integrator is stabilizable by
means of a continuous feedback.
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1. Introduction and the Stability Result

This note is a contribution to the global stabilization problem for the non-linear
control system

{ &= f(z,y)

y=u,

(1)

where z € R® and y, u € R™. The objective is to prove a result of stabilization
when f is only a continuous map.

It is well-known that, as long as f is smooth (i.e. of class C'®), if the system

¢ = f(z,0) (2)

is globally asymptotically stable at the origin (we write it GAS for short), then (1)
is globally asymptotically stabilizable (see e.g. Byrnes and Isidori, 1989; Koditschek,
1987; Tsinias, 1989).

When f is linear (i.e. f(z,y) = Az + By), the proof of the above result is very
simple. Indeed, it suffices to take u(x,y) = Dy, where D is any Hurwitz matrix
with suitable dimensions. If f is not linear, the proof is not difficult, but is more
ingenious. It is based on the fact that if g: R* x R™ — R" is such that g(z,0) =0,
then g has the following decomposition:

g(z,y) = G(z,y)y forall (z,y) €eR* xR™ (3)
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where G is the smooth function defined by

189
Gz, :/ —(z,ty)dt
@) = | G

Now, if f is continuous but not of class C*, this proof is not valid. The main reason
is that for a continuous (not C*) function g, the decomposition given by (3) is not
always possible. Indeed, a simple counterexample is g(z,y) = y!/3.

The main goal of this paper is to prove the following result:

Theorem 1. If f is continuous and (2) is GAS, then (1) is stabilizable by means of
a continuous feedback law.

The proof of the above result, given in the next section, is based on a lemma,
proved also in that section, which states that a continuous function ¢ : R* x R™ — R®
which fulfils g(x,0) = 0 can be decomposed as g(z,y) = G(z,y)h(y), where & is a
suitable function from which one can construct a Lyapunov function. Note that since
we assume that f is continuous, and we do not impose that this function is Lipschitz,
the obtained closed-loop system is ensured to be only continuous. This means that
the existence of solutions is guaranteed but not necessarily their uniqueness.

The problem of global feedback stabilization of system (1) received much at-
tention (see e.g. Byrnes and Isidori, 1989; Coron and Praly, 1991; Iggidr and Sallet,
1994; Koditschek, 1987; Kokotovic and Sussmann, 1989; Outbib, 1991; Outbib and
Jghima, 1996; Outbib and Sallet, 1998; Rosier, 1993; Tsinias, 1989). Generally speak-
ing, in those papers it is assumed that f is at least of class C' and the reduced
system & = f(z,v) is stabilizable by means of a smooth feedback law. Note that
the smoothness of the stabilizing feedback is very important. For instance, even for
smooth systems, if the stabilizing feedback for the reduced system is only continuous,
the question of the stabilizability of (1) remains open (cf. some interesting answers in
Coron and Praly, 1991).

This paper is dedicated to the feedback stabilization of (1) when f is only con-
tinuous and the goal is slightly different from those of the papers mentioned above.
The objective is to show that the assumption of smoothness of f can be weakened.
This work is motivated, in part, by the fact that the models of some practical sys-
tems are only continuous (Richard et al., 1997). Another aim of this work is to show
that some classical results concerning feedback stabilization of smooth systems even
if their proofs are, in part, depending on the smoothness of the system, can possess
versions for systems that are only continuous.

The paper is organized as follows. Section 2 is divided into two subsections:
in the first we state and prove a key lemma and in the other, we give the proof of
Theorem 1. In order to illustrate our result, an example is given in Section 3. The
last section contains conclusions.

Throughout the paper, as usual, ||-|| denotes the Euclidean norm, | -| is the
absolute value of a real number, and (-, ) denotes the scalar product. For a vector v,
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vT is its transpose. From now on we write C for the class of continuous functions
h: R — R such that

e h(y)y 20,
o h(y) =0 <= y=0,

e lim |h(y)| = +oo.
ly| =00

We will also use the symbol M, xm to denote the set of matrices with n rows and
m columns, where the components are scalar functions.

2. Proof of the Result
2.1. Key Lemma

In order to prove our main result of this subsection, we need the following lemma:

Lemma 1. Let ¢ : R* xR — R be a continuous function with ¢(z,0) =0 (z € R").
Assume that ¢ is bounded for any bounded y. Then there exists h € C such that

|h(W)| > lp(z,y)| for all (z,y) € R* xR. (4)
Proof. Let (ag)>; and (bx),~, be two sequences of real numbers defined respectively
by - -
a1 = sup (1, sup lcp(fb,y)l>
(z,y)eR™x[~-2,2]
ar = sup | 2 sup oz, y)l | for k22,
2 (@y)errx[-1/k1/K]
and

by = sup (k, sup |<p(x,y)|> for k> 1.
(z,y) ER™ X [—k—1,k+1]

Introduce h as follows:
e h(0) =0;
o h(y) = —h(-y) for y <0;
e for y €]0,5/12]

a for € ———~1——1—
k VS lE+1% ~ 2k(k+ 1)

+
ary + B for E[ 1 _ L !
kY Pk Ve ka1l 206+ Dk+2) " + 1))’

h(y) =
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where

ar =2(k+ 1)k + 2)(ar — agy1)
Be = (B3-2k)ar +2(k+2)agy1, k>2;
e for y €]5/12, 1/2]
h(y) = 12(a; — a2)y + 6az — 5ay;
e for y €]1/2, 1)
h(y) = as;
e for y €]1,4+0]
by, for ye[kk+1/2]
hy) =
YWy +0x for ye[k+1/2,k+1[,

where

Y = 2(bry1 — bi)
8, = 2(k + )b — (2k + bpys, k> 1.

Fig. 1. Behaviour of the function h.
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By construction, h is continuous on R\ {0}, verifies (4) and is such that

hy)y>0 for y#0  and lim |h(y)| = 400,

y—+00
Note that h is also continuous at zero. Indeed, since

lim ap =0

k—+oco
we see that
lim h(y) =0.
Jm ()
This finishes the proof of the lemma. [ |

Remark 1. As is shown in the proof of Lemma 1, the construction of h is very
technical. Note that the proposed function h is not unique and there is no particular
reason behind such a specific choice. Indeed, to get another function, it suffices e.g. to
multiply A by any smooth scalar function h; which verifies h1(y) > 1 for all y € R.

Now we state and prove the main result of this subsection.

Lemma 2. Let f:R* x R™ = R* be a continuous function such that f(z,0) = 0.
Then there exist continuous functions H = (Hl,...,Hm)T :R™ = R™ and G :
R® x R™ — Mpuwm such that

(L1) H;i(y) = hi(ys), where hy €C, i=1,...,m, and
(L2) f(z,y) =G(z,y)H(y), ¥(z,y) € R* x R™.

Proof. Without loss of generality, we assume that f is bounded. Indeed, f can be
rewritten as

f= A+
where f' = f/(1+]|f|?). If f' = G'H, where G' and H are suitable functions
which verify the conditions of the lemma, then f =GH with G = G* (1+ ||f|]?).
First we give the proof for m = 1. From Lemma 1 there exist h; € C (i =
1,...,n) such that

1
3

lhi(y)| = | ;

(m,y)l, V(z,y) cR* xR, i=1,...,n. (

(S
~—

‘We have
2
43

fi<1':y) = fz (I)y) hi(y) hi_l(y) ff(x,y), V(m,y) ER" xR, i=1...,n.
Furthermore, we define f by

~ 1
3

filz,y) = b Mz, ) (z,y), Y(z,y) €ER" xR, i=1...,n.
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Clearly, f is continuous for y # 0 and, in view of (5), it is bounded.
As f(z,0) =0, we deduce that the function f, defined by

fiey) = £ @ fiay), Y@y eR xR i=1,...n,
is continuous. Therefore,

fi(z,y) = hi()gi(z,y), V(z,y) eR*" xR, i=1,...,n,
where g : R® x R = R"™ is the continuous function defined by

9i(z,y) = filz,h*(y), V(z,y) €ER" xR, i=1,...,n

Let h be the continuous function given by

if y>0

if y<o0
Clearly, h € C and
h@)l = lhi(W)l, VyeR, i=1,...,n.
We rewrite f as
flz,y) = h(y)g(z,y), V(z,y) € R* xR,
where
gi(z,y) = gile, hi(h~'(y), Y(z,y) €R" xR, i=1,...,n
The function k; (i =1,...,n) defined by
hily) = ()b~ (w), Vy€ER, i=1,.,n,

is continuous for y # 0 and bounded. Now, g(z,0) = 0, so § is a continuous function.
This completes the proof for the case m = 1.
Assume that m > 1. We prove that there exist continuous functions G; : R® x
R™ — R™ (¢ =1,...,n), such that
f’t(m:y):(H(y):Gz(:an»: V(m,y) € R" XRmJ izl)"'ana (6)

where H :R™ — R™ is a suitable function which verifies (L1).

In order to prove (6) we show that, for a given fixed integer k, if (6) is satisfied
for m = k, then (6) is also satisfied for m = k+1. Clearly, since (6) holds for m = 1,
this implies that (6) is verified for all m > 1.
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Let y = (y1,7), y1 € R and § € R*. Abusing the notation, we write
f(a:,y) = f(xaylag) .

We see that

f@,91,9) = f(&,91,0) + f(2,90,9), V(z,91,9) €R* xR xR,
where f is defined by

F@,91,9) = f(z,91,9) — f(z,91,0), Y(z,51,7) ER" x Rx R,
From the case of m =1 and since f(z,0) =0, we get

f@,y1,0) = H' (31)G (z,1), V(z,4) € R xR, (7)

where H' € C and G' : R* x R = R"™ is a continuous function.

Since (6) is satisfied for k¥ and f(z,11,0) = 0, there exist a continuous function

H : R* — R* which verifies (L1) and continuous functions G; : R* x R* — R*
(1=1,...,n) such that

filz,u1,9) = (H©),Gi(z,)) V(z,y1,5) ER* xRxRF, i=1,...,n. (8)
Using (7) and (8), we obtain
fz(-’ﬂ,y) = f’i(x)yl)o) + fi(ﬂf;'yl,g)
for i =1,...,n, where H=(H',H) and G; = (G',G;). Therefore,
flz,y) =G(z,y)H(y), V(z,y)eR* xR™
with G = [G1 Gy ...Gy]T. This completes the proof of the lemma. ]
Remark 2. We would like to mention that the proposed decomposition of the func-

tion g is not a generalization of that used in the particular case of a smooth function
f. Indeed, for the case of a smooth function we do not necessarily have h(y) =y.

2.2. Proof of Theorem 1
We have

f(%y):f(f’?ao)-i-f(w,y), V(Q?,?J)ER”XRM

where

f(z,9) = f(z,y) - f(z,0), V(z,y) € R" xR™.
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is a continuous function such that f(z,0) = 0. Then, from Lemma 2, there exist
continuous functions H = (Hy,Hs,...,Hy)T : R™ - R™ and G : R* x R™ —
M xm such that

f@,y) = Glz,y)H(y), VY(r,y) € R* xR™

with H;(y) = hi(y), where h; €C, i =1,...,m
Let

W(z,y) = +Z/ hi(s)ds, V(z,y) e R* x R™

where V is a positive-definite and proper function such that
Vioy(®) = (f(2,0), VV(z)) <O for z#0.

V(Q) being the time derivative of V along the trajectories of system (2). Note that
since (2) is GAS, such a function always exists.

Tt is clear that W is positive definite and proper. The time derivative of W
along the trajectories of the closed- loop system defined from (1) with

u(z,y) = -VV(2)G(z,y) -y 9)

is given by
W (z,y) = Vig) (2) - (u, H(y)) .

Clearly, we have W(z,y) < 0 for (z,y) # (0,0). Therefore, the system (1), (9) is
GAS.

3. Example

Let us consider the special case n =m = 1 and assume that

f(@,y) = fo(z) +0(2)g(y), V(w,y) € R (10)
where fo, 8 € C°(R) such that & = fo(z) is GAS and g € C°(R)NC* (R\{0}), with
9(0) =0 and {dg/dy} is bounded in a neighborhood of y = 0.

System (10) is not necessarily of class C?, so the classical approach (Byrnes and
Isidori, 1989) cannot be used to investigate its stabilizability. The goal here is to show
how our methodology can be used to get stabilizing feedback for (10).

First, we prove that there exists § € C°(R) such that

9w) =y% §ly), YyeR. (11)
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Indeed, since g € C*(R\{0}), we have g% € C1(R\{0}). On the other hand,

dg? 7 2, .dg
= -~ Yy € R.
ay (y) 595(y)dy(y), y €
Thus
. dgg
ey W=

and hence g5 € C*(R). Accordingly, there is g; € C°(R) such that

95(W) =ya1(y), VyeR,

which clearly implies (11).

Therefore, using the methodology developed in this paper, the feedback defined
by

u(z,y) = —z6(z) gly) -y (12)

stabilizes the system (1), (10) and a strict Lyapunov function for the closed-loop
system (1), (10) with (12) is given by
1 7

W(z,y) = -2—1122 + YT

12
7

In this paper we have proved a result on the stabilization of continuous systems
by adding an integrator. The proposed stabilizing feedback is guaranteed to be con-
tinuous. However, in some cases the stabilizing feedback can be selected to be smooth
even if the system is only continuous.

To illustrate our remark, we prove that (1), (10) is stabilizable by means of a
smooth feedback. Let k be any smooth function such that

K (z,y) 2 (3°(y) +1) (0(z) + 1) () (13)

where § is a smooth function which fulfils

1 if zel[-1,1]
@ 29 oI +1f(-1] - (14)
@) if Jz|>1
The closed-loop system (1), (10) with
u(z,y) = —(y +y°)k*(z,9) —y (15)

is GAS. Indeed, let

e 3 a
Wi@y) = [ He)ds+ 3ot
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where [ is the continuous function defined by

r

—%fo(l) if z> 1,
1 oy
@) =4 —2fole) i Jal<1 (16)
1 .
- §f0 (=1)  otherwise.

The derivative of W, along the trajectories of the closed-loop system (1), (10)
with (15) is given by

Since

Wi(@,9) = 1(@)fola) + v} 1@)0@)50) - (v} +47 ) K (z,) - ot
forall y e R,

< Uz)fol2) +y*1(2)0(2)5(y) — y T K (z,y) — v?

s
&
N
A

2

1@I@IW N, o a1 — od

Now, using (13), we obtain

Wite) < 160) (5 +fo(x>) b

A simple reasoning using (14) and (16) shows that

x(%—i—fo(a:)) <0 forall z#0.

This clearly implies that

Wl($:y) <0 for (z,y) # (0,0) .

4. Conclusion

We have presented a result on feedback stabilization of continuous systems by adding
an integrator. Its proof is based on a technical lemma related to continuous functions.
Works are in progress to show how other classical results on feedback stabilization of
smooth systems can be extended to systems that are only continuous.
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