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CELLULAR AUTOMATA AND MANY-PARTICLE
SYSTEMS MODELING AGGREGATION
BEHAVIOR AMONG POPULATIONS'

DaNiELa MORALE*

A cellular automaton model is presented in order to describe mutual interactions
among the individuals of a population due to social decisions. The scheme
is used for getting qualitative results, comparable to field experiments carried
out on a population of ants which present an aggregative behavior. We also
present a second description of a biological spatially structured population of N
individuals by a system of stochastic differential equations of Itd type. A ‘law
of large numbers’ to a continuum dynamics described by an integro-differential
equation is given.

Keywords: cellular automata, individual-based models, stochastic diffe-
rential equations, law of large numbers, density-dependence, nonlinear integro-
differential equations

1. Introduction

In many animal species, individuals aggregate to form temporary or permanent gro-
ups, but how group cohesion is maintained and why groups assume a particular shape
is not yet fully understood. Even if there exist some counterexamples, most observa-
tions of the dynamics of small and large groups show that coordination is locally con-
trolled. It seems that more than long-range information transfer, global knowledge
and external forces, the large scale patterns are due to the response of individuals
to their local knowledge of environmental signals or markers or their neighbors (Gu-
eron et al., 1996; Partridge, 1982). As a consequence, it is an important problem
to investigate the role of individual’s social response to neighbors and to their local
environment.

The motivation of our research comes from biological studies carried out by Boi
(Boi and Capasso, 1997; Boi et al., 2000) for a population of slave-maker ants of the
species Polyergus rufescens. During their raids to the nests of other species of ants,
the Amazons tend to aggregate in an organized army (transversal with respect to
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the main direction of motion); they do not exhibit overcrowding effects. A relevant
phenomenon is the spatial dependence of the social parameters on different environ-
mental conditions, such as regularity of the terrain, reciprocal visibility, etc. which
may impose restrictions on the sensory range among individuals.

It is often possible to consider continuum Eulerian models which describe only
numbers of individuals per unit area or volume. For example, this is the case for large
and dense aggregations of individuals. However, in many situations it is more appro-
priate to use discrete individual-based models in which a finite number of individuals
is considered and only a finite sequence of decisions is made by individuals.

Anyway, as pointed out by Durrett and Levin (1994) or Griinbaum and Okubo
(1994), an individual-based approach is useful in deriving the correct limiting equ-
ation, also in the case when the use of a continuum model can be justified. This is the
aim of the present work. We build up some rules used by an individual in order to
make decisions and we test them by means of a two-dimensional stochastic lattice-gas
cellular automaton. First, by simple assumptions we consider the transition proba-
bility functions for each individual to go to the state = + kAz at time t + At, from
the position z at time ¢, where Az, At are the mesh size and the time step. No
external sources of information are assumed, as it would be present in the case of
indirect physico-chemical signals (Stevens, 1992; 1996).

Here we deal with direct exchange of information between individuals about their
positions within a bounded range of sensitivity. This means that each individual is
supposed to perceive the spatial distribution of its neighbors in a finite neighborhood
and may respond directly to their positions, densities or velocities (Griinbaum, 1994;
Grinbaum and Okubo, 1994). At this stage we do not consider individuals having
some inherent orientation (Deutsch, 1996).

Griinbaum (Griinbaum, 1994; Griinbaum and Okubo, 1994) presents a one-
dimensional model for swarming; in this model it is assumed that individuals seek
a target density, i.e. a desired number of neighbors in a predetermined neighborhood.
Individuals count their neighbors and move in response to the gradient depending
on how the observed density compares with the target density. Griinbaum’s mo-
del is a variant of the ‘additive type’ models, in which the total force acting on
each individual is the sum of many components including locomotory forces (con-
stant swimming speed, viscous drag), aggregation or disaggregation forces (social
attraction/repulsion between individuals), arrayal forces (tendency to match velocity
or orientation of neighbors), deterministic environmental effects (directional tenden-
cies, chemical gradients), random effects (behavioral and environmental stochasticity)
(Okubo, 1986; Warburton and Lazarus, 1991).

Within the present work we introduce an additive force acting on each indivi-
dual composed of aggregation and disaggregation forces and behavioral stochasticity;
each particle is subject to random dispersal and compared to the Griinbaum-Okubo
model, the peculiarity is that instead of a target density, we introduce a ‘short-range’
repulsion, while we keep the ‘long-range’ interaction for the aggregation term.

In Section 2, the biological phenomenon which we refer to is described. In Sec-
tion 3, we introduce a cellular automaton model. Simulations exhibit the formation of
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spatially stationary clusters, i.e. aggregation patterns whose number and radius size
are strictly correlated with the size of the sensory distance considered. This quali-
tative behavior is compared with the field experimental results in (Boi and Capasso,
1997) (Section 4). In Section 5, we perform a heuristic derivation of a continuum
model in which the neighborhood size for the aggregation term is a parameter that is
not reducible to an infinitesimal limit contrary to the repulsion term. For the latter
we get a local operator by reducing to zero the range of repulsion as the number of in-
dividuals is increasing. In Section 6, we refer to an interacting particle system used by
the author to describe the same biological mechanism (Morale et al., 1998a; 1998b).
The process of animal grouping is continuous in time and space, but discrete in the
population size. So the description of this phenomenon by a system of stochastic
differential equations seems to be more natural. A rigorous derivation of a continuum
model is given in (Morale et al., 1998b).

2. A Biological Case

As an example of animal grouping we consider the aggregative behavior of the slave-
maker ant Polyergus rufescens. The worker cast of this species is composed only of
soldiers, unable to look after their nest. So they need to kidnap the pupae or newborn
of few specific species. In order to keep constant the slave population in their nest,
Polyergus ants periodically raid ant nests of the slave species. Polyergus soldiers
aggregate in an army of 300-1000 individuals, 10-40 cm wide and some meters long.
The army seems to be organized along the transversal component with respect to the
main direction of the motion. In fact, in'the main direction the dominant factor is
the chemical trace produced by some scouts before the raid starts. On the return
journey the ants walk single, with a variable distance between successive individuals.
This means that there is a social response of each individual strictly related to the
aim of the group. During the raids they need to be a big force so that they form a
compact army. This is not necessary during their way back.

Analyzing the data obtained by fields observations (Boi and Capasso, 1997; Boi
et al., 2000), we can see remarkable differences in the army structure in different
environmental conditions. In Fig. 1 the density profiles on four different types of
ground based on morphological features are shown. From the top left to the bottom
right, the density profiles on a plane area, black topped, an area covered only by
small stones, an area covered by stones of all dimensional range and spot of grass,
and an area covered by grass and all sort of tall and densely distributed obstacles
are respectively shown. It is clear that the smaller the visibility range of each ant
is (which corresponds to a poorer knowledge of the neighborhood), the stronger the
force of aggregation. Our aim is to understand the rules of this behavior and how
they depend on the sensory range of the ants.

3. A Cellular Automaton Model

We consider an aggregation model for biological populations. Aggregation is due to
‘social’ forces induced by the interaction of each individual with other individuals in
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Fig. 1. ‘Field’-experiments (Boi and Capasso, 1997): density profiles in a cross section of
an army of Polyergus rufescens on different type of terrain: the number of obstacles
is increasing, from a concrete ground in the top left-hand corner (where only half of
the army is represented) to a high grass field in the bootom right-hand corner.

the population which belong to a suitable neighborhood. Instead of assuming a boun-
ded target density of the population as in (Griinbaum, 1994), in our model we consider
a short-range repulsion among individuals in order to prevent their accumulation in
a single point in space.

In the cellular automaton model the particles are distributed randomly in an area
of 100 x 100 units® with periodic boundary conditions. At each time step a particle
performs the following actions:

1. Aggregation: it reacts to the density of other particles in a range of size R,; the
underlying assumption is that each particle is capable of perceiving the others
only within this range;

2. Repulsion: it reacts to the density of other particles in a range of size R,;

3. Diffusion: it moves randomly with coefficient on which is decreasing when the
number of particles increases.

The parameters R, and R, are chosen such that R, << R,, i.e. the region of
repulsion is always strictly included in that of aggregation.
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Define A = {1,...,100}. Let N be the total number of particles and let N(z, )
count the number of particles in position z at time ¢. A detailed description of the
evolution is presented further on. Furthermore, denote by e; = (1,0), e = (0,1) the
unit vectors spanning the plane.

3.1. Aggregation

Let Ag(z) = {y € A% : |y — z] < R,} be the neighborhood of z € A?, in which all
those particles contributing to the aggregation term of a particle in z are located.
Moreover, for i = 1,2, let

Ao te: (:U) = {y € Aa(z) 1y < yi}
and
Aa,——-ei(z) = {y (S Aa(ﬂ?) Yy < Z‘i}.

This regions are shown in Fig. 2.

7

z =A_a,e1 § = A_a,ez

Fig. 2. The shaded regions are the neighborhoods Ag te, and Ag te,.

Now, let F,,.,(z,t), 7 ==+, i=1,2 be the relative number of the particles in
Agre (), at time ¢, i.e.

1
Fa,:l:ei (iE, t) = —2—]"\f Z N(yJ t) : (1)
YEAa, ke, ()

In (1) we introduce a normalization factor 1/N. This also corresponds to asso-
ciating the mass 1/N to each particle.
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3.2. Repulsion

Let Aq(z) = {y € A% : ly—z| < R,} be the neighborhood with radius R, in which all
those particles participating in the repulsion term of a particle in z are located. As
we have motivated in Section 6, we consider a range of repulsion which is dependent
on the total number of particles, in particular, we assume

R.=N"P2  0<p<l, (2)
where £ is a scaling parameter which determines the strength of interaction with

the other particles. We refer to (Morale et al., 1998a; 1998b) for a discussion on the
consequences of different choices for 3.

As before, let, for i =1, 2,
Arjve(z) = {y € Aa(z) : 23 < i}
and
Ar—e;(z) = {y € Aulz) 1y < 33}
and let Fy ;. (z,t), s ==, i=1,2 be the number of particles in the area A s, (z),

at time ¢:

1
Fr,:l:Ei (CL‘, t) = EN Z N(yat) (3)
yeAr.iei (z)

3.3. Diffusion

We assume that the diffusion coefficient oy decreases as the number of particles
increases. In particular, we suppose

on =N"% ac(0,1). (4)

By (4) we assume that if the number of particles is large enough, the mean free
path of each particle does not have to be so large in order to make the particles enter
into the area of interactions of the others. We also consider the relation between A
and on as given in a different form by (22):

. d
1) O<ﬂ<m
d d+2
.. & a+2
ii) d+2_5<1, a>fB = 1, (5)

where d is the space dimension, i.e. d = 2. Denote by n and v the strength
of the response of the individuals to the ‘social’ forces, aggregation and repulsion,
respectively. As discussed in (Boi and Capasso, 1997), they may depend on the range
of aggregation. In particular, on decreases like R2 and v like R,. Throughout the
section we consider the following rescaled coefficients:

_ ON n Y

O-N:R_g’ n:E’ ')/.—:Ra

which we denote respectively by on, 1 and +, for simplicity.
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3.4. The Transition Probabilities

Each particle may move in four directions. Denote by § and 7 the mesh size and the
time step, respectively. For numerical stability, we assume 7 < §2. The probability
for a particle in position z at time # to go to a position z +e;d at time ¢+ 7 is
given by

2
P(z te;0;z,t) = nF, +i(z,t) + AlFm:i(a:,t) + %y-, (6)

where
A, = R2. (7)

In (6) we introduce, as stressed in the Introduction, additive weights for each possible
direction; for the aggregation step the probability to go towards a larger density is
higher, while for the repulsion step the probability to go towards lower concentrations
is higher, as indicated by the index sign reversal. Furthermore, by the factor 1/A, the
strength of the repulsion becomes larger as N — oo. Finally, the random dispersal
is added. The probability to stay in z is

P(z;z,t) = l—iP(x:I:eié;m,t). (8)

i=1

4. Comparison with Experimental Data

As introduced, from the analysis of the social behavior of the ants of the species Po-
lyergus rufescens, it is suggested that the spatial dependence of the social parameters
depends on various environmental conditions, such as regularity of the terrain, reci-
procal visibility, etc. Those environmental conditions may impose restrictions on the
sensory range among individuals.

In Fig. 1, a significant difference of the profiles of the samples on different terrains
is shown. The total width of the aggregation, measured by the transversal section, is
40 cm in the first terrain, without obstacles, where we see only half of the column of
the army which does not show a strong concentration 20 cm on the terrain with few
and small stones, about 12 cm on the third kind of terrain, where the number and the
size of the stones are larger, and of about 11 cm in the terrain with high grass, i.e.
with many and dense obstacles. So one can deduce that the more uneven the terrain
is, the narrower the column of Amazons is. The absence of any plateau in the shown
density profiles suggests that no target density exists, as assumed in the Griinbaum
and Okubo model (Griinbaum, 1994; Griinbaum and Okubo, 1994).

In Fig. 3 we show the results of simulations of the cellular automaton model
described above, by considering 1000 particles, the scaling parameter 5 = 0.4, and
R, equal to 75, 50, 20, 10 units, respectively. We can compare the patterns with the
density profiles of the transversal sections of the army of ants in Fig. 1. As the sensory
distance is increasing, fewer clusters are present, up to the complete disappearance of
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Fig. 3. Cellular automata simulations carried out on a 100 x 100 lattice, with a uniform
initial condition, N = 1000. The range of aggregation R, is, 75%, 50%, 20% and
10% of the edge of the lattice.

any phenomenon of aggregation. This last case can be compared to the first picture
in Fig. 1, where the army does not show a strong concentration. As the number of
clusters decreases, their radii become larger. This means that the aggregation force
becomes weaker and weaker, as the sensory distance gets larger. The density at the
boundary decreases slowly to zero in the first picture of Fig. 1, while it falls sharply
on the other kind of terrains. That is exactly what happens in Fig. 3.

5. Heuristic Convergence of the Cellular Automaton Model to
an Integro-Differential Equation

By considering the transition probabilities (6), (8) we observe that the expected num-
ber of particles in position = at time ¢ + 7 is given by
N(t+7,z) ~ N(t,z)P(z;z,t)

2
+ZN(t,a::i:ek6)P(z;:c + egd, t). (9)
k=1
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So, by Taylor expansions, we get
Nt +7,2) ~ N(t,z)
+ 0k = N(t,2) + (N(t,2 + 8e1) + N(t,0 - dex)
+ N(t,z + des) + N(t, 3 — bey)) /4]
=/ [Fa,el (#,8) + Fo—ey (2,t) + Fp ey (2, 8) + Fo e, (z, t)] N(t,z)

- K,Y‘ [Fa,el (z,t) + Fo,—e, (=, t) + Foey(z, t) + Fo e, («T’t)]N(t: )

+ T][Fa’_el(l' +€16,t)N(t,z + e10) + Fy e, (x — €16, t) N (¢, 2 — e16)
+ Fy oy (@ + €28, )N(t, 7 + €26) + Fa oy (z — Sea, )N (¢, — egs)}

+—A?—[F,.,el(z+el<s,t) (t,2 + €18) — Fy e, (z — €36, )N (t,z — 1)

+ Fre, (T 4+ €20, t)N(t, 2 + e36) + Fro(z — €20, t)N (¢, 2 — 625)]

~ N(t,z) + oxn6>AN(t, z)
_ Z [ wex (TN (t,2) = Foe, (z — e, )N(t, 7 — €4))

— (P ( + b, )N (8,2 + ex0) — Fo_e, (3, )N (2, x))}

+ Al]; [(F (@ + Sex, )N (£, T + Sex) = Fae, (5, )N (t, )

— (Fa,—e (2, )N (t,z) — Fu —e, (T + Sex, )N (t,z — (5ek))]. (10)

Consequently, we obtain

N(t+7,2) ~ N(t,z) + 0%6>AN(t, )

—Zﬂ5[ ’ﬂk Foe, (2, t) — Fo e, (z, t))N(t w)]

Z [V (Fren(@.8) = oo (5, 9) N(E2)|. (1)



166 D. Morale

g g}
1A,

v
¥

Fig. 4. Functions g, and g. in one dimension. They represent
the kernels of aggregation and repulsion, respectively.

By considering the functions g, and g, asin Fig. 4, (11) becomes

N(t+1,z) ~ N(t,z) + 046> AN(t, )

+ R[N, )« 0) @N ()]
_ %6 [V (N(t, ) gr) (x)N(t,m)] , (12)
and so
N(t+71,z) — N(t,x) 252AN(t:m)
Nt TONTETN
e
1 [v(-]‘f%’-;) *gr)(z)N(;"’)} . (13)

By (2) and (7), as N — +o00, one gets
R, — 0, Ar — 400, gr — V6,

where § is the Dirac ¢ function.

If we consider 1,8 ~ § and 62 ~ 7, by performing the limits §,7 — 0 and
N — +oo from (13), we obtain the following integro-differential equation:

2L (@,1) = 0% 8p(a,1) + T (0l 8 * 90) (2ol 1) = V (o(a, ) V(2 1),

where limy 00 ON = 0o and p(t,z) is the probability density for N(¢,z). Assuming
0o =0 as N — 400, we get

2 ) = V(o) + ) @0l 0) = V(pla OVo (@ 0). (14)
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6. An Individual-Based Model

In this section we refer briefly to (Morale et al., 1998a; 1998b). We start from the
Lagrangian description of a system of N(e€ N \ {0}) particles by their random lo-
cations at time ¢. Suppose the k-th particle (k € {1,...,N}) is located at X% (¢)
at time t > 0; each X% (t) is an R¥-valued random variable defined on a common
probability space (2, F, P).

The distribution of the system of N particles at time t is described by the
random measure on R?

N
1
Xn(t) = N E Exk (1) (15)
k=1

which is known as the empirical measure of the system of N particles at time ¢; it
attributes the mass 1/N to each particle of the system.

Correspondingly, the measure-valued process

N
1
Xyt teRy —)XN(t) = -N—Zexkl(t)
k=1

is known as the empirical process of the system. The Lagrangian description of the
dynamics of our system of interacting particles is given via a system of stochastic
differential equations as follows:

dXN (1) = F[Xn(®)] (X5 @®))dt + ondWP(t), k=1,...,N, (16)
where we assume that the k-th particle is subject to random dispersal described by

the Brownian motion W¥.

We assume that {W¥*(-), k = 1,2,...} is a family of independent standard
Wiener processes. Furthermore, we assume that the common variance o2 depends
on the total number of particles.

The drift term F describes the specific dynamics of the system of interacting
particles, based on our modeling assumptions. In particular, we assume that it de-
pends on the location of the respective particle and on the empirical measure X ~{t)
of the system of all particles at time ¢. We may express Assumptions 1-3 in Section 1
by introducing in the drift term F' two components: F}, responsible for aggregation,
and F5, describing the repulsion, such that

F=F+F.

6.1. The Aggregation Term F;
First, we introduce a convolution kernel

Gﬂ:Rd_)R-l-;
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concentrated essentially in the ball centered at 0 € R? with radius R,, which corre-
sponds to the range of sensitivity for aggregation. G, is supposed to be independent
of N.

We assume that the aggregation term F) depends on a ‘generalized gradient’ of
Xn(t) at X&(¢):

B [Xn(0)] (XK (1) = [VGa * Xn@] (XX (). (17)

This means that each individual feels the nonlocal (smoothed) gradient of the measure
Xn(t) around itself via the kernel G, ; the positive sign for F; means that it models
a force of attraction of the particles in the direction of an increasing concentration of
neighbors.

6.2. The Repulsion Term F',

As far as repulsion is concerned, we proceed in a similar way by introducing a convo-
lution kernel

Vv : R — Ry,

which determines the range and the strength of the influence of neighboring particles.

We assume (by anticipating a possible limiting procedure) that Vy depends on
the total number N of interacting particles as follows:

Vn(z) = xxVilxne), z€R,

where V) is a probability density on R?, and xn is a scaling parameter that we
choose as

xn = N°/¢, (18)
where 8 € (0,1). It is clear that

N Vi = o, (19)

where dg is Dirac’s delta function.
Finally, we assume that

B[Xn®] (XN 0)

— (VW * Xn (1) (X5 @)

N
= _% Z VN (X5 (1) — XR())- (20)

m=1

This means that each individual feels a nonlocal (smoothed) gradient of the population
in a small neighborhood. F5 provides a drift toward a decreasing concentration of
the population; its range is decreasing as the size of the population increases.

In Figs. 5-8 we present some simulations of the system of stochastic differential
equations (16), (17) and (20).
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Fig. 5. Time evolution results for the SDE model
with a uniform initial distribution: R, = 1.

Fig. 6. Time evolution results for the SDE model
with a uniform initial distribution: R, = 4.
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Fig. 7. Time evolution of the population density for the SDE
model with a beta initial distribution: R, = 2.
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Fig. 8. Time evolution of the population density for the SDE
model with a beta initial distribution: R, = 4.
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Figures 5 and 6 show the time evolution of a unit mass initially uniformly di-
stributed in the interval {0,5]. Sensory ranges R, = 1 and R, = 4 are considered
respectively. Figure 5 shows a formation of clusters, while in Fig. 6 the density is
still uniformly distributed. This confirms again our conjecture: the aggregation phe-
nomenon in the case studied is stronger when the sensory distance of particles is
smaller.

In Figs. 7 and 8, a beta initial distribution is considered, with R, = 2 and
R, = 4 respectively. This means that initially all particles are located within an
interval of radius equal to 1. So, in order to avoid overcrowding effects, they repel.
Hence the shapes of the profiles become smoother and the high peak tends to vanish.
In any case, in Fig. 7 the group goes on being compact because of the stronger
aggregation forces.

In (Morale et al., 1998a) we prove a law of large numbers to a continuum model.
Let us consider the following assumption:

Assumption 1. For some T € [0,00) system (24) admits a unique, nonnegative
solution p € C’IE(d+2)/2]+2’1(Rd x {0,T]). Together with its partial derivatives of order
<[(d+ 2)/2] + 1, the solution p is integrable uniformly on t < T.

Let us consider the following assumptions for the kernel of aggregation G,:

G, € ClTD/2+2(pdy, (21)
As far as 8 is concerned, we need to assume either of the following two conditions:
. d . . _
i) B < i 111\1[fJN >0, J}E)noo ON = 0o < 00, )
d
ii) B>-—— lim onNPE+D/I-1_

d+2 N5Foo

Let hn(z,t) = Xn(t) * Vv be a regularized version of the measure Xy (t).

Theorem 1. (Morale et al., 1998a) Under Assumption 1, and assumptions (21)
and (22), if

Jm Bl (-0 = w(lE] =0

then
i [ sup lhw(-,0) = o IE] =0 (23)
N—co t<T

where p is the unique solution of

o2
—éﬂAp(w, t) + V- (p(z,t)Vp(,1))

%p(r, t)
v [p(:z:,t)(VGa *p(-,t))(z)], zeR, t>0,

p(z,0) = po(z), =€ R?. (29)
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Equation (23) implies

lim (Xn(e), f) = (X(0), ) = / f@)p(z, ) dz (25)

N—oo
uniformly in t € [0,T), for any f € CH(RY) N L*(R%).

The proof (Morale et al,, 1998a) is based on the direct estimation of the term
lhn(w,t) — p(z,t)||2 by means of Itd’s formula and Doob’s inequality. After the
L? convergence of the regularized measure hy is obtained, it becomes easy to prove
the weak convergence of X . The interested reader can refer to (Morale et al., 1998a;
1998b) for more details.
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