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SPATIAL HETEROGENEITY AND LOCAL OSCILLATION
PHASE DRIFTS IN INDIVIDUAL-BASED SIMULATIONS
OF A PREY-PREDATOR SYSTEM

JacEK WANTEWSKT*, Wosciecn JEDRUCH*,

Individual-based simulations of a simple prey-predator system of Lotka-Volterra
type were carried out on a tessellation of identical squares with discrete time
steps. The particles representing individuals moved freely along (roughly) stra-
ight lines with constant (on the average) velocity, and changed their movement
during a collision with another particle. Individuals were of two types: preys
(with free exponential population growth) and predators (with exponential po-
pulation decrease in the absence of a prey, they attack with probability one and
are characterized by zero handling and gestation times). Therefore the system
might be also interpreted as a chemical reaction in a gas. For this simple sys-
tem, a spontaneous generation of complex spatio-temporal pattern was observed
with wavy spatial patterns and tendency for preys to form clusters surrounded
by predators if the population density was high. The oscillations of the sys-
tem were investigated at different spatial scales, and the phase lag between the
oscillations in different local observation windows was demonstrated. The para-
meters of the classical Lotka-Volterra equations were estimated and the impact
of the migration and the oscillation phase drift on the parameter values was
discussed.

Keywofds: prey-predator system, individual-based simulations, spatial hete-
rogeneity, oscillation phase drift, parameter estimation

1. Introduction

Pattern formation, patchiness and diffusional instability have been of active interest
in chemical, biological and ecological studies since the publication of Turing’s paper
(1952). The problem has its counterpart in the kinetic patterns if they are studied
in areas of different sizes. In particular, a phase shift between the oscillations in
different areas and a decrease in their amplitudes have been observed for increasing
areas (Durrett and Levin, 1994; Ranta et al., 1997; Wilson et al., 1993). The data
of the Canadian lynx from eight Canadian provinces showed that, beside the general
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synchrony in oscillations of that species, there are remarkable shifts in phase of the
oscillations between the subpopulations with occasional coincidence between the peak
number of lynx in one province and the minimum in the number of lynx in another
one (Ranta et al., 1997). This phenomenon is obviously linked to the heterogeneity of
the population distribution. A theoretical analysis of the data was performed using
a metapopulation model of a single population distributed in the form of patches
in a discrete patch state space and changing in discrete time (Ranta et al., 1997).
However, similar results were also obtained in individual-based computer simulations
of two populations interacting according to the prey-predator scheme (Boccara et al.,
1994a; 1994b; De Roos et al., 1991; Satulovsky, 1996; Satulovsky and Tome, 1994;
1997; Tainaka and Fukazawa, 1992; Wilson et al., 1993; 1995).

Mathematical analysis of the systems of interacting and mobile particles based
on their smooth density distribution may yield quite different results than computer
simulations of discrete individuals, as shown for a spatial version of an evolutionary
game (Durrett and Levin, 1994). This was also found for simple systems with Lotka-
Volterra type interactions (Boccara et al,, 1994a; 1994b; Satulovsky, 1996; Satulo-
vsky and Tome, 1994; 1997; Tainaka and Fukazawa, 1992, Wilson et al., 1993). As
opposed to reaction-diffusion equations for two populations with linear growth and
death rates and the interaction rate described by a simple bi-linear term (a classical
Lotka-Volterra equation) which do not show any diffusional instability (Wilson et al.,
1993) (which is in contrast to the system with modified growth, death and interaction
rates (Mimura and Murray, 1978; Segel and Jackson, 1972)), individual-based simula-
tions showed spontaneous appearance of irregular patchiness even in the populations
with the classic Lotka-Volterra description (Boccara et al., 1994a; 1994b; Satulovsky,
1996; Satulovsky and Tome, 1994; 1997; Tainaka and Fukazawa, 1992; Wilson et al.,
1993; 1995). The phenomenon was attributed to different features of the discrete
(individuals, space, time) simulations when compared with the smooth mathematical
description of the system (Wilson et al., 1993).

Individual-based computer simulations of population dynamics yield data (e.g.
time series of the population size) which are in general irregular (and in this respect
they resemble experimental data), and therefore the problem of identifying those
features of the data which are generic for the system as well as methods for qu-
antitative identification of the system using mathematical models of the population
can be studied based on such simulations. Furthermore, the relationship between
the estimated parameters and the quantitative rules for particle behaviour and the
rules for the observation of the population are of general interest. Studying these
issues with individual-based simulations can provide new methods for the evaluation
of experimental investigations and field observations.

In our study, a simple individual-based model of the Lotka-Volterra system is
discussed using a new approach to modelling particle motions and interactions. The
simulation rules were similar to those for gas particles and chemical reactions. We
also analyze our simulations using Lotka-Volterra equations for the data collected
from observation windows of different surface areas.
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2. Computer Model for Interacting Particles

The individual-based model was implemented to investigate the behaviour of a simple
predator-prey system. The model has been defined over a two-dimensional tessellation
of identical squares (Jedruch and Barski, 1990; Jedruch and Waniewski, 1994). The
area of the model is limited and cyclic, i.e. squares at the right and left (and upper
and lower) borders of the plane are adjacent to one another (Durrett and Levin,
1994; Wilson et al., 1993). A square may be empty or contain an individual U (prey)
or V (predator). No square can contain more than one individual (Satulovsky, 1996;
Satulovsky and Tome, 1994; 1997; Tainaka and Fukazawa, 1992). However, in some
other studies, more than one individual might occupy the same node of the grid
(Durrett and Levin, 1994), or the same node may be occupied by an individual (but
not more than one) from each of the interacting populations (Wilson et al., 1993).

The state of an individual is specified by a pair of integers, z, and y,, specifying
the position of the individual in the Cartesian coordinates z—y, and by the pair of
real numbers, v, and vy, specifying the velocity of the individual in the z and y
directions, respectively.

All the transformations in the model are synchronized by a discrete clock.

Particle movement. At each time step, the individuals can move by jumping
randomly and consecutively to the both adjacent squares in the z and y directions
(the order of directions is chosen randomly) with probability:

ve/s| if v<s v,/s| if v<s
Pm:{tzm < OrPy:{ly/l <

lvg /o] if v>s oy /o] if v>s

(1)

where v = 4/v7 + 02 and s is a constant (here assumed to be 5). If v < s, then the

average Euclidean displacement of a particle is proportional to its velocity v, whereas
for v > s the average Euclidean displacement is the same as for v = s, which sets up
the maximal velocity of one square distance per time step. These rules of movement
produce random trajectories distributed around the straight lines, which represents
the deterministic continuous movement with velocity (v, vy). To illustrate the rules
some example trajectories are shown in Fig. 1.

When an individual attempts to occupy a square already occupied by another
individual, a collision occurs, after which the new velocities of both the individuals are
evaluated. The new velocities of the rebounding individuals are computed according
to the following formula (it is the formula for elastically rebounding disks in the
two-dimensional space):

viz(k+ 1) = vig(k) + d(k) cos(a), wviy(k + 1) = vy, (k) + d(k) sin(a),
Vog(k + 1) = vae (k) — d(k) cos(a), way(k +1) = vay(k) — d(k) sin(a), (2)
d(k) = [v2a(k) — v1z(k)] cos(a) + [vay (k) — v1, (k)] sin(a),

where v14, U2z, Viy, Voy denote the respective velocity components of the colliding
individuals 1 and 2 in the z and y directions, ¥ and k¥ + 1 denote respectively the
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Fig. 1. Example of individual trajectories observed for 180 time steps. The
velocities of individuals were equal to 1, 2, and 5 (from the left to the
right-hand side), and s = 5. For each velocity a set of 360 trajectories
was drawn for the directions which differed by 1°.

time steps before and after collision, and « is an angle which is chosen randomly for
each collision from the range (0,27).

The particle migration in other studies was diffusive with random jumps for a
given number of lattice spacings per time step (Durrett and Levin, 1994; Wilson et al.,
1993), or individuals were stationary, i.e. they did not move at all (Satulovsky, 1996;
Satulovsky and Tome, 1994; 1997; Tainaka and Fukazawa, 1992; Wilson et al., 1993)
or randomly scrambled (perfect mixing) (Wilson et al., 1993). Special phenomena,
such as pursuit and evasion, were also taken into account in cellular automata models
(Boccara et al., 1994b).

Interaction between preys and predators. If a collision of U and V takes place,
the individual U is changed to V. This rule may be interpreted as follows: if a pre-
dator meets a prey, then it attacks (with probability one) and consumes this prey,
and with zero handling and gestation time, gives birth to another predator which has
the same position and velocity as the caught prey. A similar rule was also applied in
(Wilson et al., 1993). More realistic descriptions of biological phenomena, as preda-
tion and predator multiplication or density-dependent birth and death, can also be
implemented in individual-based modelling (De Roos et al., 1991; Satulovsky, 1996).
It is worth noticing that the implemented interaction rule has also an interpretation
of irreversible chemical reaction U + V — 2V. In fact, Lotka formulated initially his
equations for the chemical reaction (Lotka, 1925).
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Fig. 2. The probability distribution of placing the newly generated individuals U.
The parent individual U is placed in the centre square.

Multiplication of preys. Individuals U can multiply, i.e. at each time step each
individual U can be duplicated with probability Py. The newly generated individuals
U are positioned randomly but closely to their parent individuals according to the
following algorithm: two times six uniformly distributed random variables are summed
and rounded to the closest integers. The resulting two integer numbers added to the
position of the parent individual U give the position of the new individual. If these
numbers are both zero or the chosen position is already occupied, the procedure is
repeated. This algorithm (assuming that there are no other individuals than the
parent individual U) leads to the probability distribution shown in Fig. 2. This
distribution is obtained using the well-known Laplace formula yielding the probability
density function of the sum of uniformly distributed random variables. Thus, the
growth of the U population alone would be exponential in the large time scale, until
the high density of the population is reached.

Death of predators. Individuals V' can die, i.e. they are removed according to the
probability Py per one time step. Thus the V' population left alone would die out
exponentially.

The rules for U multiplication and V death may also be interpreted within
the scheme of chemical reactions: U and V may interact with ‘ghost’ particles A
and B, respectively, according to the schemes: U + A — 2U, V + B — 2B. The
numbers of particles A and particles B are separately kept constant (Jedruch and
Waniewski, 1994; Prigogine, 1969).
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The computer model has therefore two different interpretations:
1. a much simplified and idealized ecological system of prey-predator interactions,
or
2. a chemical reactions studied at the level of a small number of discrete particles.
The simplicity of the model may help to reveal important factors behind the une-
xpected observations made for discrete systems of individuals, and observations that

cannot, easily be interpreted within the mathematical description of the evolution of
continuous distribution functions.

3. Evaluation of Computer Simulations with the Lotka-Volterra
Model

The system is expected to evolve according to the Lotka-Volterra equations (Edelstein-
Keshet, 1988; Murray, 1989):

du
— =ayu — byuv,
dt
3)
dv__ + byuv
ag - avvTov

for ay, by, av, by > 0, where v and v denote the numbers of individuals of U
and V species expressed per unit surface area (population densities), respectively.
The unit surface area in our calculations is that for a tessellation of 100 x 100 basic
squares.

Writing (3) for the simulated system, we have to assume that the particles are
perfectly mixed, i.e. every individual has the same probability to interact with another.
Sometimes this approach is called the mean field theory (Durrett and Levin, 1994).
Its validity for our simulations will be checked in Section 5.

The following integral form of (3) can be used to estimate the system parameters:

u(t) = u(to) + av F(t) — buG(t),

(4)
v(t) = v(to) — av K (t) + by G(t),
where
¢ ¢ ¢
F(t) = /u(s) ds, K(t) :/’U(S) ds, G(t) :/u(s)v(s) ds.

Each of eqns. (4) is a two-parameter linear regression for parameters a and b. We
apply (4) for each cycle separately (the cycle stands for the period between the con-
secutive peaks of wu; estimations with other definitions of the cycle yield essentially
the same results), and then calculate the average values of the estimated parameters
over all the available cycles (Waniewski and Jedruch, 1999).
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4. Computer Simulations

A series of experiments has been made for various initial numbers of individuals, va-
rious probabilities Py, Py, and various sizes of the tessalation area. All experiments
show that the numbers of U and V individuals oscillate with variable amplitudes.
The oscillation amplitude strongly depends on the size of the observation window
(Fig. 3 and Tab. 1).

Table 1. Simulations of interacting populations on a square of the total surface area of
256 units (1600 x 1600 tessellation, one surface area unit = 100 x 100 squares)
ay = av = 0.40 x 107%, and an initial population density of v = v = 32
individuals per unit surface area. The simulation was performed for 20000 time
units (11 cycles occured); the results are shown for observation windows of
different surface areas. Mean values +/ — SD are presented. Description of
symbols on p. 187.

Window area l 256 } 64 l 16 l 4 1
Descriptive:
i 50+1 5042 5042 48+4 5245
U 50+1 50+1 4942 50£2 5045
Ay /a 0.71+£0.28 | 0.8140.27 | 1.08+0.40 | 1.66+0.86 | 2.09£1.24**
Ay /Ay 0.9940.09 | 1.06+0.06 | 1.02+0.10 | 1.05£0.12 | 1.11+£0.28
T 1767£85 | 17724113 | 1792497 | 1799+152 | 18314157
%) 0.2140.05 | 0.21£0.09 | 0.16+£0.02 | 0.15+0.03 | 0.13+£0.04**
Theoretical:
ay % 102 0.36+0.02 | 0.3640.03 | 0.38£0.02 | 0.41+0.02 | 0.42%£0.07*
ay x 102 0.36+0.01 | 0.36+0.02 | 0.36+0.03 | 0.38+£0.03 | 0.41+0.05*
by x 10% 0.714+0.03 | 0.73£0.04 | 0.75+0.06 | 0.77+£0.04 | 0.82+0.13*
by x 104 0.70+0.05 | 0.7040.04 | 0.69+0.06 | 0.73+£0.07 | 0.78+0.11*

The oscillations have many features characteristic for the solutions of the Lotka-
Volterra equations, independently of the size of the observation window (Fig. 3). The
extreme values of V follow the extreme values of U. If the amplitudes are small, the
oscillations resemble harmonic ones. If the amplitudes of oscillations are large, the
peaks are narrow and steep, and the troughs wide and shallow. In small observation
windows one of the species can get extinct, while in a deeper trough with a low number
of individuals due to random fluctuations; however, the window is soon recolonized.
The pattern of oscillations can change a lot if the simulations are done with the same
initial dynamic state but different contingent events (adding and removing particles).
Nevertheless, these patterns have some generic characteristics which make it possible
to recover the parameters of the Lotka-Volterra equations.

koK

p < 0.05 and p < 0.005, respectively, versus the value for the window area equal to 256,
the Student t-test.
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Fig. 3. The density of individuals U (left) and V (right) versus time steps: (a)
and (b) in the whole system composed of 1600 x 1600 elementary squares,
(c) and (d) in 4 windows, each composed of 800 x 800 squares, (e) and
(f) in 16 windows, each composed of 400 x 400 squares, (g) and (h) in 64
windows, each composed of 200 x 200 squares, (i) and (j) in 256 windows,
each composed of 100 x 100 squares.
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Below the results of computer simulations are described and analyzed in detail.
The model is defined over the tessellation of 1600 x 1600 squares. The probabilities
of multiplication and death of individuals are Py = Py = 0.004. The initial state
of the system consists of U = 5192 and V = 5192 randomly positioned individuals
having the velocity v = 1 and a randomly chosen movement direction. The system
evolves over 20000 time steps.

The evolution of the above system was observed in square windows of various
sizes. The results are presented in Fig. 3 where the densities of individuals U and V'
versus time steps for various observation windows are shown: the densities of indivi-
duals in the whole model (composed of 1600 x 1600 squares, Figs. 3(a) and (b), in
4 windows (each composed of 800 x 800 squares, Figs. 3(c) and (d), in 16 windows
(each composed of 400 x 400 squares, Figs. 3(e) and (f), in 64 windows (each com-
posed of 200 x 200 squares, Figs. 3(g) and (h), and in 256 windows (each composed
of 100 x 100 squares, Figs. 3(i) and (j). As can be seen from Fig. 3, the amplitudes
of oscillations decrease if the area of observation increases. The measured coefficients
of variation (standard deviation/mean value) for peak amplitudes of individuals U
are 0.45, 0.48, 0.57, 0.64 and 0.72 for the windows of the size 1600 x 1600, 800 x 800,
400 x 400, 200 x 200 and 100 x 100, respectively. The same coefficients for individu-
als V are 0.46, 0.49, 0.57, 0.64 and 0.69, respectively.

The phase trajectories of the system observed in the largest (1600 x 1600) and
the smallest (100 x 100) windows are shown in Fig. 4. The trajectory from the
smallest window strongly fluctuates in the short time scale, whereas the trajectory
of the whole system is rather smooth. Both the trajectories look like those drifting
slowly over closed trajectories of the Lotka-Volterra system, eqns. (3).

Figure 5 demonstrates the evolection of the size of U population in windows of
decreasing sizes with each smaller window included within the larger ones. At the
beginning of the simulation the system was homogeneous and the oscillations in all
windows were of the same amplitude and the same phase for a few cycles (Fig. 5, the
upper panel). However, the subsystems in small windows then drifted out of phase
from other subsystems in windows of the same size, and, at the same time, from the
larger subsystems as illustrated in Fig. 5, cf. the lower panel. The drift was rather
slow and it took a few cycles to reach the maximum deviation of the phase of the
smallest subsystem from those of the larger subsystems.

The differences in the phase of the oscillations observed in small areas within the
whole ‘world’ are related to heterogeneity of the population distribution (Fig. 6). The
initially homogenous distribution of both the populations (Figs. 6(a) and (b)) slowly
changed and inhomogeneities appeared (Figs. 6(c) and (d)). Strongly heterogeneous
distributions were observed later with waves of high and low densities moving through
the tessellation (Figs. 6(e)—(j)). Occasionally, clusters of preys arose with almost no
predator inside, but instead surrounded by many of them (Figs. 6(g) and (h)).

5. Quantitative Analysis of System Dynamics

The oscillations vary in amplitude, time period, phase, etc. in all windows, but some
relatively constant characteristic features of the patterns observed can be found. Some
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Fig. 4. Phase trajectory of the system observed in the 1600 x 1600 window !

(upper panel) and on 100 x 100 (lower panel) elementary squares.
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Fig. 6. Distribution of particles U (left) and V (right): (a) and (b) initial,
(c) and (d) in step 2300, (e) and (f) in step 7499, (g) and (h) in step !
10000, (i) and (j) in step 11884.
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of them are listed in Table 1 for each of the five sizes of the observation window
(these are the same windows which were selected for Fig. 5). The parameters which
characterize the oscillations were calculated for each oscillation cycle separately and
the mean values and standard deviations over all available oscillations for each of the
observation windows are shown in Tab. 1. The oscillation cycle is defined to be from
a peak of U to the consecutive peak of U.

The mean values of the average density, @ and o, of U and V, respectively,
were quite stable and the same in all windows, and the coefficient of variation (CV =
SD/mean) increased with the decreasing window size, but not more than by 10%
(Tab. 1). In contrast, the amplitudes of oscillations increased considerably with the
decreasing window size, as shown in Tab. 1 for the peak amplitude of u values, Ay,
standardized relative to the mean value of @, Ay/@. The coeflicient of variation,
CV, for Ay/a was over 50% for the windows of small sizes, which was due to a high
irregularity of oscillations in those windows. The ratio of a peak amplitude of U to
the consecutive peak amplitude of V, Ay /Ay, was about 1 for all windows sizes.
This result might be expected for the Lotka-Volterra system with the generation rate
of U, Py, equal to the death rate of V, Py. The time period T was similar for all
window sizes, and CV for T was less than 10%. The ratio ¢ of the phase lag between
peak amplitudes of V and U over the time period was lower for small windows than
for large ones, as might be expected for the Lotka-Volterra system with high versus
low amplitudes of oscillations.

The simulated time course of U and V did not agree with any solution to the
Lotka-Volterra equations. However, we assumed that during one (quasi) cycle of the
oscillations a solution to (3) could be fitted to our data with reasonable accuracy. The-
refore, the parameters ay, by, av, by were estimated using (4) for each oscillation
cycle separately, with the cycle defined as the time interval between two consecutive
peaks of U. The mean (+/— the standard deviation) values of the parameters are
shown in Tab. 1.

One might expect that by = by because in the simulations the disappearance of
a U particle due to the interaction with a V' particle was linked to the appearance
of a V particle. In fact, the average values of these two parameters were very close in
the windows of all sizes (Tab. 1). The estimated average values of ay and ay were
close to each other and to the assumed values of Py and Py, respectively (Tab. 1).
The scattering of the parameters estimated for the separate cycles was low with CV
within the range of 2-20%.

Note that the basic relationships for the average values of u and v for the time
period (i.e. & = ay /by and v = ay/by (Edelstein-Keshet, 1988; Murray, 1989))
were fulfilled for the values of the estimated model parameters (as can be verified
based on the values shown in Tab. 1). The formula for the oscillation period for small
amplitudes, T = 2n/,/ayay, is also fulfilled for a larger window (low amplitudes of
the average density) with the calculated T equal to 1745 time steps.

The values of the estimated parameters for the Lotka-Volterra model depend on
the window size (Table 1). The correct (i.e. in agreement with the assumed values
for the birth, Py, and death, Py, rates), values of ay and ay were obtained for
the small windows of area equal to one and four units. The estimated values of ay
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and ay for larger windows were however slightly lower than the assumed values
of Py and Py, respectively. The same decrease was also found for the interaction
parameters by and by. The observed dependence of the parameters of the Lotka-
Volterra equations on the size of the observation windows might be due to the effect
of a limited particle migration. In fact, the migration of the particles was rather
slow and a particle moving freely could pass about 180 squares per one oscillation
cycle. Therefore, the assumption of perfectly mixing might be valid to some extent
in the small observation windows but not in large ones. In fact, the tendency to
underestimate the values of Py and Py by ay and ay, respectively, is strong,
especially in a window with the area greater than or equal to 16 units (Tab. 1). The
reason for the observed decrease in the parameter values with increasing window sizes
was the effect of averaging strong oscillations in the subregions which yield milder
oscillations and slower apparent rates of microevents (birth, death, predation).

6. Discussion

Spatial heterogeneity and the phase drift between different subareas, as well as the
stabilization of the system due to these phenomena, have been observed in our si-
mulations. Similar effects appear for other individual-based simulations of the prey-
predator system with different arrangements of the simulation details (Boccara et al.,
1994a; 1994b; De Roos et al., 1991; Satulovsky, 1996; Satulovsky and Tome, 1994;
1997; Tainaka and Fukazawa, 1992; Wilson et al., 1993; 1995). Thus, these pheno-
mena are linked more to the presence of discrete individuals within the population
and the dynamic, collective enforcement of local stochastic events in such discretized
systems, than to specific biological features of individuals and populations. In spite
of many irregularities in the observed oscillations, the basic parameters of the system
have been estimated with good accuracy.

The description of the space and time in our simulations was attempted to be
realistic, i.e. the discretization of space and time was just a tool to organize the si-
mulations and increase their speed, in contrast to a discrete approximation of an
a-priori assumed differential equation. In fact, the simulated time course of popula-
tion densities » and v, especially observed in the small windows, was quite similar to
the results of simulations of the Lotka-Volterra interactions for particles moving on a
(continuous) sphere surface with continuous time (Waniewski and Jedruch, 1999).

The squares of the tessellation were considered to be small and not able to ac-
commodate more than one individual. The average density of the populations was
small (50 individuals per 10000 squares), however in clusters it might be much higher.

The choice of the tessellation’s shape is important for many applications of cel-
lular automata. For example, modelling two-dimensional phenomena described by
the Navier-Stokes equation should be done on a hexagonal tessellation, but a square
tessellation is enough for the description of diffusion (Rothman and Zalesky, 1997;
Weimar, 1996; Wolfram, 1986). Modelling the so-called excitable media with cellular
automata needs an isotropic (semi-random) lattice, otherwise the shape of the obta-
ined spatial patterns reflects the shape of the tessellation (Markus and Hess, 1990;
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Schepers and Markus, 1992; Weimar, 1996). In our model, the particle movement
was generally isotropic (Fig. 1), and therefore the square tessellation was not reflec-
ted by the particle distribution (in fact, the distribution was highly irregular, Fig. 6).
Moreover, no regularity of the particle distribution was observed in the simulations
of the Lotka-Volterra system on square tessellations in other studies (Boccara et al.,
1994a; 1994b; De Roos et al., 1991; Satulovsky, 1996; Satulovsky and Tome, 1994;
1997; Tainaka and Fukazawa, 1992; Wilson et al., 1993; 1995).

The simulation model was simple and designed to match exactly to the simple
version of the Lotka-Volterra equations. Therefore the assumptions for the particle
movement and interactions were oversimplified from the biological point of view, and
might be as well interpreted as the rules for chemical reactions in a gas. Neverthe-
less, this simplified background can be useful as a reference for more complex and
biologically realistic simulations.

An attempt to generalize (3) for the description of spatio-temporal patterns is
to add a diffusion term to those equations. In fact, the individual-based modelling
of the Lotka-Volterra interactions was compared with the adequate reaction-diffusion
(R-D) equations in (Wilson et al., 1993), and a general disagreement was found. Si-
milar results, contrary to the R-D equations, were obtained in our simulations as well
as in a few other studies (Boccara et al,, 1994b; De Roos et al., 1991; Satulovsky,
1996; Satulovsky and Tome, 1994; 1997; Tainaka and Fukazawa, 1992; Wilson et al.,
1993; 1995). It is well-known that a non-trivial spatial distribution may arise in some
population models with diffusion, including the prey-predator system, if the local
population dynamics is complicated enough, but not in simple systems as simulated
in our study (Mimura and Murray, 1978; Segel and Jackson, 1972). These classical
results about pattern formation in the (complex) prey-predator system were generali-
zed for more sophisticated systems than the Lotka-Volterra R-D equations, including
discrete-time models with integro-difference equations (Neubert et al., 1995), envi-
ronmental heterogeneity with diffusion along an environmental gradient (Pascual and
Caswell, 1997), and diffusion-advection transport (Malchow and Shigesada, 1994).

However, the R-D equations are not necessarily a good description for individual-
based simulations. The simulations are performed on this spatial scale where the size
of the discrete individuals is taken into account. Therefore, there is an upper limit
on the population density, and this is quite different from the continuous description
with no upper limit on the local density. The effective mobility of individuals de-
pends on the local population density in simulations with limitations on the number
of individuals per one site, and the respective diffusion coefficients in R-D equations
should also be density-dependent. Mathematical analysis of the R-D equations with
density-dependent diffusion coefficient showed that the segregation processes are po-
ssible in such systems (Witelski, 1997). Another factor is a limited velocity of the
particles in the individual-based simulations, which is in contrast to the no-velocity
limit assumed implicit in the R-D equations. This problem can be addressed with
the correlated random walk approach and the reaction-telegraph equations (Hillen,
1996). Furthermore, the predator-prey interactions and the prey multiplication in
the individual-based simulations are in fact non-local phenomena because they invo-
lve particles from two different cells. Some degree of time delay due to the discrete
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clock can also contribute to the disagreement between the individual-based simula-
tions and the local in time and space R-D equations. The non-local in space and time
diffusive Lotka-Volterra systems have more bifurcations of the steady state solution
than the respective local equations (Gourley and Britton, 1996). Therefore the con-
tradiction between the individual-based simulations and the simple R-D equations for
the Lotka-Volterra interactions does not seem so surprising. There are many features
of the individual-based simulations which may yield, under some specific conditions,
the departure of the system from the dynamics which might be expected from the R-D
equations. Different factors are important for the systems with different descriptions
of the particle behaviour and, furthermore, different factors may come to play for
different parameters for the same qualitative particle behaviour. Further studies are
necessary to check which spatio-temporal equations might provide a good description
for the simulated data. Different mathematical descriptions may also be necessary
for different parameter ranges of the simulations.

Three kinds of drift were observed in our simulations:

1. The drift in the phase space of the system between different closed orbits of the
Lotka-Volterra equations. The observed pattern was much more realistic than
closed, structurally unstable orbits of (3).

2. The drift of population density in the simulated space, which created fuzzy but
easily notable waves (Fig. 6).

3. The drift of oscillation phase in local observation windows, which resulted in
the decreased oscillation amplitude in the larger observation windows due to
averaging over a few smaller windows with a different oscillation phase.

The wavy space patterns and local oscillation drift were of course two aspects of the
same phenomenon. The reason for these patterns was in the increased complexity
of the system, in spite of the homogeneous initial distribution of the particles, due
to interactions between preys and predators. This phenomenon is not expected from
the possible continuous description of the simulated populations by the reaction-
diffusion equations. The most probable explanation for the disagreement between
the continuous model and our simulations is the discrete description of individuals.
Local irregular interactions between individuals might be enhanced by the interaction
rules and result in the loss of the homogeneity of the initial space distribution with
a randomly arising pattern of a new distribution. The pattern then oscillated in a
fuzzy, irregular way in a small space scale. However, the regularity increased with
the increasing scale. At any scale, the values of the parameters of the Lotka-Volterra,
equations estimated for the time oscillations of the average population densities were
close (Tab. 1). Some impact of the observed space and time patterns on the estimated
parameters could also be noted. For other parameters of the simulated system, the
description of the results by the Lotka-Volterra equations might however not be so
good as in the case shown in the present paper. The possible patterns in the system
and their relationships to the mathematical description should therefore be further
studied.
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In summary, the appearance of spatio-temporal patterns in individual-based si-
mulations has been observed in contrast to the predictions from the continuous-+de-
scription by reaction-diffusion equations. The pattern was not regular, but fuzzy and
random. However, using averaging over oscillations, some generic features resembling
those for the solutions to the Lotka-Volterra equations could be found. Furthermore,
the parameters of the equations could be estimated at different space scales (obse-
rvation windows of different sizes). The values of the parameters were similar for all
window sizes, but small differences reflected the effects of limited particle migration
and of averaging over the patterns of smaller scale than the size of the window.
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