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SOLVABILITY AND ASYMPTOTIC BEHAVIOR
OF A POPULATION PROBLEM TAKING
INTO ACCOUNT RANDOM MATING
AND FEMALES’ PREGNANCY

V5ApAS SKAKAUSKAS*

Two deterministic age-sex-structured population dynamics models are discussed
taking into account random mating of sexes (without formation of permanent
male-female couples), possible destruction of the fetus (abortion), and female’s
pregnancy. One of them deals with both random and directed diffusion in the
whole space while in the other the population is assumed to be nondispersing.
The population consists of three components: one male and two female, the
latter two being the single (nonfertilized) female and the fertilized one. The
case of a separable solution of the limited nondispersing population (in which
death moduli can be decomposed into the sum of two terms where one of them
depends on time and age and the other is a function of time and the population
size) is analyzed. The existence of a unique solution of the Cauchy problem
for the nondispersing population model is proved and its longtime behavior is
demonstrated. An analogous situation for the dispersing population is analyzed,
too.

Keywords: population dynamics, random mating, gestation of females,
migration

1. Introduction

In recent years there has been considerable interest in the dynamics of bisexual po-
pulations with or without both age structure and spatial diffusion. Such models are
of paramount importance for genetics (see e.g. (Svirezhev and Passekov, 1990) and
references therein) and epidemiology, in particular for modeling sexually transmit-
ted diseases (see e.g. references in (Hadeler, 1993)). Both random mating, without
formation of permanent male-female couples, and monogamous marriage models (see
e.g. (Frederickson, 1971; Hoppensteadt, 1975; Staroverov, 1977; Hadeler, 1993) and
references therein) are usually used. A common feature of these works is that their
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analyses are based on a division of the population into a small number of subpopula-
tions, usually into male and female or single male, single female and pair subclasses.

In a recent paper (Skakauskas, 1994) we developed a general deterministic model
for an age-sex-structured population dynamics taking into account random mating
of sexes without formation of permanent male-female couples, female’s pregnancy,
possible miscarriage (abortion) of the fertilized female, and female’s sterility periods
following abortion and delivery. The population is divided into five components: one
male and four female, the latter four being the single (nonfertilized) female, fertilized
female, female in a sterility period after abortion, and female in a sterility one following
delivery. Each sex has three age-grades: pre-reproductive, reproductive, and post-
reproductive. It is assumed that for each sex the commencement of each grade as
well as the duration of the gestation and female sterility periods are independent of
individuals or time. Latter, in (Skakauskas, 1996), we generalized this model for the
spatially dispersing population in the whole space. The mechanism of spatial dispersal
in the last model is described by an integral operator.

In the present paper, we simplify the model of (Skakauskas, 1996) by neglecting
the female sterility periods above, replace its dispersal mechanism by that of random
and directed diffusion, and, in the case of a limited population with death rates
depending on the spatial density of population, we examine separable solutions to
this new model. We emphasize that a possible miscarriage of the fertilized female
is taken into account. We also consider this model for the nonlimited nondispersing
population, prove the existence of its unique solution, and, in the special case in which
all the vital rates of the fertilized female do not depend on the age of the mated male,
establish its longtime behavior. Furthermore, we construct a separable solution to
this model for a limited population, and demonstrate its asymptotic behavior as time
tends to infinity. In the case of a separable solution for the nondispersing population
the death rates are decomposed into the sum of two terms where one of them depends
on time and age while the other one is a function of time and the total population.

In (Skakauskas, 1998) we analyzed a model analogous to the present one, but
without possible female’s abortion, i.e. X, = 0 in system (1). All the results of
the present paper are direct generalizations of those in (Skakauskas, 1998) to the
population whose fertilized females may miscarry.

The paper is organized as follows. Section 3 deals with the analysis of the nondi-
spersing population model and consists of four subsections. In Section 3.1, we prove
the existence and uniqueness theorem for the nonlimited population model. In Sec-
tion 3.2 (resp. 3.3) in the case of specialized initial distributions (resp., general initial
distributions) and stationary vital rates of the nonlimited population, we obtain a
separable solution (resp., the asymptotic behavior of the general solution). In Sec-
tion 3.4, we obtain a separable solution for the limited population model as well as for
stationary vital rates, demonstrate its asymptotics as time goes to infinity. Finally, in
Section 4 we present a separable solution to the dispersing limited population model.
The discussion in Section 5, including some comments about the models, concludes
this paper.
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2. Notation

We follow the notation of (Skakauskas, 1994; 1996; 1998):
71, T and 73: the ages of male, female, and embryo, respectively;

t: time;

E™: Euclidean space of dimension m;

2= (z1,Ts,...,%m): the spatial position in E™;

n(z,t): the spatial density of the total population at location z and time #;
ui(x:,t,7): the age-space density of males at age 7, location z and time #;

us(x,t,72): the age-space density of single (nonfertilized) females at age 75, loca-
tion z and time ft;

uz(z,t,71,7,73): the age-space density of fertilized females at age 72, position =
and time t whose embryo is at age 73 and that were fertilized by a male at age 7;

p(z,t, 71, 72,n(z,t)): the density of probability to become fertilized for a female
from the male-female pair formed of a male at age 7 and a female at age 7, at
location x and time f;

vy(z,t,71,n(z,t)) (vesp. va(x,t, 72,n(z,t))): the death rate of males at age 7 (resp.
single females at age 73), position = and time ¢t;

v3(x,t, 71,7, 73, n(x,t)): the death rate of fertilized females at age 5, position z
and time t whose embryo is at age 73 and that were fertilized by a male at age 7;

x(z,t, 7,72, 73,n(x,t)): the abortion rate of fertilized females at age 7, position z
and time t whose embryo is at age 73 and that were fertilized by a male at age 7;

X.(z,t,7): the single female loss due to conception at age 7o, location z and
time t;

Xa(z,t,m): the single female gain by the females which have had an abortion at
age T, location = and time t;

Xi(z,t,7): the single female gain by the females which have had a delivery at
age 19, position z and time t;

o1 = (n11,712], 0 < 71 < T2 < co: the male sexual activity interval, o1 = [711, T12];
o3 = (0,7], 0 <T < oco: the female gestation interval, 3 = [0,T7];

02(73) = (To1 + 73,722 + 73], 0 < To1 < Toy < 00, G2(73) = [T21 + 73, T2z + T3];

02(0), a5(T): the female fertilization and reproduction (delivery) intervals, respec-
tively;

0q = (721,722 + T]: the female abortion interval;

bi(z,t, 71, 72,n(z,t —T)) and bs(z,t, 71,72, n(z,t — T)): the average numbers of

the male and female offspring, respectively, produced at time t at position x by
a fertilized female of characteristic (r,72,T);
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k10 (3,8, 71, 0(2, 1)), Kor(2,t, 7o, n(2, 1), Kae(z,t, 71,7, 75, m(2, 1)): the diffusion
moduli for random dispersal;

K1a(z,t, 11,1(2, 1)), Koa(2,t, 79, n(2, 1)) k3a(z,t, 7, T2, T3, (7, 1)) the diffusion

moduli for directed dispersal;

3

wd(z,71), u3(z,72), ud(z, 71,72, 75): the initial distributions;

T3 =0, 74 = T, 73 = min(ry + T, 722), 75 = max(r; + T,732), T4 = To9 + T,
I= (O:OO)) I_: [0700): -[4 = (7-24700)7 ‘T‘l = [7—?1.1700)’ IS = (757725+1]7 TS = [7—2‘937-5—}‘1}7

I*=(0,t*], I = [0,t*], t* < oo;
4
Qi={(t,n)eIxI}, Q= {(t,m) €I x (1'\5L:Jl {5 H};
Qg = {(t,Tl,T27T3) c I x o] X 0'2(7‘3) X 0'3}, where 0'2(’7'3) X 03 = {(7‘2,73):
T2 € 03(T3), T3 € o3};
Dy =0/0t+08/0m, Dy =0/0t+0/dry, Dy = Dy + 8/07s;

D;, i=1,2,3: the directional derivative in the positive direction of characteristics
of the operator D;;

Dy =+/2D;, Dy = V2D, Dy = V/3Ds3;
div, V: the divergence and gradient operators, respectively;
[u2]r,=rg]: the jump of u, at the plane 7 = 7i;
( 0,72 =21, 72 € (721,701 + 77,
Qm) =< [0,7], T € (121 + T, T2s),

[ [ =722, T), 7 € (722,703 + T
if Too — To1 > T, and

[077—2 - 7—21]7 Ty € (7’21,7‘23},

p] S (7’-22,7‘21 +T],

[T2 = 799, T}, T2 € (o1 + T, 722 + T
it 799 — 79 < T

L*(D): the Banach space of integrable functions on D, where D is an open set
(non necessarily bounded);

C(D): a class of bounded continuous functions in D;

CH(D): a class of continuously differentiable functions in D with bounded partial
derivatives.

For more details concerning population densities and vital rates we refer the reader
to (Skakauskas, 1994; 1996).
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3. Spatially Homogeneous Model

The model we consider in this section can be derived from the general one in (Skakau-
skas, 1994) by neglecting the sterility periods after abortion and delivery. It consists

of the following system of nonlinear integrodifferential equations for w1, us, ua:

3

D1u1 = =1 Ul in Ql,
Douy = —vous — X+ Xp + X, in Qs,

Dyuz = —(v3 + x)uz in Qs,

{

07 T2 ¢U‘2(0)1
X, =
/“’3lr3:o dry, 72 € 02(0),
\ ‘;'1
(o0, s & 02(T),

X, = "
/u3l1'3=T dTl, Ty € UQ(T)’

( 0, T2 go'a;
X, =
¢ dTS /XUs dTla Ty € Oq,
\ Q(Tz) g1
n = /U1d71+/U2d7'2+/dT3 / dTg/'U,ngl,
1 T a3 o2(r3) a1

supplemented with the conditions
upl_y =ul, k=12 in I,

’I.Lgtt:() = Ug in o1 X 0'2(’7'3) X o3,

uk|7_k:0: / dTg/b[,,Unga:TdTl, k=12 in I,
a’z(T) g1

“3!73:0 :puluz// ur(t,8)dé in I X a1 x02(0),
g1

[wa],_,] =0, s=1,234 i I,

n(t) =w(t), te[-T,0],

(1a)
(1b)

(1c)

(1d)

(1e)

(2e)
(2f)



49 7 V. Skakauskas

and describes evolution of the population without spatial dispersal. In addition to (2)
we assume that the initial distributions w9, u3, u satisfy the following compatibility
conditions:

Rl o = / dr / bil_gus|, _pdm, k=1, (3a)
o2(T) o1
[, ] =0, i=1234 (3b)
'u’g‘m:o :p[tzou?ug/ /u? dry in o7 x 02(0). (3c)
a1

As follows from the foregoing, given functions 11, va, v3, p, X, by, by, u?, ud,
w and the unknown ones uy, uz, uz must be positive-valued, otherwise they have
no biological significance.

As in (Skakauskas, 1998; Svirezhev and Passekov, 1990), for the mating law,
on the right-hand side of (2d) we use a simplified harmonic mean type function.
According to Svirezhev and Passekov (1990) this simplified mating law means some
degree of poligamy. The use of the harmonic mean type function

Puyuz
/u1 dr + / Uy dmy
o1 02'(0)

leads to a much more stronger nonlinearity in model (1)-(3), and we do not consider
it in this paper.

We limit ourselves to the case

vi(t,m,n(t)) = bi(t, ) + v(t,n@), i=1,2, (4a)
vs(t, 1,72, T3, 1(t)) = 3(t, 71, 79, T3) + v(t,n(t)), (4b)
p(t,'rl,rg,n(t)) =p(t, 71, 72), (4c)
x(t, 71,72, 73, n(t)) = X(t, 71,7, 73), (4d)
bi(t, 71, m0,n(t = T)) = bilt,71,m), i=12. (4e)

Observe that, because of the constraint (4e), there is no need to formulate the condi-
tion n(t) = w(t) for ¢ € [-T,0] in this case. We also assume the multiple deliveries
including overlapping between successive generations, i.e. 7oy =791 > T, 72 = 71 + 7,
T8 = T35. All the results obtained in this paper can be easily modified and applied
for the opposite case, too.
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3.1. Solvability of Model (1)—(4) in Case v(f,n)=0

In this subsection, we establish the existence and uniqueness of a solution to (1)—(4)
in the case where v(t,n) =0 and obtain its upper estimate.

We first examine solvability of model (1)-(4). To do this, we rewrite it in the

integral form as follows:

up =

I

4 T1

ul*(ﬁ——t;ﬁ)d_:e_fu?(ﬁ—t)exp —/171(§+t—71,§)d§ , t<mn, (5a)

T1-t
1
def -~
ui{t — 11571) = uy (t — 71, 0) exp —/1/1(§+t—7'1,§)d§ , t>m7, (5b)
\ 0
( def
ug«(T3 — £, T1, T2 — T3; T3) = ud(ry, 72 —t, 73 — t)
T3
X exp{ — U3 + j d¢ » , t < 73, 6a
P / ( X) (E+t—73,71,6+72—73,) ¢ i ( )

def
u3(t — 73, 71,72 — T3;73) = //u1d§

73

X exp /(173 +X)l

\ 0

(f 73,T1,7T2— T_;)

t>T 6b
(E+t—73,71,6+72—73,€) ’ = ( )

Uge (T2 — t;T2) = ug( Ty — t) exp / (D2 + vag)

exp { (2 + vac)

d
(E+t—72,8) ¢

d
(E+t—72,8) ¢

X(Yb+X) (x+t— -m'L) tSTg—T%, T € I, i:j’ (7‘)‘)
« def . : i ~
us(t — 712;7) = uo(7é +1t — 79,74 €xp */(1/2 + v3c) d¢
. (E+t—72,8)
3
T2 T2
+ /exp -/ iy + v d
J { v 2) (§+t—72.8) 6}

i
T z

X(Xb+'Xa)|(z+t—r2,:c) dz, t>7‘g—7’-§’, T € I, Zzo_,z (7b)
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with [us(t,7)] =0, i =1,2,3,4,

u;(t,0) = dre [ bjug|r=rdn, i=1,2,
3
o2(T) o1

0 T2 gO‘Z(O)a

9 (t,T2) = ' )
vac(t, ) / puy ¢ / /uldﬁ, 73 € 05(0).
a1 71

Then we insert (6) into (2¢) and (1e), (1f) to obtain

/ dry / brUss|ry=1 T2, 0<t<T,
o1 o2(T)
ur(t,0) =
/ ug(t — T, 715 — T)F(bk)LS:T dry, t>T,
oa(T)
( /ug*lTa:T dry, 0<t<T, m€os(T),
Xo =14 o1
uy(t =T, 79 — T)F(1)|73:T’ t>T, Ty € o9(T'),
4 t‘
/ uz(t — 73,72 — 73)F(x) d73
0
P .
X, = + / de/Xus,*dTl, 0<t<1m—T91, ™ €I,
t o1
ra—To1
ur(t = 73,72 — 1) F(x)dr3, t>m -7, TE€I,
\ 0
( t
/uz(t — 73,73 — 73)F(x) dr3
0 T
X, = +/d73/xu3*dn, 0<t<T, me€l,
t o
T
/’LLg(f—Tg,TQ—Tg)F(X)dT3, t>T, Ty € Iy,
0

(10a)

(10Db)

(11a)

(11b)

(13)
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FoT
/ drs / Xuss d, 0<t<m—T70, 7€l (l4a)
o

T2—T22
L

/ us(t — 73, 72 — 73)F(x) d73

X,=¢ 7 r
+ / drs /Xu-a* dry, Ty — Ty <t<T, T€l3, (14b)
t o1
T
/ uz(t — 713,72 — 73) F(X) dT3, t>T, T € I3,  (14c)
\ rg—722
where

F(f)(t,12,73) = / 7,72, m3)ur (b — 73, 71)p(t — 73,71, T2 — T3)
o1

T3

X exp{——/(f/g +X)

0

(E4+t—Ta,m1.E472=75,) df} dn // uy (t — 73, 71) d71,
a1

and k = 1,2. We also add to this system equation (1g). Equations (10) and (11)
include the delayed argument ¢ — 7. This allows us to examine problem (5)~(15)
going along the axis ¢ by the step of size T'.

Let t € (0,7). Equations (10a) and (1la) show that wy(f,0), u2(t,0), and
X,(t, ) are determined by us. (see (6a)) and are consequently known. Then, by (5),
we find wy, and after that, by (9), we construct vs.. The right-hand side of (7)
for ™ € I is now known while, for 75 € Iy, it includes wy(¢,74), which should
be found by solving (7) for 75 € I3. Equations (12)—(14) show that X,(u3) involves
uz(t—T3, 7o —73) with t —73 <t, m—713 <7 for m € LUl and t—73 <t—my+73,
Ty — 73 < 73 for 7 € I5. Hence X,(u3) includes ua(t,72), and (7), with 7» € L UL
and us(t,73) being determined, is a linear integral equation of Volterra type for us.
The right-hand side of (7) (and therefore u,) for 7 € I3 is known whenever u, for
ro € I, is known. Under appropriate restrictions on 1y, va, vs, b1, ba, p, X, u?,
u3, ud (e.g., n, va, v, ul, ud, ud are nonnegative and continuous, and by, bs,
p, x are nonnegative, continuous, and bounded) this integral equation has a unique
continuous solution. At last, using (6) with known u; and ug, we can construct us.

Notice that compatibility conditions (3) ensure the continuity of functions wu
and uy across the lines t =7 and t =7 — 7, i =0,1,2,3,4, respectively, and the
continuity of usz across the planes t=7 + 73, t=m — 173, 1 =0,1,2,3, t = 73.



46 V. Skakauskii

Let # € (T,2T]. Having obtained w; and uy for ¢t € [0,T7], by (10b) and (11b)
we construct uq(¢,0), uz(t,0) and X;(t,72), then by (5) and (9) we obtain u; and
vy, and, finally, solving (7) as above, we get uy for = € I.

Going along the t axis with the step of size T and using the previous arguments
we can construct a unique continuous solution to (5)—(16) for ¢ € I*. Finally, by (1g),
we determine the total population n.

Now we show that n € C*(I*). By (1g) and (5)—(7) it follows that

0 4 t—TlL

t 2
n = / ui(z;t —z)dz + / Ui (z;t + z) dz + Z / us(z;t — ) dz
0 0 k:OQTZk

T§+1—f,

3 oo

+ Z / uay (x5t + ) da + /lbg*(:lj;t + ) dx
Tk :

k=0 74

t
+/ dz dre [ wyi(z, m)us(z, m)alz, 7,7t — ) dny
0 a2 (0) a1

max(T—t,0)

+ dz dmy /'U/g*(l‘, T1,To; % + t) dry, (16)
0 2(0) o1
where
(t,71,72)
pt, 7,72 N
a’(t7 T1,T2; TS) = eXp - / (V3 + X)l(f+t,7’1,§+7‘g,§) d§

[utea !
g1

Again using (5)—(7) we observe that w1, u}, us., U3, us., uz and a are continuously
differentiable with respect to the last of their arguments. Hence Diuy, Dous, Dyus
by (1) are continuous in @1, Q2, @3, respectively, and, by (16), n € C1(I*), provided
that [~ ui.(z;t + 2)dz and f:; u2«(z;t + z) dz belong to C*(I*), too. Thus we
have proved the following result:

Theorem 1. Assume that:

(H1) Ds X» b1, ba, D1, Do, U3 are nonnegative;

(H2) peC(I" x 51 x 53(0)), 75 and x € C(I* x 6, x Fa(73) x 73),
v e C(I"xI), beCI*xa x5:(T)), i=1,2,

u3 € C(01 x 33(r3) x 73), wd e C(I)NLYI), i=1,2.

b
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Then in the case v(t,n) = 0 problem (1)-(4) has o unique nonnegative continuous
solution for t € I*. If, in addition, the integrals

o0 t+a
[ @i+ ven - [ - i=12

converge for any 7 >0 and all t € I*, then n € cH(I).

Now we want to obtain an upper estimate for u;, us, and fm wg d7y. To do this,
we substitute

u;),(t,Tg) = ?Lg(t—T_;,,O) Uz(t,Tg), t> 7 (17)

into (7b), (10b)—(14b) and, making the change of variable z = z — 73, we get

Us (o +1,72) = Us(74 + 1, 73) exp { - /(172 + '/ZC)‘H«:; 6 df}

T

+ /exp{ _ /'(172 + l/gc)\E_H],{) df}

&€r

X {F(l)(z+n,x,T) Un+z—-T,z-T)

+ / F(x)(z +n,z,x — z)Us(n + z,‘z) dz} dz,

()
t>’7‘2, T2 € Ii) '62071)2)3)4) (18)
{
/ dry /bvf,us* gt AT15 0<t<T, (19a)
a2(T) 71
/ Ug(f?—T,Tg —T) F(bi)ng—_-T d’Tg, TS t S 7‘3, (lgb)

a2(T)
t

,U:-,j(t, 0) = /"LLg(t — T2, O)Ug(t - T, Ty — T)F(bi)lm:T dTg

4

T2

+ / wy(t — T, 7 — T)F(b;)|

t

uz(t - T2, O)U(t - T, To — T)F(bz)I

dry, te(r3,74], (19)

T3=T

_pdm, t>78 (19d)

73

\72(T)
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where 7 =1,2, n =1t — 71, Us(t,0) =1, [Us(t,78)] =0, k =1,2,3,4, and

[7'21,2], (NS fl,
Q(QS) = [:E - Ta .'17], S ‘27 (20)
[.’L‘—T,ng], fEEjg.

Formula (17) reduces the problem of finding . (t,72) for ¢ > 75 to that of finding
Us(t,m2) with simplified conditions.

Now we analyze (18). We have

T2

Us(m2 + 1) = exp { - /’72(f+777§) df}, 75 € Iy,
0

Ua(rz +n) = U2(7§+77;T§)exp{— /772(§+77»§)d }, € Iy

e

Having obtained Us(r3 + 7,74), based on the right-hand side of the last equation
we can construct Us(¢,72) for m € I,. When Us(t,72) for 7 € I, is known, then
analogously to (7), we can show that so is the right-hand side of (18) for ™ € Is.
‘Thus it remains to solve (18) for 7 € I; U I,. Since

/ FO)(@ +1,2,0 — 2)Us(n + 2, 2) dz
m'—T

a
= / F(X)(l+77:T7’E—Z)U2(77+272)d3
T21+LT

7‘21+kT

+ f F(x)(x +n,2,2 — 2)Us(n + z,2) dz
z—T

for z € (ry + kT, min(7§, 73 + (k+ 1)T)], k=1,2,...,s, where s is the integer part
of (13 —73)/T, eqn. (18) for 7 € I, U T, represents a system of successively and
globally solvable Volterra-type integral equations for U,, provided that uy is known
and all the conditions of Theorem 1 with I* replaced by I hold. Hence Us(t,72) is
a nonnegative, bounded and continuous function on I x 1. Moreover, Uy < U3, Us
being a unique solution to (18) with F(f)(t,7,73) and s, replaced by

Fr(f*)(t, 2, 73) = f*(t,72,73) p*(t — 73,72 — 3)

T3
X exp { - /(7/3* + X*) (§+t—73,6472—73,8) df}’

0



Solvability and asymptotic behavior of a population problem . .. 49

and
Oa T2 g 02(0)7

p*(t7 T‘l), T2 € 02(0):

V2¢ex =

respectively, where f* =1, x* and

p*(t,72) = sup p,  p«(t,2) = inf p,

1 EFL T1E01

V3 (t, 72, 73) = T;Hégl i3, X« (t, 72, 73) = Tilleltf_n X

Letting
b = sup / Us(t =T, — T)F(b;)(t, 72, T)dre, u" = sup ux(t,0)
I te[0,74]
dz(T)
and using (19d) we conclude that
uj(t,0) < bPu* for te (kra,(k+1)r3], k=12,..., j=12 (21)

or, more roughly, u; < u*bt/m2 , 7 =1,2. Clearly, b < b*, where
b* = sup Us(t — T2 — T)F*(b3)(t, 72, T) drs

& o2(T)

with b} (f,72) = sup,, ¢z, ;.

Now from (5b) and (17), by (21), the estimates

71
w < bt exp { - / nE+t—m,8 dﬁ}, t—1 € (lm’é‘,(k-# 1)75‘],
0
us < BwrUL(t, 1),  t—-me (krd,(k+1)7d], k=12, .. (22)

immediately follow, while (6b) shows that

/ usdm < us(t — 73,70 — 73)p*(t — T3, T2 — T3)

a1

T3
* exp { B /(’/3* + X*)|(£+t—r3,£+tfrs,£) df'}

0
for t > 3.
Thus we have the following assertion.

Theorem 2. Under (H1) and (H2) of Theorem 1 the estimates (21) and (22) hold.
Corollary 1. If b < 1, then the population dies.

Remark 1. Theorems 1 and 2 remain true if we let b;, ¢ = 1,2 in (4) depend on
n(t —T') and be uniformly bounded. '
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3.2. Product Solutions to Model (1)—(4) with v(¢,n)=0

In this subsection, we deal with the situation of stationary vital functions 7, Us,
V3, X, P, b1, by and special initial distributions w9, w9, ud, and construct the
corresponding solution.

Substituting
n =n® exp{t}, u; = uf exp{At}, 1=1,2,3 (23)
into (1)-(4) with given n° and A being a constant gives the following system:
dul/dm = —(X + iy )uf,
du/dm = ~(\+ pa)uf — X, (w], o) + X (3], _p) + Xa(ud),  (20)
Dgug = —(A + U3 + X)Ug,
subject to
ug(0) = / dry /bkug]T3:T dr, [ud(r3)] =0,

oo (T) o1

i=1,2,3,4, k=12,

], =8 [ [ubi)dc

noz/u(l’d71+/ugd7-2+/d73 / d’rg/ugdﬁ,
T T { :

o3 o2(73) Ty

where 271/2Dj is the directional derivative in the positive direction of characteristics
of the operator 9/87; + 9/973.

Letting
7, 7y € C(I), xand iy € C(G1 x 52(73) X 53), pe€ C(5:(0)),
by and by € C (a7 x 7,(T)), (25)
it is easy to verify that (24) has the following solution:
u = cnenfin(m),  ud = confor(m),
ud = corfor(m2 — 73) fax (71, 72 — 73,T3) exp{—A73},

where

T1

fix= eXP{ — AT — /171(5) df}: fox(r2) = foa(r2) exp{-An},

0
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far(ri, 72 —73,73) = (fl,\(ﬁ)/ / f1x(6) df)P(Tl,Tz — 73)

T3
X exp { - /(’73 + X)l(r1,E+T2~T3,5) df},
0

Cia = / drs /blfg,\(’l’g —T)far(r, 72 = T, T)exp{—Am}dm,

(rg(T) a1

Cox = no{q,\/ firdrm + / fz,\d7'2+/ drs
T T ;

a3

—1
X/ dT‘Z/JF‘ZA(TZ_TB)f3A(TI;TZ_7'3,7'3)63{13{_/\7"2}(317'1} ;

0'2(T3> a1

A is a real root of the characteristic equation

a0y / dr, / bafor(7s = T) for(ri, 72 — T, T)

a'g'(T) a1

LN

x exp{—Ar}dm, Q) =1,

(26)

such that [,ud(¢)dé < oo, i = 1,2, fax is a solution of the integro-differential

equation
~ . 0, T & o2(T),
dfg,\/dTg + (172 + l/g)\)fg,\ = _
A)‘(Tg—-t,T)fz)\(Tg—T), D ECTZ(T)
0, T2 g Oa,
+ -
Bx(72,73)for(12 — 13)dT3, TR E 0,

Q(r2)
with

far(0) =1, [f-n(rg')] =0, i=1,23,4,

Ax(r —3,7m3) = /fs,\(ThTz — 73,73) d7p,

g1

B)\(7-217-3) = /X(TI)TZ)T3)féX(T13TZ _+37T3) dTlv

g1

(27)
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0, T2 ¢0’2(0),

vaa(72) = /prA(T1)dTl//.flk(Tl)dTl’ 72 € 02(0).

a1 o1

From (27), for 7 € Iy U I, we have
T2

szZeXp{—/ﬁQ(f)df}a szZfzx(T:?)eXP{—/ﬂz(ﬁ)dcf},

0 73
whereas, for 7, € I; U I, U I3, unique solvability of this equation can be established
analogously to that of (18).

Functions

T T

foa(r2 = T), exp { - /771(5) df} and eXP{ - /(’73 +X)l(1-1,§+1-2—T,§) d‘f}
0 0

mean the probability for the female to survive till the age 7 — T, probability for
the male to survive till the age 71, and probability for the embryo to survive till the
age T', provided that his mother has been fertilized at age 7 — T by his father at
age T1, respectively.

In the general case, the distribution of roots of (26) is an open problem., but we
look for a real root and, in the case where p, bs, 713, x are 7-independent, we have

0, Ty &€ 02(0),
p(TQ)) T2 € 02(0)7

Va\ = Ve =

73

A(TQ - 7-3)7—3) = p(Tz - TS)exp{ - /(173 + X>!(E+T2—T3,§) dé}/ (28)
0

Ax(ra =T,T) = A(r2 = T, T),  Bx(12,73) = X(72,73) A(r2 — 73, 73).

def
Hence f(m3) = fox(rs) does not depend on A and represents a unique solution to
the following equation:

0, ™ & 02(T),

A(Tg — T,T)f(’rg - T), Ty € O'g(T)

df/dry + (Dg + vae) f =

0, Ty & 0g,

* / X(12, 7 —2)A(z, 72 — z) f(z)dz, ™ €0, (29)

Q(Tg)
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with f(0) =1, [f(r$)] =0, k=1,2,3,4 and Q(r) defined by (20). Thus (26) may
be written in the form

(=9
-

€

Qbs, £, AN = / bof(mo — T)A(re — T,T) exp{—Ar2} d7a,
ao(T)

Q(b2, f, A)(N) L. (30)

As is well known, the roots A\ = ap + B, @ = /=1 of (30) are such that
Bo = 0, signog = sign(Q(by, f,A) — 1), ar < ap for k = 1,2,..., provided that
bof(ra — T)A(ms — T) € L*(02(T)). Clearly, A¢ is a simple root.

Now we turn to the problem of the existence of real roots of (26) in the general
case. Assume that

p*('rg)z inf D, bg*(’rg): inf Z)g, I/3*(T2,T3)= inf 173, X*(Tg,Tg): inf X
T1E01 T1E01 T1E01 T1€01

p*(m2) = sup p, b3(m2) = sup ba, wi(me,73) = sup Pz, Xx"(72,73)= sup x,
T1€E01 T1€E01 T1€E01 T1€01
T3

Au(Tg — 73,73) = pue(T2 — 73) €XP { - /(Vg +x*)

0

(e+rars) & }

3

A*(TZ ——T377_3) :p*(’]—z —7'3) exp{ _ /(VS* +X*)
0

(§+12—73) df} ’

Vaex (7'2) =

0, 7 ¢02(0),

{ p«(12), T2 € 02(0),
and let f. and f* obey the following equations:

0, 72 & 0a(T),

A(ra =T, T)fu(r2 = T), 72 € 02(T)

0, Ty € 04,

dfe/dra + (72 + v3,) fe = {

+ / X«(T2, T2 — L) As(z, 72 — T) fu () dz, T2 €0, (31)
Q(r2)
with f.(0) =1, [f.(8)] =0, i =1,2,3,4, and
0, m & 02(T),

df*/de -+ (~2 +I/2c*)f* = {
A =T, T)f* (e = T), 7 €o2o(T)
0, T2 ¢Ua,,

’ / X'(12,72 — &) A%z, 7 — 2) f*(x) dw, T Eo, (52
Q(72)
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with f*(0) = 1, [f*(73)] =0, i =1,2,3,4. Then, by using (27), (31) and (32), it is
easy to prove that f, < f < f* for all 7. Hence

Qbas, fr, A) =1 < Q(N) — 1 < Q(b5, F*, A*) — 1. (33)

As by, b3, Ai, A* and f., f* are continuous and bounded, both the sides of (33)
have unique real roots A, and A*, respectively. Thus (26) has a real root X ¢
(As;A%). Let A" = max; A} for the case of some real roots of (26) and let us denote
by Ao the values of Ap (the real root of (30)) and A" though they may be different.
Now we are in a position to state the following assertion.

Theorem 3. Gien n® > 0 and nonnegative nontrivial functions P, X, b1, ba, By,
iy, D3 satisfying all the conditions (25), if [ ° exp{—zXo — [rvi(©)deyd, i=1,2
with Ao a root of (26) converges for any T > 0, then problem (1)-(4) admits a
separable solution (28), unique at least when p, x, by and 3 are T -independent.

3.3. Asymptotic Behavior of the General Solution to Model (1)—(4) ‘with
v(t,n)=0

In this subsection, we shall establish the longtime behavior of the general solution
to system (1)-(4) with stationary vital rates iy, in, o3, p, X, by, bo for the case
where v(t,n) = 0 and p, x, 73, by, by do not depend on the age 7, of a mated
male. Under these restrictions function (15) at 73 = T becomes F(b;)(73,T) =
A(72,T)bi(12), A(72,T) being defined by (28). In the case under consideration, all
the coefficients in (18) and the condition for Us at 75 = 0 do not depend on #. Hence
Us(t,m2) = f(72) with f defined by (29).

Now, by virtue of the estimate (21) we may apply the Laplace transform to (19)
to obtain

2

T

u2(A,0) = / exp{—At} dt / ba(2) dmy / ug(t, 11,72, T)dry
0 O‘QI(T) 0"1
. ¢
+ /exp{—)\t} dt { / Ug(t — '7'2,0).}1:(7'2 - T)F(bz)(’l’g, T) dT‘_){
2 2

4
T3

+ /Uz(t—'T,TQ—T)F(bZ)(TJ:T) dTZ}

i
+ / exp{—At} dt / ws(t = 73,0) F(72 = TVE(by) (s, T) dry
Té U‘Q(T)
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ot
at

or Gis(A,0) = %(A) + Ta(), 0)Q(bs, £, A)(N) with @ defined by (30) and

= /exp{ At}dt / ba(72) A7 /ug(f 71,72, T)dm

0 a2(T) a1
& 4
T2 T2
+ / exp{—At} dt/ us(t — T, 72 — T)F(b2) (72, T) ds.
72 t

Hence

(X, 0) = Pp(\)/ (1 = Q(ba, f, A)).

We can now find the inverse Laplace transform of this equation. Noting that ¢()) is

an analytic function of A and applying the method of the rectangular contour integral
(Bellman and Cooke, 1963) we have

(31 (t> O) ~ CixgC2)g @XP{”\O};

us(t,0) ~ caxg exp{tho},  car, = =¢(%0)/(dQ/dN)|x=no)

where )¢ is a real root of (30). This together with (17), (5b), (6b), and (1g) lead to
the following longtime (¢t > max(r, 72)) asymptotic formulas:

T
def ~
uy (t, 1) ~ uf® = C17oC22g EXP {/\o(tf ) — /1/1(5)(15},
0
as def
uz(t, 7o) ~ ud’® = caxe f(m2) exp {Xo(t — ™)},

lef ,
ug(t, 11,72, 73) ~ Ul = cang F(To — 73) Faro (71, T2 — 73, 73) exp { Ao (t — 72) },

n o~ S /u1 dT1+/u) d’To+/d7'3 / dTo/ 3 dm (34)

o2(73)

with

CIAO = / bl T) Tr) — T)A(Tg — T,T) exp{—/\m'g} dTg,

O’z(T

faxn, and A being defined in Subsection 3.2. Clearly, n® existsif 7; and 7, satisfy

additional restrictions. It is also evident that population dies if A9 < 0, and grows if
Ao >0, a3 t = .
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We have proved the following result:

Theorem 4. Let oy, i, 73, p, X, b1, b2 be nonnegative and the latter five do not
depend-on 1. If

pE 0(52(0)), vy and Y € 0(52(73) ><63),
ViEC(j), biEC(a'g(T)), 1=1,2,
0 S = = 0 7 1 _
ug € C(5) X G2(73) x &3), ) € C(I)NLYI), i=1,2,

and Ao is a real root of (30) such that the integrals

fexp{ ~ Aoz - / 7(8) d&}dﬂa P=he

converge for any T > 0, then (24) ezhibit the longtime (t > max(ry, 7)) behavior of
the general solution to problem (1)-(4) with v(t,n) = 0.

3.4. Model (1)-(4) with v(t,n)#0

In this subsection, we consider model (1)-(4) with v(t,n) > 0, show how it can be
reduced to that with v(t,n) = 0 and an additional equation for 1, and in the special
case of vital rates establish its asymptotic behavior.

Substitution of

(w1 = f(O)UL(E,7), (35a)
uz = f(t)Ua(t, 2), (35b)
< ug = f(O)Us(t, 71,72, 73), (35¢)
n= f(t)N(t), (350)
( f(0) =1, (35¢)

into (1)-(4) gives problem (1)-(4) with v(t,n) = 0 and wu;, us, us, n replaced by
Uy, Ui, Us, N, respectively, and the equation

f'=-v(t,fN))f, f(0)=1, (36)

where the prime denotes differentiation. The problem for Uy, U,, Us and N has
been analyzed in Section 3. Hence Uy, Us, Us; and N are known. If N € c(),
v(t,n) € C(I x I) and is positive and Lipschitz continuous w.r.t. n, then (36) has a
unique solution in C*(I*)N C(I*). Furthermore, n < N because f <1

We see that the age distribution is governed by Ui, Us, Us and does not depend
on the effects of changes in the environmental factors described by function v(t, n(t)).
The age evolution, however, influences the behavior of the total population n via the
function NV in (35d) and (36).
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We conclude this subsection with the following result, for the model under con-
sideration, analogous to that of Langlais and Milner (1990) for Kostova and Milner’s
model (Kostova and Milner, 1995). To do this, let u = (u1,us,u3), U = (Ur,Us, Us),
U» = (Ud,U2,U%) and consider the stationary case of oy, s, 73, p, X, b1, b,
v(n). Then the following theorem can be proved.

Theorem 5. Let all the conditions of Theorem 4 hold and assume v > 0. Then:
(0) limyyoot = 0 if Ay < w(n) for all n € (0,n°%;
(b) limyyeou =00 if Ag >0 and Ao > v(n) for all n € [n?, 00);

(c) lim¢yoo t = limyyoo U, /N2, 0 < n, < 00 if either Ao > 0 and Ao = v(n,),
V'(ne) >0, or Ao =0 and v(ny) =0, v'(n.) > 0, where the prime denotes
differentiation, and U, N?® are represented by (34) with v®, n® replaced
by U, N respectively.

The proof is based on the analysis of the longtime behavior of the solution to (36).
The condition »'(n.) > 0 ensures the stability of equilibria ..

4. Case of a Separable Solution to a Spatially
Inhomogeneous Model

In this section, we deal with a model analogous to that in Section 3, but for the
population with spatial dispersal (random as well as directed (Gurtin and MacCamy,
1977)) in the whole space and examine its separable solution. This model is a direct
generalization of that in (Skakauskas, 1998) to the case where abortions may occur
for the fertilized female and consists of the system of nonlinear integro-differential
equations for wuy, uy, us,

Diuy = —1yuy + div(m/,,Vul + mdin) in E™ x @1,

Dousy = —pus — X, + Xp + Xo + diV(KgTV’U;g + K]gd'f.l,gvn) in E™ x Q»,

Dsug = — (w3 + x)us + CﬁV(.‘igrvU3 + figdin) in E™ x Q3, (37)
0, m & 02(0),
X, =
/US}TB:O d717 ™ € 0'2(0),
71
0) T2 g O'Q(T),
X = /u3|T3=T dn, m€ UQ(T),
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0, T2 € Oq,
Ko = drs / xuzdrm, T € 0g,,
Q{Tz) o1
n = /'u,l dr + /uz drmy + / drs / dry / ugz dry,
T T o3 3(73) o1

supplemented with the conditions
UI.:I'[.:O = U%, k= 172 in E™ x I,

Uglt=o = ’u,g in E™ X 01 X 02(13) X 03,

ulITL_O = / lTw/ka3!T3 T dTl7 ]< = ]. 2 11’1 Em I

a2(T") o1

U3 rg=0 :pulug/ / u(t,§)dé in E™ x I x o1 X 02(0),

[wal,_,] =0, s=1234 in B"x1,
n(r,t) = w(z,t) in E™ x [-T,0]. (38)

In addition to (38), we assume that the initial distributions satisfy the following
compatibility conditions:

n—o / dT)/b;lt 0“3’7 _pdn, k=12

o2(T) 5}

[ug|1'2=-r‘::| = 07 1=1, 2,3,4 in Em;
uglr;g:o = p‘t:g“ﬁ)ug/ / u{dr in E™ x 0y X 05(0). (39)

Further, we restrict our attention to the situation where vital functions p, x, by,
ba, v1, 2, v3 and initial distributions 9, u3, u$ can be written as follows:

vi(z,t,mi,n(z, 1)) = #(t, ) + v(z,t,n(z,t)), i=12, (40a)
V3 (:E, t, T, T2, T3, n{z, t)) =w3(t, 71,72, 73) + 1/(.7:, t,n(z, t)), (40Db)
p(z,t,71,72,n(z,1)) = p(t, 71, 7), (40c¢)
X(a:, t, T, T2, T3,n(%, 1‘)) = x(t, 71,72, T3), (404)

bi (=, ¢, 7,70, n(t = T)) = b;(t,71,7), i=12, (40e)
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wir = ke (2,t,0(2,1)),  Kid = Ka (z,t,n(z,1)), i=1,2,3, (401f)
ud(z, 71,1, 73) = US (1, 72, 73) f0z), uf(z,m) =UP(m)f0(x), i=1,2. (40g)

The sixth of these conditions allows all the subclasses of the population to evolve with
the same random and directed diffusion moduli while the other ones are analogous to
that in model (1)—(4), but depend on an individual’s location.

As in Section 3, because of the restrictions (40e), the condition on n for ¢ €
[-T,0] must be dropped. Conditions (40) allow us to find the solution to (37)-(40)
of the form

n(z,t) = N(t)f(z,t), wus(z,t,71,7,73) =Us(t, 71,72, 73)f(2,t), (41a)
ui(z,t,m) = Us(t, 7o) fz, 1), 1=1,2. (41b)

Inserting (41) into (37)—(40) we find that Uy, Us, Us and N satisfy (1)—(4)
which we have analyzed in Section 3 and [ satisfy the following differential equation:

af/af - ~]/(g;,t7f]\7) f+ diV(ET($7t:fN) + H,d(ZB,T,,f.N-) f)vf‘
f(z,0) = fO(x) (42)

with N known. Obviously, (42) is a direct generalization of (39) for the population
with diffusion.

Observe that if we let problem (42) have a unique bounded -classical
solution f(z,t) such that coefficients v(z,t,N(t)f(z,t)), &(z,t,N(t) f(z,1)),
kalz,t, N(t)f(z,t)) are sufficiently smooth, then, by the comparison principle, f <
sup, fO(z) aslong as f exists. Hence n < N(t)sup, f°(z).

Equation (42) has extensive literature (Gurtn and MacCamy, 1982), and all the
results appropriate to (42) (e.g., the existence of traveling waves or the existence and
localization of a weal solution in special cases), apply to the system (37)-(40), too.

5. Discussion

In this paper, we consider the population whose subclasses death rates can be de-
composed by (4) (or (40) for the dispersing population) into the sum of two terms.
The first represents death rates by natural causes and by thoses which do not depend
on the population size (e.g., environmental pollution by a human activity) while the
other one, being the same for all the subclasses, describes the environment influence
depending on the population size (e.g., the effect of limited trophic resources). An
analogous decomposition of the death rate with the first term depending only on the
age was used by Busenberg and Tannelli (1985) and Langlais and Milner (1994) for
the Gurtin-MacCamy and Kostova-Milner models, respectively.

Biologically, it is evident that the number of newborns produced by a female at
moment ¢ should depend on the population state at the fertilization moment, but
there is no dependence on that at the moment of delivery. Thus in the case of a limited
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population in (1)—(4) (or (37)—(40)) the numbers of offspring #; and b, involve the
total population n(t —T) (or n(z,t — T) for the dispersing population).

Model (1)-(4) of the nondispersing population is nonlinear, but in the case of
a nonlimited population (¥ = 0), due to the delay of size T, it can be reduced to
a system of linear equations for ¢t € (kT, (k+1)T], k =1,2,.... They are of Volterra’s
type, while the right-hand side of (18) is a known function if abortions cannot occur.
The same assertion holds true for the equations describing the age distributions Uy,
Uz, Us in the separable solution of the miscarrying population both with and without,
spatial dispersal.

The age distribution in the separable solution of the limited population models
with as well as without spatial dispersal is governed by U;, Us, Us; and does not
depend on the effects of changes in the environmental factors described by the function
v(t,n(t)). Moreover, for the dispersing population, it does not depend on spatial
dispersal. The age evolution, however, influences the behavior of the total population
n via the function N in (35d) and (36) (or (41a) and (42)).

In the general case of stationary functions by, b2, p, v3 and ¥, the characteristic
equation Q(A) =1, Q(\) being defined by (26), has a unique real root at least when
conditions of Theorem 3 hold and (,j(/\) is monotonous, and may admit some real
roots if @(A) oscillates. Thus there may exist some separable solutions to models (1)

(4) and (37)-(40). The distribution of roots in a general case is an open problem.

Only in the case where by, bs, p, v3 and x are stationary and 7i-independent
we were able to get the asymptotic behavior of uy, ws, u3. In this case one can see
that Ap is increased if in some age class bs(m) is increased.

The dispersing population model (37)-(40) admits a separable solution (41) only
it diffusion moduli are the same for all the subpopulations above.
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