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GLOBAL ASYMPTOTIC CONVERGENCE
RESULTS FOR MULTITYPE MODELS

Linpa RASS*, Joun RADCLIFFE*

This paper proves global asymptotic convergence in a multitype epidemic model
which encompasses both the S — I and S — I — S epidemics. Systems
are considered where the infection matrix may be reducible, and for which the
system may be closed or can be open with a stable population size. New global
asymptotic convergence results are obtained.
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1. Introduction

This paper considers multitype epidemics of both S — I and S -+ I — S type with
stable population size. This includes both closed systems and open systems in which
the birth and immigration rates into the system are balanced by the death rates from
the system.

The non-reducible model for a closed system in which infectious individuals in
each population can infect susceptible individuals in any population, possibly thro-
ugh a sequence of infections, has been considered by Hethcote and Thieme (1985) and
Lajmanovich and Yorke (1976). Denote the infection matrix by T' and its Perron-
Frobenius root by p(T'). The models they considered included a term for a return
to the susceptible state for all populations, so that I' has all finite entries. When
p(T') <1 there is only one equilibrium. This equilibrium corresponds to no infectious
individuals of any type. When p(I') > 1 there are two equilibria, one correspon-
ding to no infectious individuals, and the second to an endemic state with a positive
proportion of infectious individuals in each population. Hethcote and Thieme (1985)
examined the local asymptotic stability. They showed that the equilibrium corre-
sponding to no infection is locally asymptotically stable if p(I') < 1, otherwise it
is unstable. When p(I') > 1 the endemic equilibrium is locally asymptotically sta-
ble. Lajmanovich and Yorke (1976) considered the global asymptotic stability. When
p(T') <1 the unique equilibrium with no infection present was shown to be globally
asymptotically stable. When p(I') > 1 the equilibrium corresponding to the endemic
state is globally asymptotically stable provided the system starts with some infection
present.
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Subsequent work on multi-type models has also concentrated on the non-reducible
case and has used monotonicity and sublinearity methods based on those of Krasno-
sel’skii (1964). Aronsson and Melander (1980) looked at time periodic forcing; this
work being extended to arbitrary time-dependent forcing by Thieme (1988, Section 4).
A population with distributed infection risk is considered in Thieme (1985). Conver-
gence results for a chronological age structure are proved in Busenberg et al. (1991).
The use of Liapunov functions in multi-type models with many infection stages is
explored by Simon and Jacquez (1992).

In this paper we consider a multi-type system with stable population size when
the infection matrix is not restricted to be non-reducible. The models are discussed in
Sections 2 and 3. A fundamental theorem on the non-negative solutions of a system of
equations involving a convex function is stated in Section 4. This is used to determine
the equilibrium solutions for the reducible as well as the non-reducible case. The proof
of this theorem is given in Radcliffe and Rass (1984}, and is based on the methods of
Krasnosel’skii (1964).

Preliminary results are obtained in Sections 5 and 6 for general non-reducible
models in which additional terms are included. Section 5 discusses possible equilibria
and Section 6 derives global asymptotic convergence results. The additional terms
are needed to facilitate the proof in the reducible case. When these terms are zero,
the model encompasses both S — I and S — I — S epidemics in open and closed
systems.

These are then used in Section 7, Theorem 5, to establish the main result of this
paper, namely the global convergence for a general multitype S — I(— S) epidemic
when no non-reducibility constraints are placed on the infection matrix. This shows
that every solution of a multitype S — I(— S) model with stable population size
converges towards an equilibrium, even if the infection matrix is reducible.

Although we use what are essentially Liapunov functions in proofs of the con-
vergence results, proofs are accomplished using simple analysis without the need to
appeal to Liapunov theory.

2. The S—I—S Model

Consider n populations, each consisting of susceptible and infectious individuals. The
rate of infection of a susceptible individual in population ¢ by an infectious individual
in population j is A;;. Infectious individuals in population i return to the susceptible
state at rate f; > 0, i=1,...,n. Note that 8; >0, i =1,...,n, corresponds to the
S — I— § epidemic and 8, =0, i =1,...,n, corresponds to the S — I epidemic.

Denote by S;(t) and I;(¢) the numbers of susceptible and infectious individuals
in the i-th population at time ¢. Then the model is described by the following system
of equations:

ds('iit(t) == Z Aij Si(t) 15 (t) + BaLi(t),

Jj=1

dI(;Et) = ; /\ij Si(t)Ij (t) - ﬁiIi(t)a for i= 1’ EREEXLE (1)
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Let o; be the size of the i-th population. Thus o; = S;(t) + I;(¢). Equations (1) can
be re-written as

dri(t)

e

i)\ijjj(t)(ai‘[i@)) = B:I;(t), for i=1,...,n,
=1

where 0 < I;(t) < 0;. Denote by y;(t) the proportion of individuals in population 3
who are infectious at time ¢, i.e. y;(t) = I;(¢)/o;. Then we obtain the system of
equations

dy(t)
dié

= (1 - yi(t)) Zaj)\ijyj(t) - ﬁi’yi(t), for 9 = 1, ey N (2)

=1

3. The Open S—I1—S Model

In this section an open version of the S — I — S model of Section 2 is considered.
Individuals enter the population by birth and/or immigration and leave by death. The
equations for this model turn out to be identical to those of the S — I — S model
but with different parameters. Thus we can analyse both the models simultaneously.

Consider n populations, each consisting of susceptible and infectious individuals.
The parameters are specified as in Section 2, with the additional parameters v;, u;
and o; representing, for population i, the rate at which susceptibles are born, the
rate at which they immigrate into the population and the death rate. The extended
model is described by the following system of equations:

dsdi t(t) = v (Si(t) + L(t)) +wi — a; Si(t) + BiLi(t) — ; Xij Si(t)I; (1),
d{;(:t) = Z)‘ijsi(t)fj(t) — o Li(t) = B;L;(t), for i=1,...,n. (3)

=1

We consider the case when the size, o;, of the i-th population remains constant.
Thus o; = S;(t)+1;(t) and hence (v;0;+u;) = a;04. Note that the model of Section 2
i.e. a disease in a closed population with no births, deaths or immigration corresponds
to the special case v; = u; = a; = 0. Equations (3) can be re-written as

dL(t) <& o
(;t :Z/\ij[j(t)(o'i_fi(t))“ (Oii-l-,Bi)Ii(t), for i=1,...,n,

Jj=1
where 0 < I;(t) < 0;. Let u; = (o; + B;) and denote the proportion of individuals
in population i who are infectious at time ¢ by y;(t), i.e. y;(t) = I;(t)/o;. Then we
obtain the system of equations

d?(;ft) = (1-y(?)) ;Uinjyj(t) —piyi(t), for i=1,...,n. (4)
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In the closed system of Section 2 a; = 0, so that p; = f;, i =1,...,n. Thus (4)
describes both closed and open systems where u; = f; in a closed system and p; =
(a; + B;) in an open system. In general, u; = 0 for all 4 models the situation when
the duration of the epidemic is short relative to the life cycle of the individuals and no
return to the susceptible state is possible; otherwise positive values of the u; will be
required. Terms with some u;’s zero and some positive occur when the populations
under consideration have quite varied life cycle lengths.

4. The Non-Negative Solutions of a System of Non-Linear
Equations

The theorem stated in this section concerns the non-negative solutions to a system
of equations involving a convex function f(y). It is used to obtain the equilibrium
solutions and prove global stability. It is a simple generalisation of Theorem 1 in
Radcliffe and Rass (1984), which proves the result for a specific function f(y) =
—log(1 — y). The proof, however, only requires certain properties of —log(1 — y).
The proof therefore may be simply adapted for a general function f(y) satisfying
those properties, which are given in the statement of Theorem 1 below. The method
of proof is based on the monotone techniques of Krasnosel’skii (1964). Since the
adaptation is simple the results are merely stated. In this paper we use Theorem 1

with f(y) =y/(1-y).

We are concerned in this section with a non-reducible matrix. However, it is
necessary in Section 5 to partition the non-reducible infection matrix, which can
result in a reducible submatrix. Also in Section 8 a reducible infection matrix is used.
Theorem 1 therefore not only gives solutions when the matrix B is non-reducible, but
also gives solutions of a particular form in the reducible case. There are other solutions
possible when B is reducible which are irrelevant to the mathematical analysis of
this paper. These correspond to replacing appropriate positive vectors n,(B,a) in
Part 3 by vectors of zeros. The solutions specified in Part 3 of Theorem 1 are precisely
those required to give the limiting results in Part 4 of that Theorem.

Theorem 1. Let B = (8;;) be a non-negative n X n matriz and let a; > 0 for
oll i =1,...,n. Let f(y) be a function on [0,1) such that f(0) =0, f'(0) =1,
f"(y) >0 and limyy f(y) = oco.

Consider the possible solutions to the system of equations

Flws) = Bijys + as, (5)

i=1

for i=1,...,n, where 0 <y; < 1.



£
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The matriz B is written in normal form (Gantmacher, 1959, p.75) and the n-
dimensional vectors a and y, with {a}; = a; and {y}; = yi, are partitioned so that

B 0 ... 0 0 ... 0
0 Baa ... 0 0 o 0
B = 0 0 ... B, 0 .0 |
Bst11 Bsyio ... Bsyis Botist1 ... 0
By By ... Bg By ... By
a U1
as Yo
a= and y =
a, Yy

Here By is a non-reducible square matriz of order r; and a; and y, are r;-
dimensional vectors for 1+ = 1,...,9. In addition, if s < g, at least one
Bii,...,B; ;-1 is non-zero for each © such that s +1<i<g.

1. If a; £ 0 for all i = 1,...,s, then eqns. (5) have a unique solution y =
n(B,a) > 0.

2. When B is non-reducible (i.e. s=g=1) and a =0, then egns. (5) admit the
trivial solution y = 0. If p(B) > 1 there ezists a unique non-trivial solution
y =n(B,0) > 0. When p(B) <1 no non-trivial solution exists. In this case
we define n(B,0) =0.

3. When B is reducible with at least one a; = 0 for 1 = 1,...,s, there exists
a solution y to egns. (5) of a particular form. For each © = 1,...,s, this
form has y, >0 if p(By) > 1 and/or a; #0, and y; =0 otherwise. Then
successively (if s <g)fori=s+1,...,9, it has y;, >0 if p(By) > 1 and/or
Y i<i Bijy; +ai #0. Again y; =0 otherwise.

The solution is the unique solution of this form. We denote it by y =
n(B, a), and partition it so that

™ (B: CL)

5(B,a
nBay=| "

n,(B,a)
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The components of the solution are specified in terms of solutions based on o
non-reducible matriz as follows. For each i =1,...,s, n,(B,a) = n(By,a;).
Then, successively for each i = s+ 1,...,g9, n;(B,a) = n(By,b;), where
b, = Zj<i Bij'r/j(B,a) +a;.

Note that if a =0 and p(B) <1 only the trivial solution is possible. In this
case (B,0) =0.

4. In all cases, if b>a >0, then n(B,b) > n(B,a). Also, for any a >0,

limn(B,b) = n(B,a).
bla

5. Preliminary Results Concerning Equilibria

We consider the solution to a generalisation of eqns. (4) for a non-reducible system,
and then show convergence to a specified equilibrium for this system. The generali-
sation consists of the addition of terms a;, for i = 1,...,n, to the model. If we set
a; = 0 for all i, then we obtain the global result for the solution y;(t), for i =1,...,n,
to eqns. (4) for the non-reducible case.

The introduction of the additional terms has no biological interpretation. The
modification is merely a mathematical device which allows intermediate results to be
obtained. These are then utilised in Section 7 to enable us to obtain global convergence
results for reducible systems.

Define A to be the matrix with {A};; = o;\;; andlet {u}; = p; and {a}; = a;.
The matrix A is assumed to be non-reducible, i.e. for each 4, j there exists a sequence
i1,...,0 with 43 =1 and 4, = j such that X;;,,, #0 for s=1,...,r — 1L

Consider the system of equations

dy(;t( ) 1 — yz (ZUJ z]yg + (L—L) — szz(t), (6)

for i = 1,...,n, where @ > 0 and pu > 0. Take 0 < y;(0) < 1 for all ¢ so that
0<y(t)<1forall i and all t > 0.

The possible equilibrium solutions y;(t) = y; to eqns. (6) then satisfy the equ-
ations

n

(1-w) ( z 0jAijy; + ai> = piYi,
j=1

for ¢ =1,...,n. Define {y}; = y;. This may be then be rewritten as

diag(l — y)(Ay + a) = diag(p)y. (7)

A complete description of the possible equilibrium solutions y to eqn. (7) is
easily obtained from Theorem 1 and is given in Theorem 2.
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Theorem 2. The equilibrium y = 0 occurs precisely when a = 0. This is the only
possible equilibrium solution when a =0, p >0 and p((diag(p))~tA) < 1. In this
case we define (A, p,a) =0.

In all other cases there is a unique non-zero equilibrium y = ((A,p,a) > 0.
This is specified as follows:

1. When p >0 and either a #0 or p((diag(p))™1A) > 1, then
C(A, p,a) = n((diag(u))_lA, (diag(u))_la)-

2. When =0, then ((A,p,a) =1.

3. The remaining case corresponds to a partitioning of A, p, a and (A, u,a)
(by permutation of the indices) into

A Ap 1231 ay
A= , M= , a=
A2r Ag Ko asz
and
Cl (A) p’7 Cl,)
¢(A,pa) =
CZ(Aa”’, a‘)

where py =0 and py > 0. In this case ¢;(A,pu,a) =1 and
Co(Ap,a) = n((diag(uz))_lAzz, (diag(ss)) ™ (Aza1+ az))-

Proof. Clearly, when a =0, y =0 is a solution to (7). It is also easily seen that if
y; = 0 for some 4 then a; =0 and, from the non-reducibility of A, that y; =0 and
a; = 0 for all j. Hence y =0 is a solution if and only if @ = 0. Any solution with
y # 0 must have y > 0. The non-existence result follows as for case 1 below.

We now obtain the positive solution, and show uniqueness, for each of the three
specified cases:

1. Since p >0, eqn. (7) can be rewritten in the form

7
Yi gjAij a
fwy= %= vt 2
W=7 J;l pi
for © = 1,...,n. Since either a;/p; > 0 for some ¢ or p(B) > 1, where
B = (diag(p)) "t A, the result then follows immediately from Theorem 1, Part 1.

2. Since p =0, y >0 and A isnon-reducible it immediately follows that Ay > 0
so that the only solution to (7) is y = 1.
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3. Asfor Case 2, since A is non-reducible, any solution y > 0 to (7) has (A1, 9, +
A12y,) > 0. As p; =0 it then follows from eqns. (7) that y; = 1. Then v,
must satisfy the following equation:

(diag(1 — 1)) 'y, = (diag(p,)) ™ Assy, + (diag(s,)) " (Al +as), (8)
where A1 # 0 since A is non-reducible.

In Theorem 1, take f(y) = y/(1 —y), B = (diag(p,)) 1Az and a =
(diag(pt5)) " (A211 + @2). I B is non-reducible, since A is non-reducible and
a > As1 # 0 the result follows from Theorem 1, Part 1. When B is reducible
and written in normal form, the non-reducibility of A implies that the first s
components of a corresponding to that normal form are all non-zero. Hence
from Theorem 1, Part 3 there is a unique positive solution to (8) given by

Yy = n((diag(py)) " Az, (diag(p,)) 7 (A2l + a2)). W

6. The Global Asymptotic Stability of the Equilibria

In this section, we look at the global asymptotic stability of the equilibrium # =
C(A,p,a) when A is non-reducible. Define {y(t)}; = yi(t). We show that if y(0)
0, then y(t) tends to 7 as ¢ tends to infinity. Note that when @ =0, u > 0 and
p((diag(p))~tA) < 1, then the equilibrium 1 = 0, otherwise it is the unique positive
equilibrium. When p >0 define T' = (diag(u)) ™' A, so that {T'};; = oA /1.

Global Asymptotic Stability when a=0, >0 and p(I')<1. Let u be the
right eigenvector and v be the left eigenvector of I' corresponding to p(I'). When
p(T') <1 we present a proof of the global asymptotic stability based on the function
a(t) = max;(y;(t)/u;) where u; = {u};. A proof of this result using a different
Liapunov function V(t) = v'(diag(p))~'y(t) is given in Lajmanovich and Yorke
(1976).

Theorem 3. When a =0, u >0 and p(I') <1, y =0 s globally asymptotically
stable on [0, 1]™. '

Proof. Suppose that y;(t) > 0 for at least one i. Define a(t) = max;(y;(t)/u;). For
a given t, choose ¢ such that y;(¢)/u; = a(t). There may be more than one such i.
However, i can be choosen so that, for sufficiently small € > 0, a(s) = y;(s)/u; for
s € [t,t+¢]. Then y;(t) = w;a(t) and y;(¢) < uja(t) for j # 4. The function a(t) so
defined is a continuous function of ¢ with a right hand derivative given by

dia(t) _ dyi(t)

bodt dt

= i [(1 —uit) Y "’2"" y;(t) — yi(w}

= i {(1 —wia(t) Y "ji“ y; (1) uz'a(t)}
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< pi {0 —uia(t)a(t) 3 : uj — uz'a(t)]

_— [(1 — usa(t))a(t)p(T)u; — uia(t)]
= pia(t)u; [p(r)(1 — a(t)) - 1]

= —pia(t)u; [(1 —p(I)) + uia(t)p(I‘)].

Let @ = (1 — p(T))min;(p;) and 6 = p(T)min;(usp;). If p(') < 1 then
dya(t)/dt < —aa(t), where o > 0. If p(T) = 1 then dya(t)/dt < —0(a(t))?,
where 6 > 0. Thus a(t) is monotone decreasing and is bounded below by 0, and so
must tend to a limit. It is simple to show that this limit is 0.

Consider first the case where p(T') < 1. Let a(0) = ap and suppose that a(t) |
ap >0 as t = oo. Now dia(t)/dt < —aay/2 provided a(t) > a;1/2. Thus if
a(t) > a;/2 the graph of y = a(t) lies below the line y = agp — aait/2. It follows
that a(t) will decrease to a;/2 at least by time (2ap — a;)/aa;. This contradicts
the statement that a(t) | a; > 0. If p(T') = 1, a similar argument shows that a(t)
decreases to a; /2 before time (4ag—2a;)/6a?. Thus in both cases a(t) | 0 as t — oo
and the theorem is proved. u

Global Asymptotic Stability in All Other Cases. Now consider the rema-
ining cases when a # 0 and/or one of the following occurs; either p; = 0 for some ¢
or p >0 and p(I') > 1. Suppose that y;(0) > 0 for at least one 7. Then it can be
shown that y;(¢) > 0 forall i =1,...,n,and all ¢ > 0. This is then used to establish
global asymptotic stability. The following lemma is a first step in proving this result.
Write (") (¢) = d"y(t)/dt".

Lemma 1. If y(0) € [0,1]"\{0}, then 3T > 0 such that y;(t) >0, i =1,...,n for
t e (0,7].

Proof. Let S = {i|ly;(0) = 0} and S’ = {i|y;(0) > 0}. If i € S’ it follows by
continuity that 3 T3 > 0 such that y;(t) > 0 for t € [0, T;].

Now consider ¢ € S. Then y{"(0) = Y7 {A}ijy;(0) + ai. If a; > 0 or

if 35 € S such that {A};;5;(0) > 0, then ygl)(O) > 0. If so stop. Otherwise
differentiate the i-th equation of (6). Then

n

n
52(0) = > {AkisyV(0) = D ({82},9i(0) + {A}isay)-
j=1 =1
If either 3 j such that {A};; > 0 and a; > 0, or if 3 j € S such that

{A?};; > 0, then yz@) (0) > 0. If so stop. Otherwise differentiate the i-th equation
of (6) twice and continue. Since A is non-reducible, for any j € 8’ 3r <n -1
such that {A"};; > 0 and so the process must terminate after at most r steps. Thus
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for any ¢ € S there exists an s such that 1 < s < n —1 with ygm) (0) = 0 for

1<m<s and ygs) (0) > 0. Here s is the smallest positive integer such that either
{A*"a}; > 0 or {A®y(0)}; > 0. Hence, for each i € § 3T; > 0 such that y;(t) > 0
for t € (0,T;]. The theorem then follows by taking T = min; T;. []

Theorem 4. When a # 0 and/or one of the following occurs: either p; = 0 for
some i or >0 and p(T') > 1, then

1. y(t) >0 forall t>0 if y(0) € [0,1]*\{0}.

2. y=mn s globally asymptotically stable on [0,1]™\{0}.

Proof. Observe that here n = ((A,u,a) > 0. Let n; = {n};. Define b(t) =
min;(y;(t)/n:). For a given ¢, choose 4 such that y;(¢)/n; = b(t). There may be more
than one such i. However, i can be choosen so that, for sufficiently small ¢ > 0,
b(s) = (yi(s)/m) for s € [t,t + €. Then y;(t) = n;b(t) and y;(t) > n;b(t) for j # .
The function b(t) so defined is a continuous function of ¢ with a right hand derivative
given by

n,d+b(t) _ dui(®)
todt dt

]- - yz(t (ZU] 'LJy] + az) - ,u'iyi(t)

1 - 771 (Z z]yj (t + az) - .U'inib(t)

> (1= nib( (Zoa Aijn;b(t) + az> — pinib(t).

7j=1

Now consider the cases (i) p; =0 and (ii) u; > 0 separately.

(i) From the relation (1 — 77,)(2J 105Ai5m5 + ai) = pin; it follows that u; = 0
1mp11es that n; = 1. Thus if p; =0, necessarily b(t) = y;(t) < 1 and

d+;t(t) (1-on(t (z 05 Xi;1;0(t) + a;b(t ))
= b(t 1—-b(t (ia] ZJm-l—a,)
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(ii) If p; >0 and if b(t) <1, then

db(t
i +dt( ) 1 — n;b( (ZU‘J N + al> b(t) — pinib(t)

= pi [(1 —1:b(1))b(t) 7 Tm - mb(t)] ,

and so

d+b(t) 7
= z(l_m)b(t)(l—b(ﬂ)-

Thus in both case (i) and case (ii), if b(t) <1,

d+dt(t) > Ab(t)(1 = b(t)),

s > HiTi
where A = min (zrz{lilo (]Z o Xijn; + az)) ,‘mgxo 1 771)

From Lemma 1 y(t) > 0 and hence b(t) > 0 for ¢t € (0,7] for some T. Now
dub(t)/dt > 0 if 0 < b(t) < 1 and dyb(t)/dt > 0 if b(t) = 1. It follows that
b(t) > b(T) > 0 for ¢t > T and hence that y(t) > b(t)n > 0 for ¢t > 0. This proves
Part 1 of the theorem.

Let m(t) = min(b(¢),1). Then m(¢) is monotone non-decreasing and bounded
above by 1, and so must tend to a limit. We show that this limit is 1. If b(T) > 1 then
m(t) =1 for t > T and the limit is 1. Consider the case where 0 < b(T") = bp < 1.
Suppose m(t) T b <1 as t = co. Now

dem(t) _ dib(®)

dt dt
where 6 = Amin[bo(1 — bg),b1(1 — b1)]. So the the graph of y = m(t) lies above
the line y = by — A(t — T'). Thus m(t) will increase to (1 + b1)/2 at least by time
T + (14 by — 2by)/20. This contradicts the statement that m(t) +b; <1 as t — oco.
Thus m(t) 11 as t = oo.

Define c(t) = max;(y;(t)/m;). Then c(t) is a continuous function of t. We can
choose i so that, for sufficiently small € > 0, c(s) = (y;(s)/n;) for s € [t,t+¢]. Then
yi(t) = mic(t) and y;(t) < njc(t) for j #i.

We need to consider the cases (i) u; =0 and (ii) p; > 0 separately.

(i) If u; =0 then n; =1 and so c(t) = y;(t) <1 and the right hand derivative of
c(t) is given by

d+c( ) dyz(t)
i S Z"’ b5 (£) + o

In this case if ¢(t) > 1, then necessarily c(t) =1 and dic(t)/dt = 0.
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(i) When u; > 0 then, if ¢(t) > 1,

deelt) _ dpl0)
Ky at

= 1 - yz (Z agj /\L]yj + ai) - ,U‘iyi(t)jl

IN

(T = nac( (Z 5 Aijnsc( (t)ai> - umw(t)}

Wi [(1 — mic(t)) c(t) 1 Tm - ﬂic(t)]

(i} ' _
'mc(t) (c() = 1).

In both cases for ¢(t) > 1,

d+ C(t)
dt

< —c(t){c(t) - 1)B,

where B = min; _M_ﬂ?_z
T
From case (ii) it follows that dc(t)/dt < 0 if ¢(t) > 1 and from cases (i) and (ii)
it follows that dyc(t)/dt < 0 if ¢(t) = 1. Let M(¢) = max(c(t),1). Then M(t) is
monotone non-increasing and bounded below by 1, and so must tend to a limit. We
show that this limit is 1. If ¢(0) < 1 then M(0) = 1 and the limit is 1. Consider
the case where ¢(0) = ¢y > 1. Suppose M(¢) {c; > 1 as t = co. Now

d+M(t) _ d+C(t) < —a,
dit dt -~

where a = Bmin[co(cp — 1), ¢1(c; — 1)]. So the the graph of y = M(t) lies below the
line y = ¢p—at. Thus M (t) will decrease to (1+c¢1)/2 before time (2co—1—¢;)/2a.
This contradicts the statement that M (¢) { ¢; > 1. Thus M(¢) } 1 as ¢t — co.

Now for all 1,

m(t) <30 < 29 <o) < o,

Since m(t) — 1 and M(t) - 1 as ¢ — oo, it follows that y;(t) = 7; as t — oo
for i=1,...,n. ]
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The global asymptotic stability for models of epidemics of S — I and S — I —
S type in both open and closed systems, described by eqns. (4), can be immediately
obtained from Theorems 3 and 4 by setting @ = 0. It is assumed that A is non-
reducible. The result is given in the following Corollary.

Corollary 1. When p > 0 and p((diag(p))™*A) < 1, then y(t) - 0 as t =+ o0
regardless of the amount of initial infection present. The infection dies out in this
case.

When either p; = 0 for some i, or ;>0 and p((diag(p))™A) > 1, then the
endemic equilibrium (A, p1,0) > 0 is globally asymptotically stable on [0,1}"\{0}.
Provided there is some initial infection, the proportion of infectives y(t) in the popu-
lations will tend to the endemic level as t = oo.

7. Reducible Epidemics

Now consider the solution y(t) to eqn. (4) when the infection matrix A is reduci-
ble. We need only to consider the case when the initial infection can cause infection
amongst all types. If certain types cannot be infected these should be omitted from
the set of types and a model based only upon the remaining types considered.

The equivalent results to Corollary 1 are now derived when the infection matrix A
is reducible. The proof makes use of Theorem 4 with a # 0.

Theorem 5. Permute the types so that A is in normal form (Gantmacher, 1959)
and partition the vectors p and y(t) in a corresponding manner so that

A 0 0 0 . 0
0 Aoy 0 0 e 0
A= 0 0 A 0 0 |,
As+1,1 As+1,2 v As+1,s A-.s+1,s—l—l e 0
Ag Ago o Ay Ag st oo Agg
H Y, (1)
H2 Yo (t)
b= and y(t) =
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If y;(0) #0 for all i=1,...,s, then y(t) > n as t — 0o, where 1 is partitioned
so that

™

"y

with the components defined as follows. For each i = 1,...,s, n; = (A, p;,0).
Then successively for each 1 = s+ 1,...,9, m; = C(Ay,p;,b;), where b; =

qu Aijn;.

Proof. The results for i = 1,...,s follow immediately from Corollary 1. Also note
that if ; > 0 then y,(¢) >0 for all ¢ > 0.
Now we successively prove that y,(t) = n; as t — oo foreach j =s+1,...,g.

In addition we show that, for each such j, if 1; > 0 then there exists a 7' > 0 such
that y;(t) >0 for ¢t > T

Suppose these results hold for all j < i, where s +1 < i < g. We now show that
the results hold for y,(¢). Since y;(t) = n; as t — oo for all j <, for every € > 0
there exists a T' > 0 such that

n; —el <y;(t) <y +el
forall t > T" and j <i. Define {8;}; = min({n; +¢l};,1) and {¢;}, = max({n; —
€1}5,0). Then

¢j < yj(t) <8

for all t > T and all j <1i. Also note that for each j < i such that n; >0 we can
choose T' sufficiently large so that also y;(t) >0 for ¢ > T.

Then the following two inequalities hold:
dy,(¢)

—3 S diag(1 — y;(2)) (Awyi(t) + a) — diag(p,)y;(?) 9)
for all ¢ > T, where a =3, _, A;;8;. Also
dyd"t(t) > diag(1 — y;(t)) (Auy,(t) + b) — diag(p;)y; (%) (10)

for all ¢ > T, where b = > j<i Nij@;. Note that if > j<iNijn; = 0, then b =0,
and (10) holds for all ¢ > 0.

We divide the proof into two parts, the first part uses (9) to show that
limsup, o, ¥;(t) < ¢(Au, s a). Since this holds for all € > 0, continuity of
¢(Ai;, py,a) in a implies that limsup,_, . y;(t) < n,.

This is all that is required when 3-. _; Aym; =0, p; >0 and p((diag(p))'A)
< 1, since in this case i, = 0.
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In all other cases (i.e. when 7, > 0) we need also to obtain a lower bound
for y,(t). We use (10) to show that y;(t) > 0 for t > T and to prove that
liminf; oo ¥;(t) > ¢(Aus, iy, b). Again this holds for all € > 0, so that continuity of
C(Asi,p;,b) in b implies that liminf, oo y;(t) > ;.

When 7, > 0 the results from the two parts imply that y,(t) tends to 7, as ¢
tends to infinity. Also there exists a T > 0 such that y;(t) >0 for ¢t > T.

To prove the first part, consider inequality (9). Define c(t) =
max;{y; (t)}s/{C(Asi, i, a)}s. Then c¢(t) is a continuous function of £. Also for a

given t > T, there exists an s and t* > ¢ such that {C(A, p;,a)}sc(r) = {y;(7)}s
for t <1 < t*. Now use (9) with this specific s. If ¢(¢) > 1, then

d+ C(t)

{C(Aiiaﬂi)a)}s at

< (1= e {C s )}, ) { AucO (Aiiy s, 0) +

8

—{ndec®) {C(Aiss i)}

IN

(1= e {¢(u 1, @)}, ) e { AuC(Ais, @) +a
~ {mihse® {C(Au i)}

IN

c(t){diag(I — C( A, iy a)) [Asil (Aii, g, @) + a
— diag(p;)C (Ais, 11y, ‘1)}5 =0.

Note that the inequality is strict when c¢(t) > 1. Hence, provided t > T, if ¢(t) > 1
then dyc(t)/dt < 0 and if c¢(t) = 1 then dic(t)/dt <O0.

Now define M (¢) = max(1,¢(t)). Then dM(t)/d¢ <0 with the inequality strict
if M(t)# 1. Since M(t) is monotone, non-decreasing and bounded below by one, it
must tend to a limit. As in the proof of Theorem 4 it is easily shown that this limit
is one. Hence M(t) — 1 as t — co. But y,(¢t) < M(#)¢(Au, p;,a) for t > T. Hence
lim SUPt 500 Y (t) < C(Aiiﬂ Hys a)'

Now this result holds for any € > 0, and a = >, ;Ayn; + ), Ayl
Therefore a | .., Ayn; as € | 0. Consequently, from Theorems 1 and 2,
ClAii, iy a) & C(Ai 1y, 305 Aigmy) = m; as € L 0. Hence limsup, . y;(t) < m;.
When 77; = 0 this implies that y,;(t) = 0 as t — co so the proof is complete in this
case.

To prove the second part when 7; > 0, consider inequality (10). In the case
when 7. ;Aijm; =0, for any € > 0, b = 0. Hence inequality (10) holds for all
t > 0. In this case take 7' = 0. Since y;(0) # 0 for j = 1,...,s, as in Lemma 1
this implies that there exists a T* > 0 such that y,(t) > 0 for ¢t € (0,T*]. When
>i<iNijm; # 0 inequality (10) only holds for ¢ > 7. Now there exists a j <4 such



78 L. Rass and J. Radcliffe

that A;; # 0 and n; > 0. Hence y;(t) >0 for ¢t > T. Then, as in Lemma 1, there
exists a T > T such that y,(¢t) >0 for t € (T',T7].

Now take b(t) = min,({y;(t)}s/{¢(As, p;,b)}s) for t > T*. Note that b(t) is
a continuous function of ¢. Also for a given ¢t > T*, there exists an s and t* > ¢
such that {{(Au, e, 0)}:b(r) = {y;(7)}s for t < 7 < t*. Now use (10) with this
specific s. If b(t) <1 then

d4.b(t)
dt

{¢(Asi, p,b)}

(1—b {¢( zzaﬂiub)}s){Aiib(t)C(Aiiyﬂi:b)+b}s

(o bO{C(Ais, i, )}

v

(1—5 {C(Ass, 1, )}) (t){AiiC(Aii,uiab)+b}s
- {ui}sb(t){C(Aih”i: b)}s

v

b(t){diag([ — C( A 125, 5)) [AsiC (A, 115, b) + B)]

~ diag(1,)¢ (Aii, 1, B) | =0,

S
Note that the inequality is strict when 0 < b(t) < 1. Hence, provided ¢ > T, if
0 < b(t) < 1, then dyb(t)/dt > 0 and if b(t) = 1 then d,b(t)/dt > 0. Since

b(T™) > 0 it follows that b(¢) > min(1,b(T*)) > 0 for ¢ > T™*. Therefore y,(t) > 0
for t > T*.

If we now define m(t) = min(1,b(t)) then m(t) is monotone and non-decreasing
for ¢ > T and is bounded above by one, so must tend to a limit as ¢ tends to
infinity. As in the proof of Theorem 4, it is easily shown that m(t) 1+ 1 as t — oo.
Hence y;(t) > m(t)¢(Ay, p;, b) and therefore limgs oo infg> e y;(8) > C(Aus, g, )

This result holds for any ¢ > 0. If 3. {Aiyn;}s = 0, then {b}, = 0.
Otherwise, for e sufficiently small, {b}, = iJQ{A”n]}S esz{AUl}s In
either case, if we let ¢ tend to zero, then b tends to 3 j<iAijn;. Using the
continuity of (A4, p,;,b) in b, from Theorems 1 and 2, it then follows that
C(Aii; pri, 0) L C(Aiy pyy 32505 Aijmy) =m; as € = oo. Hence liminfy o y;(t) > m;.

Therefore in the case when 7; > 0, 7; < liminf, ;o y;(t) < limsup,_,, v;(t) <

7n;. Hence y,(t) = n; as t — co. Note that we have also shown that there exists a
T > 0 such that y,;(¢t) >0 for ¢t > T.

This completes the proof of the Theorem. ]

Hence when the infection matrix is reducible convergence of the proportion of
infectives to the appropriate equilibrium is established.
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