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ON THE DYNAMICS OF A CHEMOSTAT MODEL
WITH DELAYED NUTRIENT RECYCLING T

PaorLo FERGOLA*, Ligiang JIANG**
ZHIEN MA**

This paper studies the dynamics of a chemostat model with n populations
competing for one nutrient which can be recycled due to decomposition of dead
biomass. Several kinds of results about local and global stability of non-negative
equilibria, uniform persistence and control of populations are obtained.
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1. Introduction

It is well-known that nutrient recycling processes in aquatic ecosystems of chemostat-
type models can be mathematically modelled by means of distributed delay terms
(Beretta et al., 1990; 1995; Fergola et al., 1995; 1997; Freedman and Xu, 1993; He
and Ruan, 1998; Ruan and Wolkowicz, 1995). Here we study a chemostat model with
n density-dependent populations competing for one critical nutrient which can be
recycled from the dead biomass, without interaction terms. In our paper, we prove
several kinds of results about local and global stability of non-negative equilibria,
uniform persistence and control of populations. Qur model reduces to the one stu-
died in (Beretta et al., 1990; He and Ruan, 1998) where stability results were proved
for a model including only one population in the absence of density dependence ef-
fects. In (Freedman and Xu, 1993) a similar problem was studied for two interacting
populations. By supposing that both populations have the same memory functions,
uniform persistence results were obtained. Again, persistence and stability results can
be found in (Beretta et al., 1995; Ruan and Wolkowicz, 1995), where chain chemostat
models with one nutrient and two populations and delay nutrient recycling were con-
sidered. In both these models the kernels are different but density dependence effects
were not considered.
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The scheme of this paper is as follows. In Section 2, we present the model and
notations used. Section 3 is devoted to the analysis of non-negative equilibria and their
stability properties. Local stability conditions for positive equilibria of system (1)
have been obtained by using a suitable Lyapunov-Krasovskii functional (Fergola et
al., 1995). By specializing the kernels and by constructing a new Lyapunov functional
we are able to give sufficient conditions for global stability of a positive equilibrium.
The case of a single population has also been considered and the obtained stability
results have been compared with those of (Beretta et al., 1990). In Section 4, we study
the problem of survival of populations and we obtain results about uniform persistence
and control of populations. Finally, a brief conclusion is given in Section 5.

2. Model and Notation

Consider the following chemostat model with delayed nutrient recycling:
n
R=D(R° -R)-)_

i=1

my

n
Ui(R)N; + ) _biwili,
=1 (1)

NizNi[miUi(R)—(D‘l"}’i)_diNi]a ISZSTL,

i

where all constants are positive and R(t) is the nutrient concentration at time t,
N;(t) is the biomass concentration of the i-th population at time ¢, D is the constant
dilution rate of the chemostat, R? is the constant input concentration of the limiting
nutrient, m; is the maximum specific growth of the ¢-th population, yg, is the
constant yield of the i-th species per unit resource R consumed, b; is the fraction of
the death biomass recycled as nutrient for the i-th population, +y; is the death rate
of the i-th species, §; is the intraspecific competition of biotic species, U;(R) is the
uptake function for limiting nutrient by the i-th planktonic species, which satisfies
the conditions

L. Ui : Ryg = [0,+00) = [0,1), Ui € C*(Ryo),
2. U/(R)>0, U/(R)<0 for Re€ Ry,
3. Ui(0) =0, lim Ui(R)=1.

Furthermore,

Ii é /+oo fz(S)Nl(t - S) ds
0

with the delay kernels f;(s) being non-negative, bounded functions for s € [0, +o0)
such that

+o0
/ fi(s)ds =1, 1<i<n.
0

The initial-value condition of (1) is

R(to) =Ry, Ni(to+8)= ¢¢(0), e e (—OO,O]7 1 <1 <n, (2)
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where Ry is a non-negative constant and ¢; is a bounded, continuous and non-
negative function on. (—co,0]. The solution to (1) with initial data (2) should be
denoted by

Ty = I(t + 9;t0,R0,¢)
= (R(t+9at01R07¢)>N1(t+ 9;t07R07¢7)a' .. JNn(t +0;t07R0a¢>‘))>

Tty = (R07¢1(6)7' .. 7¢n(0))5

where ¢ = (¢1,...,%n)7 is an initial vector function.

Existence, uniqueness and non-negativeness of the solutions can be shown by
means of the same techniques as in (Beretta et al., 1995; Fergola et al., 1995). So there
exists a unique solution z(t) = z(t; o, Ro,$) which is defined for all ¢ € [¢o,t0 + L),
which is the maximum existence interval of the solutions to (1). It is known from
Lemma 1 in (Fergola et al., 1997) that the solutions (1) with bounded initial values (2)
are bounded, so a unique solution to (1) with initial value (2) exists for all ¢ > #o.

3. Non-Negative Equilibria and Their Stability Property

3.1. The Trivial Equilibrium of System (1)

It is obvious that Ej = (R%,0,...,0) is a trivial equilibrium of system (1). In this
subsection, we study the stability of Ey.

Theorem 1. If the inequalities m;U;(R°) < D ++;, 1 < i < n are satisfied, then
Ey s locally asymptotically stable.

Proof. By the change of variables
r=R-— RO, n; = Nz

the linearized system of (1) around Ejy is

n n +oo
7= —Dr — Z e UZ(RO)TM +D Z bz’)’l / fl(s)n,(t - S) dS,
i=1 Yr; G=1 (3)
0
ng = [szl(RO) - D+ ’7{)]7715, 1<i<n.
The characteristic equation of Ej is
A+D  RU(R) -bmF() R U(RY) ~ baynFa()
YRy YR,
0 A= (mU(R®) —(D+m)) - 0
=0,

0 0 oo A= (MpUn(R%) — (D + )
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where F;(\) is the Laplace transform of the kernel function f;(s), i = 1,...,n.
Because of our hypothesis, the eigenvalues

X =-D, )\izmiUi(RO)—(D +7), 1<i<n

are negative, and therefore E, is locally asymptotically stable. This completes the
proof. [ |

Theorem 2. If m; < (D +;), 1<1i<mn, then Ey is globally stable.

Proof. It is easy to prove that lims,y. N;(t) = 0. Now we claim that
lim;, 00 R(t) = R°. But first, we show that lm;_, o0 f0+°° fi(s)N;(t — s)ds =
0, 1<i<mn.

From Lemma 1 in (Fergola et al, 1997), for any positive numbers Ay and A;
(¢ =1,...,n), if the initial value of (2) satisfies

Ry < Ao, ¢i(0) <A;, i=1,...,n for 8 € (—o0,0],
then there exist positive constants By > Ap and B; > A;, i =1,...,n such that
R(t;t07R07¢) SBO) Ni(t;tO)R()ad,) SB'I:J tZtO- (4)

For any € > 0, we can choose a time T) large enough such that

+o0
B; / fi(s)ds < %
4

From (4), we have
+o0
/ fi(s)Ni(t — s)ds < -;—
71

Since t_l}g_n Ni(t) = 0, we can choose a time T, large enough such that
(o}

€
2(J fu(s)ds + 1)

Nz(ti tO:-ROa ¢) <

for t > tg + T». So we have
T
/fi(S)Ni(t-S) ds < %, t>tg+ Ty +Ts.
0

Hence, for any solution to (1), we have

+oo
/ fi(S)Ni(t — 8) ds < ¢, t>to+ 11 +To.
0
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Therefore

lim /‘fz (t—s)ds=0, 1<i<n.

t—+o0

From the first equation of (1), we get

R(t) = g—D(t—to) {Ro + /t T—to) [DRO - Z y—U )+ Z bivid ] } .
R

to =1

By means of the de 'Hospital rule, we can show that lim; .., R(f) = Ro. Noticing
the arbitrariness of Ay and A;, i = 1,...,n, Ey is globally attractive. It follows
from Theorem 1 that Ej is globally stable. The proof is thus completed. |

3.2. Positive Equilibria of System (1)

The positive equilibrium of (1) must satisfy

n

D(R°—R) - ;m Ui(R)Ni + > biyili =0,

i=1 i i=1

szl(R) —(D+ “/i) —0;N; = 0.

Notlcmg that N;, i =1,...,n are positive constants at the positive equilibrium and
® fi(s)ds =1, we have I = N;. Therefore the above equations are equivalent to
the following system:

D(R ~ R) - 3" LUy (R)N: + 3 biwilN = 0,
=1 YR i=1 (5)
m;U;(R) — (D + ;) — §;N; = 0.
From the second equation of (5), we have

Ni = [miUs(R) — (D + )] /b, 1<i<n. (6)

Substituting (6) into the first equation of (5) yields

Y(R) =0, (7)
where
- ml D +’Yz mibi%
+ U;(R
pa 5zyR vl P [ OiYR; d; ] &)
= byi(D + 7
+ZM—D(RD-—R), (8)

d

i=1
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p0) = 0N ppo ) =

61' R—+o0

Therefore, if

=~ biyi(D +
=1 i

then there must be a constant R* > 0 such that ¢(R*) = 0. Furtherr.nore, if
m;Ui(R") > (D + %)

for 1 <4 < n, then there exists a positive equilibrium B2 (R*,N{,...,NJ), where
N} = [mUy(R*) — (D + )] /&, 1<i<n.

Now we investigate the locally asymptotic stability of E*.

Theorem 3. The positive equilibrium E*, if it exists, is locally asymptotically stable

]

— YR;
= 9)

Fbim, l<i<n

n n
D> %Ebm -5 iyl (RN,

SU(RY) 1
JR.’U (R*)

Proof. The linearized system of (1) at E* is

f n

m; m;
7 = —|D+ L R*)N}|r — ~U;(R*)n;
[ Z ] ; YR, ( )
+oo
3 + Z bivs / fi(8)n;(t — s) ds, (10)
i=1 0
L % = mU;(R*)Nr — &;Nrn;, 1<i<n.

Define the Lyapunov-Krasovskii functional (Fergola et al., 1995)

n n +o0 t
Vi =12 +Zwmf+2bm/ fi(s)/ nf (v) duds,
1=1 =1 0 i=s
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where w;’s, are positive constants to be chosen. Calculating the derivative of V1
along the solutions to (10) yields

n

Vi = 27"{ - {D+§: i U;(R*)N;‘]r;z;:

=1 i i=1

Ui(R*)TLi

+ i bﬂ’i /0+°° fi(s)m(t — 8) ds} + 2 Z Wity [th; (R*)N;T' - 5iNi*ni]
i=1

=1

+
+me ® - me | femie -9

< —2{D+Zsz(R* N*}r _227711 Yrng

n n +oo n
-+ Z b,"}’ﬂ'2 + Z bi’)’i /0 fi(.s)?’l,z2 (t - .S‘) ds — 2 Z wi(SiN;?’L?’
=1 =1

=1

n 400
+ 2 Z wzmz R* N*T'nz + Z b’Lfyan Z bZ,Yl / f’i(s)nzz' (t - S) ds.
i=1 0

=1
Let
U;(R*) ,
Wy = ————r—vr, 1<i<n
YR; N'L* Uz' (R*)
From Assumption 2 on U;(R), we have w; >0, i =1,...,n. Therefore
Vi < -2 (D—I—Z )N)—Zbi’)’z}rz
=1
= 8;U;(R*)
bi i niz. 11
; [ yr.U; (R) 7] D

By (9), the right-hand side of (11) is negative definite, and therefore E* is locally
asymptotically stable (Kolmannovskii and Nosov, 1986). The proof is completed.
| |

In order to obtain sufficient conditions for global stability of E*, we specify the
kernel functions as follows:

IB?i+1
fi(s) = m—sPie™P®, 1<i<n, (12)
pi:
where p; is a non-negative integer and §; is a positive constant. For convenience of
discussion, we introduce a lemma about the right upper derivative.
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Lemma 1. (Ma, 1996) Let g(z) be a differentiable function on interval T'. Then the
right upper derivative of |g(z)| ewists and

D¥g(2)] = sgal(@)] +o(z)

on interval T .

Theorem 4. The positive equilibrium E*, if it exists, is globally stable provided the
following inequelities hold:

D> miU;(0),
=1

(13)
my .
6 > —Ui(R*) + biys, 1<i<nm.
Proof. Rewrite (1) in the following equivalent form:
(. no
R = -D(R-R) -3 “LU(R) - Ui(R")]N;
; YR;
= 3 YR (N - )
. =1 Y (14)
n i+l ptoo
+ Z by =2 ’ / sPighis (Ni(t —s5) — Ni*) ds,
1=1 Di: 0
( Ni = N [mi(Us(R) — Ui(R")) = &i(N; = Nf)], 1<i<n.

Define the Lyapunov functional

Va(e) = |R(t) = R*|+ > |In Ny(t) — In N7
(=1

==

+o0
/ FeBie (Ny(t — s) — N?)ds|.  (15)
0

n Di 5_7
St
=1 4=0 J:

From

+oo
/ sTe P (N;(t — s) — N) ds
Jo

i
= / (t - s)je—ﬁi(t*‘g) (N‘L(s) - Nw*) dS, 0 S ] S Di,
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we have
a [te oo
97 wiepur (e — ) - N7)ds = — / sie B3 (Ny(t — 5) — NF) ds
0 .
Ny e
0
d +o00 i +o00
S [T - nas = s [ B e ) - V) as
0 0

+ (Ni(t) — N}).

Recalling Lemma 1 and the properties of U;(R), the right upper derivative of
Va(z:) along the solutions to (14) satisfies

n

D*Va(z) < ~DIR-R'| =Y ;’;
1 i

- U(R")|N,

3=

+Zml A(R*)|N; — N7

ﬂprf*l 400
- + Z biyi = l / sPie™Pis(N;(t — s) — N}) ds‘

+ Y mi|Ui(R) - —i&ANi—Nﬂ
i=1 =1

n Pi BJ oo
+Zbl%2—_—j~{ Bi / Sje—ﬁis(Ni(t—S) "“Ni*) ds}
: 0

j=1

+oo
+ jl / si=te™Pis (Ny(t — s) — N}) dsl]
0

+ ) by [ — B
i=1

+oo
/0 e7Ps (Ni(t — s) — N}) ds' + |Ni(t) - Ni*|]

IA

— D|R - R¥| +Z

=1 i

U;(R*)|N;s — N{|

ﬂp't +1

’/'+°°sz —his *(Ni(t—s) — N*)ds‘

+ Z biy;
i=1
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+Zmz 0)|R — R*|‘26|N NZ|

i=1

i i ﬂj+1 +oo 5 ( ( ) )
= by L ’/ s7e P (Ny(t — 5) — N} ds]
i=1 j=1 gt 0

Di BJ' +oo im1 —fis .
+Zb1%2]—1)|/ s’ ‘(Ni(t—s)—Ni)ds‘

-zn:bi“/iﬂi
=1
-[p Zmz ()] 1R - B7|

+o0 -
/ e_‘Bis(Ni(t""s) - N}) dsl +Zbi')’ilNi(t) — N7
0 i=1

(BY) = bii ) IN; = N7, (16)

=1 i

In view of (13), D Va(z;) is negative definite. Therefore the positive equilibrium
E* is globally stable (Kuang, 1993). The proof is thus completed. =

3.3. Positive Equilibria for a Single Population System

In this subsection, we restrict our attention to system (1) with a single population,

ie. n=1 We follow the same procedure as the one in (Beretta et al., 1990) to study
the locally asymptotic stability of positive equilibria of the following system

R = DR~ F) = “URN + iy / FS)N(t = 5) ds,

(17)
N = N[mU(R) — (D +1) - 8N].
The linearized system of (17) at the positive equilibrium E* £ (R*,N*) is
+oco
Po= —[D + 2y (R*)N*]r — 2 U®R + by / F(8)na(t — s) ds,
Yr Yr 4 (18)

f1 = mU (R*)N*r — §N*n,.

After almost the same analysis of the eigenvalues at E* as in Theorem 7 of (Beretta,
et al., 1990), we get the following result.
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Theorem 5. Let

5[D + 2%U'(R*)N*] > m[lry -

D4y
YR

|v' &),
m ) - (19)
D*+ [6 -y (R*)] N2 > 220y (R*)N™.

YR YR

Then the positive equilibrium E*, if it exists, is locally asymptotically stable.

Remark 1. If we set § = 0 in Theorem 5, system (17) reduces to that without
logistic term considered in (Beretta et al.,, 1990) and Theorem 5 reduces to Theorem 7
in (Beretta et al., 1990), so the condition (19) is more general than that of Theorem 7
in (Beretta et al., 1990).

We can also apply Theorem 3 to get the condition of the local stability to sys-
tem (17). But since system (17) is a two-dimensional model, we use the eigenvalue
method to investigate the local stability of (17) at the positive equilibrium. The-
orem 5 is true for any form of kernel functions. In order to simplify condition (19),
we assume further the following special kernel function in (17):

f(s) = e, (20)

where [1is a positive constant.

Theorem 6. Let

D+~
YR

5[17 + 2%1]' (R*)N*] > m[b'y - ]U’ (R*). (21)

Then the positive equilibrium E*, if it exists, is locally asymptotically stable.
Proof. The characteristic equation of (18) around E* is

N+ LA + A +13 =0,
where

L = f+D+8N*+ U (RN™,

YR

I = B(D +6N* + U (R*)N*)

YR
+ 6D+ m(D £ 7)1 (R*)]N* +20 U (R)N*?,

YR YR
D , ,

Iy = ﬁ{ [51) L2+, (R*)]N* +25 %y (R*)N*Q}
Yr YR :

— BmbyU' (R*)N*.
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From (21), we have I3 > 0. The Routh-Hurwitz criterion states that Re(\) < 0
iff

lils — 13> 0.

In our case, the inequality [l — I3 > 0 is satisfied. The proof of Theorem 6 is
completed. [ |

Remark 2. If we set § = 0, Theorem 6 reduces to Theorem 8 in (Beretta et al.,
1990). So condition (21) includes the one of Theorem 8 in (Beretta et al., 1990) as
its special case.

4. Survival of Populations
4.1. Uniform Persistence of Populations

The objective of this subsection is to derive sufficient conditions for uniform persi-
stence of populations of system (1). We refer to the definition of uniform persistence
of populations given in (Freedman and Xu, 1993). Because of Theorem 2, here we
suppose that

m; >D+~, i=1,...,n.
Let € be a any given small positive constant and

N, = mi“(f"‘%’)

From (1) that it follows

, 1<i<n. (22)

Ni(t) < —6;eN; if N,;(t) > Ni + €.
Hence for each solution to (1), there exists a time #; > ¢, such that
Ni(t)SNi-i-e, 1<i<n (23)

holds for all ¢ > ¢;. We write

1 & m;
Ry=R’- = = N;. 24
’ D;ym ’ ( )

Theorem 7. The populations of (1) are uniformly persistent if Ry > 0 and
miU;(Ry) > D+, 1<i<n. (25)

Proof. By (23) and the first equation of (1), we have
R>DE -R) - TiFite), t>1.

=1 *




On the dynamics of a chemostat model with delayed. .. 93

By the comparison principle, we have

1 = b '
R(t) > Roe-—D(t—to) + (1 _ e—D(t—to)) [RU _ 5 Z ;n (N, + 6)}, t>t.
1 IR

i=

Taking the lower limit yields

1 my -
1 i 0 — — 2 .
ltlmmf R(t)>R D ig “Vr, (Ni +€).

This being for each € > 0, we have

liminf R(t) > Rp. (26)

t—+o00

Since U;(R) is a continuous function, we can choose ¢ and 1 > 0 small enough
such that

miUi(Ry —€) > D+ +n, 1<i<n (27)

Since U;(R) is also an increasing funétion, by (26) and (27) for each solution to (1)
there exists a time to > #; such that

miUi(R(t)) >D+y+n, 1<i<n (28)
for all ¢ > ts.
From the i-th equation of (1), we get

Nz(t) = Nz(tg){ exp/ [(_D +’)’i) - TTLZUZ(R)] dr

(7]

+ (51-Ni(t2v) /tt exp /: ((D + ) - miUi(R)) ds d7'}_1

Application of (28) yields

. Ni(ts)
N 2 ot = 2] + ENu(e) (1 — bl — )

for t > t,. Taking the lower limits on both the sides of this inequality, we get

R, n :
lgEE&sz(t) > 5, >0, 1<i<n. (29)

Therefore the populations of (1) are uniformly persistent. The proof is completed.
| |
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4.2, Control of Populations

This subsection is devoted to control of populations. A procedure is presented to
adjust some parameters of system (1) such that the size of populations stays eventually
in a desired set.

Now we introduce the following notation:

gi(e) =m; (1~ Us(Ry — €)), aule) = %’(5(;) .
We set
= 2 ¢:(0)
0L a® = mli- (), o2 a0 = 20,

Theorem 8. Under the condition of Theorem 7, for a sufficiently small € > 0, the
solutions to (1) will finally enter the set

Q={Ny,...,Nu| N; € Ryo, |Ni = Nj| <aj+¢, 1<i<n},
where N; is defined in (22).

Proof. Rewrite the equations for N; of (1) in the following equivalent form:

N :Ni[(mi— (D +75) — 6iN;) —ma(1 —U,-(R))]. (30)
Define the Lyapunov functions |

W, = %(Ni -N)?, 1<i<n.
The derivative of W; along the solution to (30) satisfies

W, = N, [ — 8:(N; = Ni)® = mi (1 — Uy(R)) (IV; — Ni)]

IN

Ni[—éi[Ni — N ma(1 - U@-(R))lNi—Ni|]. (31)

Suppose that € > 0 is a sufficiently small number. By (26) and (29), for each
solution to (1) there exists a time ¢3 such that

"R(t) > Ry — &, Ni(t)z%, t> 3. (32)

By (31) and (32), we have

H/z < Nil:_(gi'Ni_Ni!2+mi(1—'Ui(Rb_E))lNi"NiI]
_ (€) /5 _
= NN = N[ — 14 BOL% TN N s o
1 [ +|Ni—Nz-|]’ it |N; - Ni| >0 (33)

Choose € small enough so that

o + € > a;(€). (34)
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If |N; — Ni| > a; + €, by (32)-(34) we get

i ENAT A A1 ;(€)

Wi < 8;N;|N; — Ny [ 1+ aﬁﬁ]
<1 |N-—]\_/'-|2[1-3—@] >t
— 27) 1 K3 a-i+€ ) < 3.

Therefore each solution to (1) satisfies
INi = Ni| <ai+e, 1<i<n

for sufficiently large t. The proof is completed. u

Remark 3. Combining (23), Theorems 7 and 8, we have shown that the populations
of system (1) are uniformly persistent and will finally enter the set

E:{(Nl,...,Nn”.NiER_;_o,N';—Oti——6<Ni<Ni+€, 1§7§'I’L}

for a sufficient large time t. Therefore we have presented a procedure by which one
can control the parameters of (1) so that the size of populations eventually stays in a
desired set.

5. Conclusion

In this paper, we have studied a chemostat model with n populations competing for
one nutrient with time delay. The work of this paper consists of two parts. The first
one is mainly about the stability of the positive equilibrium. Lyapunov functionals
are constructed to obtain both local and global stabilities. The second one is about
the uniform persistence and control problem of populations. A procedure is presented
by which one can adjust the parameters of the model so that the size of populations
enters and stays eventually in a desired set.
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