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BEHAVIOUR OF SOLUTIONS TO MARCHUK’S MODEL
DEPENDING ON A TIME DELAY

MAREK BODNAR*, UrszurLa FORYS*

Marchuk’s model of an immune reaction is a system of differential equations with
a time delay. The aim of this paper is to study the behaviour of solutions to
Marchuk’s model depending upon the delay of immune reaction and the history
of an illness. We study Marchuk’s model without delays, with a constant delay
and with an infinite delay. A continuous dependence on the delay is considered.
Bifurcation points are found using computer simulations. '
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1. Introduction

In 1980 Marchuk proposed (Marchuk, 1980) a mathematical model of an infectious
disease. It is a system of four (or three in a simplest form) differential equations with
a time delay. Although many papers studying the properties of solutions have been
published (Belykh, 1988; Bofill et al., 1996; Forys, 1995; 2000; Marchuk, 1983; 1997;
Szlenk and Vargas, 1995), several problems are still open. One of them is the depen-
dence of solutions to the model on time delays. In the model, there appears a delay of
reaction of the system with respect to the contamination moment. Accordingly, the
system does not react immediately, and it needs some time to detect and investigate
the contamination by an antigen.

The dependence on a time delay for functional-differential equations (FDE’s) is
a challenging problem. However, some types of FDE’s have already been studied in
detail (Cao et al., 1998; Gopalsamy, 1992; Kolmanovskii and Nosov, 1986; Kuang,
1993; So et al., 1996). In the case of RFDE’s (Retarded Functional-Differential Equ-
ations) with a continuous right-hand side, a positive delay may be considered as any
other parameter of the model and therefore, the dependence of solutions on it is con-
tinuous (Kuang, 1993). Furthermore, for linear REDE’s it is known (Kolmanovskii
and Nosov, 1986) that for a sufficiently small delay the behaviour of the solutions
is similar to the appropriate ODE’s without delays. Many special types of RFDE’s
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have been studied in much more detail. For example, Lotka-Volterra equations with
delays, i.e.

Xi(t) = Xz(t) (Ti +a;; X; + Zbinj(t - Tij)), t=1,...,n (1)
j=1

were studied in (Gopalsamy, 1992; Kuang, 1993; Lu and Wang, 1997), or FDE’s of
Lotka-Volterra type, i.e.

n L
Xi(t) = Bi (Xz(t)) (Ti — az-Xi(t) + Z Z bilej(t — Tijl)
j=11l=1

n foe)
+Z/ bij(t,s)Xj(t-—s)ds), i=1,...,n (2)
j=1"0

were studied e.g. in (Bereketoglu and Gyori, 1997).

Marchuk’s model can also be considered as Lotka-Volterra equations, but there
is a second-order term with delay (i.e. the term of the type X;(t — 7)X;(t — 7)) in
the model which is absent in (1) and (2).

The paper is a first step in studying the behaviour of Marchuk’s model and a
larger class of equations of the type

Xi=TiXi"‘Xi(t_Ti)Zanj(t"Tji), t=1,...,n
i=1

depending on the magnitudes of delays.

2. Presentation of the Model

In the paper, we consider the case of a slight damage to an organ-target. In this case
Marchuk’s model is written as a system of three DE’s with a time delay.

The following notation is used in the model:
1. V(t) is the antigen concentration at time t,
2. C(t) is the plasma cell concentration at time t,
3. F(t) is the antibody concentration at time .
Marchuk’s model is derived under the following assumptions:

1. The number of antigens depends on their reproduction rate and the suppression
by antibodies,

dv

S =BV V),
where f is the antigen reproduction rate coefficient, and + is the coefficient
expressing the probability of the antigen-antibody meeting and their interac-
tions.
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2. If no antigen is in the organism, then the plasma cell production depends on
the deviation from the normal level C*. If some antigen appears, then the
so-called VT-complexes are formed (to simplify the model, it is assumed that
the VT-complex rate depends on the number of antigen-antibody encounters).
Stimulation of a B-cell by VT-complexes triggers off the plasma cell production
process. The plasma cell production is delayed relative to the B-cell stimulation
process

ac
dt
where C* is the level of plasma cells in the healthy organism, o is the immune

process stimulation coefficient, . is the plasma cell coefficient, with u; ! equal
to the mean plasma cell lifetime.

:a‘/(t—-T)F(t‘—T) —HC(C'—C*)a

3. The number of antibodies depends on their production rate and their death due
to immune reactions and ageing,

% = 0C(t) = MV () F () — ps F(8),

where p is the antibody production rate per one plasma cell, 5 is the rate
of antibodies necessary to suppress one antigen, gy is an antibody coefficient,
with u;l equal to the mean antibody lifetime.

Therefore, in this paper, we study the system
V() = (8 —7F1)V (),
Ct)=aV({t—1)F(t—71)— p(C(t) — C*), 3)
F(t) = oC(t) — (us + mV () F (),

with non-negative coefficients and initial data (0, Xo(t)), where

(0,C*, F*) for t<0,
Xo(t) = (4)
(Vo,C*,F*) for t=0,
and F* = oC*/uy is the physiological level of antibodies. Model (3) will be referred
to as the MM in this paper and will be considered together with the initial data (4).
It is known (Belykh, 1988; Marchuk, 1980; 1983; 1997) that the solution to the
MM exists, and for every ¢ > 0 is continuous and non-negative for non-negative initial
data.
In parallel, we consider a model with an infinite delay, which is based on the
same assumptions. Then the MM can be generalized as follows:

V(t) = (B -7F@)V (),

- Ct) = a/O w(h)V (t + R)F(t + h) dh — pc(C(t) — C*), (5)

—00

F(t) = oC(t) — (ur + MV (®)F(t),
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where w(-) is a probability distribution function, f_ooo w(h)dh = 1, w(h) > 0 for
every h € (—o0,0).

For the Dirac distribution at h = —7, it is obvious that (5) takes the form (3).
Such a model was studied in (Forys, 1993) with the distribution’s support contained
in [—7,0]. Using the same arguments as in (Forys, 1993), it is easy to prove that a
non-negative continuous solution (5) exists for all non-negative initial data.

The MM and (5) have the same stationary states

Xy = (0,0 F), Xo=(V.C.F) = (ucuf(ﬁ —F") aBuy —nyPpC ﬁ) _
Blag —nype) * ylao—nype) "
X, exists only in the case of an efficient immune system but with a small physiological
level of antibodies, i.e. ag > nyu. and B > yF*, or in the case of immunodeficiency
but with a weak antigen, i.e. ap < nyu. and 8 < vF*. X; describes the healthy
state of the organism, whereas Xs corresponds to the chronic form of the disease.

The following theorems, describing the behaviour of the solutions to the MM,
were proved in (Belykh, 1988; Forys, 1995; 2000)

Theorem 1. The state X; = (0,C*, F*) of the MM is locally asymptotically stable
if and only if B < ~yF*. Moreover, if the inequality

ag > Py (pe + B) (6)
holds, then this state is globally stable.

Theorem 2. If § > vF* and
ap < By, (7)

then, for every solution to the MM, V(t) increases to +oo and F(t) has a limit
equal to 0 as t — +oo0.

Note that, for 8 =0, (6) does not depend on 7. In this case the antigen cannot
reproduce (e.g. the case of vaccinations). Therefore, if the immune system is efficient
in Marchuk’s meaning, i.e. ag > nypu., then every infection leads to the recovery.
Such types of infection were studied in (Bofill et al., 1996; Forys, 1999).

Also note that, in the case of a small physiological level of antibodies (i.e. vF* <
B), even for apg > nyp. (the system is efficient), if 7 is large enough, then (7) is
satisfied. It is obvious that, for = large enough (6), is not fulfilled. This means that
independently of other parameters, if 7 is large enough, then, sooner or later, the
organism must be destroyed.

3. Extreme Cases

In this section, we study two extreme cases. The first case (an infinite delay) has not
been studied so far. The second case (no delay) was studied in (Szlenk and Vargas,
1995).
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3.1. Infinite Delay

Consider the case of an infinite delay, i.e. (5) with initial data (4). Local stability of
the stationary state X; does not depend on the delay. Therefore, there is no change
of stability conditions with an increasing delay, i.e. X; is locally asymptotically stable
if and only if g < vF™*.

Lemma 1. If § <~vF*, 0 < Vy < V*, where

* . ‘Uf * /Lc/lf
V* = min(——(vF* - ), ,
(HtrF - p), 2t

then for every solution X(t) to (5) we have lim X(t) = X;.
t—+00

Proof. Tt is similar to the proof of Corollary 1 in (Forys, 1993). [ |

Using the same framework as in (Fory§, 1993), we can prove the following result
concerning the local stability of the state X.

Lemma 2. Let my(w) = —f_ h)dh and pema(w) < 1. If

H-D
O<m <B—G—Hm1(w), (8)

where A = pc + py +mV, B = pc(ps +mV) —nByV, D = nbyu.V, G = agV,
H = 3G, then X5 is locally stable.

Remark 1. If a — +00, then condition (8) takes the simpler form

. 1
0<B—vF* < ) (9)

1
Hetpf

It is obvious that the range of the parameters for which X5 is locally stable
depends on the distribution w. If the influence of memory is large (i.e. w(h) is large
for large values of |h|), then m, is also large and the right-hand side of (9) is small.
In the case of a constant delay, m; cannot be as large as in the case of an infinite
dalay. Therefore, it is possible that for fixed parameters and constant delay 7 the
state X, is stable and a chronic form of the disease can appear, but for an infinite
delay with appropriate distribution the state X, is unstable and a chronic disease is
not possible.
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3.2. The Case Without Delay

In this paragraph, we study the case with no delay, i.e. the system of ordinary diffe-
rential equations

V(t) = (8- F®)V(t),
C(t) = aVF — p.(C(t) - C*), (10)
F(t) = oC(t) — (s + MV () F(2).

Conditions for the stability of the healthy state (X;) of the MM do not depend
on the delay and therefore, are the same for the MM, (5) and (10). Consider stability
conditions for the chronic state X5. In this case the characteristic polynomial is equal
to

W(A) = =A% —a;0% — o\ — ag,
ar = pe+pp+mv, (1)
az = pepiy + (NyHe — 20 = BY)V,
ag = ficpiy(B — vF").

It B <vF*, then W(0) <0 and therefore there exists a positive eigenvalue and the
state X, is unstable. Applying Hurwitz’s criterion (as in (Szlenk and Vargas, 1995)),
we obtain the following condition of local asymptotical stability:

aiaz > ag > 0.
Therefore
B >yF*

and

c —_ F* F* ﬂ__,yF*
(uc+uf+m” ps(B -7 )) (7 B

ny
Blae — nype) B a0 = NYhe
Now, we consider some special cases.

Assume that § = yF*. Then (12) takes the form p.+ ps > 0. This means that
there exists an interval (yF™*,[1) such that if 8 € (yF*, ), then (12) is satisfied
and X, is locally asymptotically stable.

For # — +co, (12) leads to

_ (uc+uf+ MY ety ) Mmoo (13)
a0 —ype ) a0 — Nype

It is easy to see that, for ap > nyu., (13) is not fulfiled.
If ap < nype, then (13) is equivalent to

o0 . Mipens

Y NYle — QQ

) > f—yF*.  (12)

pi > — (14)

which is satisfied.
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Therefore, for a large S, i.e. if the immune system is efficient, the state X, is
unstable, otherwise X5 is stable.

Now, consider the changes in the left-hand side of (12) when changing coefficients
a and g. For ap — 400, (9) takes the form

*

(lic‘i‘uf)’yg1 > B —vF*.

This implies that if 8 € (7F*,(1/2) <7F*1+ 1+ %ﬂ‘ﬁ)) and ag — 400,
then X is locally asymptotically stable.
For ap — 0, (12) takes the form

— yF* F* B —~F*
(uc+uf+nwcufﬁ ; ><7ﬁ e MZ >>ﬂ—7F*~ (15)

For f = ~vF™*, (15) is equivalent to p.+ py > 0, i.e. it is satisfied. For 8 — 400, (15)
is not satisfied. Therefore there exists an interval (yF*, (), for B € (yF*, ;) and
ag — 0, the state X5 is locally asymptotically stable.

Equation (10), in the case of an efficient immune system with (Vj, C*;F*) as
initial data, was studied in (Szlenk and Vargas, 1995) and the following results were
proved.

Theorem 3. If ap > ny(pc + B) and vF* > B, then every solution X (t) to (10)
has a limit and t_l)lg_n X(t) = X;.
o

Corollary 1. If, in addition to the hypotheses of Theorem 3, we assume that e <
py <YF* =B, then the function C(t) converges to C* faster than the ezponential
function with ezponent p., and the function F(t) converges to F* exponentially with
ezponent L., i.e. there exist three constants Ki, K>, K3 such that

0< C(t) -C* S Kle‘“ct,
KyemHet < |F(t) — F*| < Kze ket
for large t.

If pg < pe, then F(t) converges to F* faster than the exponential function with
exponent py and slower than the exponential function with ezponent u..

Define an asymptotic time-average value of solution X (t) as

1 rt
lim —/ X(s)ds.
t Jo

t—+400

Theorem 4. If ap > ny(uc+8), B < vF* and the state Xo is locally asymptotically
stable, or it is not stable, but there are two complez numbers with positive real parts
among its characteristic values, then every solution X (t) to (10) is bounded and there
exists an asymptotic time-average of X and it is equal to X».
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4. Computer Simulations

In the previous sections, we have studied the behaviour of solutions to the MM for
a small delay and for an infinite delay (eqn. (5)). We expect the following behaviour
of numerical solutions: for a sufficiently small T the behaviour is similar to the case
without delay. Next, with an increasing delay it changes and for a large delay, the
organism is destroyed, eventually. In all simulations we use initial data

(0,C*, F*) for te[-71,0),
(V(®),C), F(t)) = (16)
(Vo,C*,F*) for t=0,

L.e. an infection of a healthy organism. Now we study what type of dynamics is
expected for a large delay. It is obvious that we can calculate the solution only on
a finite interval [0,7]. Therefore, for ¢ € [0,T] the case for a large 7 (i.e. 7 > T)
is equivalent to o = 0 (due to initial data (16)). Therefore, the observed behaviour
of the MM on the interval [0,7] for a large 7 is the same as the behaviour of the
following system of ODE’s

SV = (8- vFOV ),
(7)

d A N

37O = us B =y F@V (1) = ps P (2).

Assume that 7 > T'. Thus we can study the solution to (17) with the initial condition
(Vo, F™), as the solution to the MM (C(t) = C* for t < 7).

Consider stationary states of (17). The healthy state is equal to (0, F*) and the
chronic state is equal to (us(vF* — 8)/nBv,8/7). It is obvious that the chronic state
exists only in the case of a large physiological level of antibodies, i.e. for § < vF*
(for 8 = vF™, the chronic level of antibodies and the physiological one are equal).

The characteristic polynomial for the healthy state has the form
W) = —(us + A (B —7F" = A).

Therefore this state is locally asymptotically stable (and then it is a node), if and
only if B < vF* and is unstable for 8 > vF*.

For the chronic state (8 < yF*), we have

W) = 84 AL o - ),

We see that W(0) = —pus(yF* — ) < 0 and therefore the chronic state is a saddle
point.

Let (R*)? denote the phase space of eqn. (17). Let I, I; denote the parts
of the isocline for the first variable V'(t) and I3 denote the isocline for the second
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variable F'(t). Then

S 2. a6 B
11_{(V,F)e(11§+) F—V},
L={(V,F)e®")?: V=0},

I, and Iy are half-straight lines, I3 is half of a hyperbola. I, and I3 always have
one common point—it is the healthy state. I; and I3 have one common point for
~F* > —it is the chronic state.

Let us study the case of a large physiological level of antibodies, i.e. vF* > 3.

Lemma 3. If vF* > B, then, for every initial Vy, the solution of the system defined
by (17) has the following properties:

e For any initial condition (%,Fg) lying in the upper region delimited by the
stable manifold of the saddle chronic state, there exists a limit of the solution
and it is equal to the healhty state, i.e. (0,F™*) in this case.

o For any initial condition (Vo,ﬁb) lying in the lower region delimited by the
stable manifold of the saddle chronic state, we have

im V() =400 and lim F(t) =0.
t—-+oo

t—+o0

Proof. Studying the phase space for vF* > f (see Fig. 1) it is easy to see that either
(V,F)(t) = (0, F*) or V(t) = 400 as t — +oo. In the case lim;_,; o V(t) = +o0,
the function F' is decreasing for a sufficiently large t (because if (V(t1), F'(t1)) € Ry
for some t;, then (V(t), F(t)) € Ry for t > t;). Therefore lim; 4o F(t) = g > 0.
Hence, if g # 0, then

dF . .

ry < ppF* —nygV — —oc0 for ¢t — +oo. (18)
Inequality (18) contradicts the condition that F is bounded. Consequently,

Now we study the phase space in the case of a small physiological level of an-
tibodies, i.e. vF™* < . In this case the asymptotic behaviour of solutions does not
depend on the initial condition.

Lemma 4. If vF* < 3, then

. t_lgp V(t) = +oo and V is increasing, or V' decreases at the beginning and
o0

then increases,
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Fig. 1. Phase space for vF* > (.
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Fig. 2. Phase space for vF™ < §.

., 1'15{1 F(t) =0 and F is decreasing, or I increases at the beginning and then
—+00

decreases.

Proof. For every positive initial condition (Vg, FO) the function V either increases to
400, or (for alarge Fy,ie. Fy > F = 3/v) the function V decreases at the beginning
and next increases to 4-co. The function F° may increase at the beginning, but is
always decreasing for a sufficiently large ¢ (see Fig. 2).

As in Lemma 3, lim; 4 F(t) =0. [ ]
Lemma 4 means that each of the functions V and F' has at most one change in the
slope.

Applying Lemma 3, we see that for any initial condition (VO,F*) such that
vF* > [ there are two possible types of behaviour. There exists a point (Vy, F*)
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which lies on the stable manifold for the chronic state such that for any initial con-
dition with Vo < Vg the solution converges to the healthy state. For any initial
condition with Vg > V§f lim¢ 400 V(¢) = 400 and lime—, oo F(t) = 0.

Applying Lemma 4, we see that if f < ~F™, then for every Vo we have
limt_}_‘.oo V(t) = 400 and limt_H_m F(t) =0.

Now we present simulation results. We use a computation method similar to

that used in (Kim and Pimenov, 1999). We take the values of the coefficients from
(Marchuk, 1980) and then we need to rewrite the MM. Let

v(t) = Vo ct) = C(;(f), f(e) = %

In terms of the new variables, the MM has the following form:

o(t) = (B~ fv,

et) = arv(t —7)f(t —7) — pe(c— 1), (19)

f®) = psle = f) =mof,
where
oF*V,

c*

We assume that V,, is the maximal level of the antigen concentration, i.e. the or-
ganism is destroyed when the antigen concentration reaches the level V,,. We also

assume that if v(t) < 1075, then the antigen is eliminated from the organism and
the organism recovers.

mn=79F", o=

m =nYVm.

The healthy state is equal to (0,1,1) in the new variables. We consider the
following initial condition:

{(v0,1,1) if t=0,

W= 011 i te(-n0).

(20)
At the beginning we study the behaviour of the solutions for a large 7. In this case,

we change S while the other parameters are constant. For 8 =0, v(t) decreases to
0 very fast (see Fig. 3).

For a larger vg, the recovery process is only a little slower. On the other hand, for
a large value of 8 (for example, § = 0.8) the antigen concentration increases rapidly
to +oo. We look for the smallest value of § at which the function v increases to
+oo (see Fig. 4).

Let vo = 0.1. We get the following results: for § = 0.121803 the antigen
concentration decreases to 0 but for § = 0.121804 it increases to +00. We observe a
similar behviour for vg = 0.01, § = 0.37903 and S = 0.37904 (see Figs. 5 and 6).

For vy = 1072, a bifurcation point appears for § between 0.4976 and 0.4977.
If vy decreases, the bifurcation point moves to greater values. We observe that for
vo = 107! or vy = 1072 the time of recovery or death is almost the same, i.e. about
170 days, but for 1072 it is much longer—more than 2,000 days.
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Fig. 3. Solution to the MM for 7 > T and £ = 0.
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Fig. 4. Solution to the MM for 7 > T and a large §.
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Fig. 6. Solution to the MM for 7 > T after bifurcation.
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Fig. 8. One of more complicated behaviours of solutions to the MM.

Now, we study the case of 8 = 0.121804 and v = 0.1 for different 7’s. As we
expected, for 7 < 1 the recovery process is very fast. The antigens are eliminated

after less than 5 days (see Fig. 7). ,
For 7 =10.0 this process is slower. The organism is healed after 10 days. We

observe that the antigen concentration rapidly decreases at the beginning, then it is
stopped, until the immune response begins, i.e. the organism starts to produce more

antibodies (see Fig. 8).
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Fig. 9. Solution to the MM for a large 7.

For a large 7 (v > 160) (see Fig. 9) the organism is destroyed. We observe the
same behaviour for 8 = 0.37904 and vy = 0.01, and for 8 = 4.977 and vo = 0.001.

We see that the results of simulations are as we expected. If we fix all the
parameters of the MM except 7, then 7 cannot be greater than some critical level
7* which depends on other parameters. For delays greater than 7*, the organism is
always destroyed.
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