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OPTIMAL HARVESTING OF THE NONLINEAR
POPULATION DYNAMICS

SEBASTIAN ANITA*

This paper deals with an optimal harvesting problem for a nonlinear age-
dependent population dynamics. The existence and uniqueness of a positive
solution for the model considered is demonstrated. The existence of an optimal
harvesting effort and the convergence of a certain fractional step scheme are
investigated. Necessary optimality conditions for some approximating problems
are established.
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1. Introduction

For a single population species denote by p(a,t) the density of individuals of age
a € (0,at), at the moment ¢t € (0,T) (here a3, T € (0,+00); at is the maximal
age for the considered population species). Consider the following model for the
population dynamics:

([ pr+pa+pla,t)p+8(4LPH)p = —ult)p, (a,t) €Q,
s, = [ " B(a, Op(a,¢) da, te(0,T),

\ a (1)
P(t) = /0 p(a,t)da, te (0,7),
p(a,0) = po(a), a € (0,a4),

\

where @ = (0,at) x (0,T). System (1) describes the evolution of an age-structured
population subject to harvesting. Here f(a,t) is the fertility rate, p(a,t) is the
mortality rate and u(¢) is the harvesting rate (effort).

Note that P(t) is the total population so that in (1) the term ®(¢, P(t)) repre-
sents an additional mortality rate (due to the crowding) which does not depend on
the age (Gurtin and MacCamy, 1979). The harvesting effort acts as a mortality rate.
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We shall use the following hypotheses:

(H1) BeLl®@), B(at)>0, ae inQ,
(H2a) p€ Liy([0,a1) x [0,T]), pla,t) >0, ae. in Q,
min{at,t}
(H2b) / war—hyt—R)dh = 400, ae. te (0,T),
0
(H3) ®: [0,T] x [0,+00) = [0,400) is continuously differentiable,

and the initial density pg satisfies
(H4) po € L(0,at), po(a) >0, a.e. on (0,a4).

Hypotheses'(H1), (H2a), (H3) and (H4) are all in accordance with practical
observations of biological populations. We also refer to (Iannelli, 1995; Webb, 1985).

As regards hypothesis (H2b), let us observe that this is the necessary and suffi-
cient condition for a; to be the maximal age of the population species (i.e. plat,t) =0
a.e. t € (0,T), where p is the solution to (1)). We shall sketch the proof for the case
when u:= 0 (otherwise we can put p:= p+u). Indeed, if we denote by p the solution
to (1) corresponding to u:= 0, then we have

min{ay,t}
plat,t) = exp {—/0 [,u(aT —h,t—h)+®(t—h,P(t - h))] dh}

x p(at — min{at,t},t — min{ay, t})

for almost all ¢ € (0,T) and, since the application t — ®(¢, P(t)) is bounded and
p(at —min{ay,t},t — min{at, ¢}) > 0 for almost all t € (0,T), we conclude that

min{ay,t}
p(aT,t):()@eXp{—/ u(aT—h,t—h)dh}:O,
0

which is equivalent to (H2b).
Suppose that the harvesting effort (which is the control) u belongs to:
U= {v € L*(0,T); 0<wv(t)<L, ae. on (O,T)}

(L € (0,+00)). If we denote by p“ the solution to (1), we may formulate the optimal
harvesting problem as:

T @t
(Po) Maximize / / u(t)w(a)p“(a,t) dadt,
o Jo

subject to u € Y. Here w(a) is a certain weight (it is possible to consider it as the
cost of an individual of age a) which satisfies

(H5) w € L(0,a1), w(a) >0, ae. on (0,a).
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We deal here with a slightly more general problem than that in (Anita, 1998).
Since the model (1) is separable (Anita, 1998) we can get a solution to (1) (in the
sense precised in the above-mentioned paper) of the form

pla,t) = y(t)ﬁ(a’ t), (2)

where p is the solution to:

Pt + Do + N(avt)ﬁ =0, (aat) €Q,

p(0,8) = /aT Bla,t)p(a,t)da, te€(0,T), (3)
0

p(a,0) = po(a), a € (0,a4).

System (3) has a unique solution, i.e. § € L°(Q) and

Dp(a,t) = —ula, t)p(a,t), a.e. in @, (4a)
at

lim p(h,t+h) = / B(a, )p(a,t)da, ae. t€ (0,T), (4b)

h—)0+ 0

lim p(a + h,h) = po(a), a.e. on (0,a4), (4c)

h—0+

which is strictly positive (Tannelli, 1995). Here Dp is the directional derivative
- o1 _
Dp(a,?) = lim > [3(a+ h,t +h) = 5(a, )]

Note that by (4a) a solution p to (4) must be an absolutely continuous function on
almost every line of equation a —t =k, (a,t) € @, k € R, so that (4b) and (4c) are
meaningful.

Using now (2) and (1), we obtain
[v'(®) + @(t, B@y®)y() + u®y(®)]p(a,t) =0, ae. (a,1)€Q,
{ y(0) =1,
and since $(a,t) > 0 a.e. in Q, we deduce that y is the solution to
y'(t) + @ (¢, Po(t)y(t)y(t) + u®)y(t) =0, ae. te(0,7),
y(0) =1,

at ~

where Py(t) = [, p(a,t)da, t € [0,T].

It was proved in (Anita, 1998) that problem (1) has a unique solution which
is strictly positive almost everywhere in @Q. It was shown that this solution p*
satisfies (2) a.e., where y is the unique Carathéodory solution to (5).

(5)
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If we denote by y* the Carathéodory solution to (5), then Problem (Pg) is
equivalent to the following one:

T
(P) Maximize / m(t)u(t)y*(¢) dadt,
0

subject to w € U, where m(t) = [;" w(a)p(a,t) da, t € [0,T].

In conclusion, (Pg) is equivalent to (P), because

T ag T
/ / w(t)w(@)p*(a, ) da dt.= / m(t)u(t)y™ () dt,
0 0 0

thus any result in this paper can be easily translated into a result for the original
problem. We notice that (P) depends on the initial datum pg(a) via the term Py(%).

We mention that the optimal harvesting problem for a linear age-structured popu-
lation with some assumptions on the structure of the problem was previously studied
in (Anita, 1998; Brokate, 1985; Gurtin and Murphy, 1981; Murphy and Smith, 1990).
The optimal harvesting effort for periodic linear age-dependent population dynamics
was studied in (Anita et al., 1998).

The paper is organized as follows. In Section 2, we prove the existence of an
optimal control for (P). Section 3 concerns a fractional step scheme for Problem (P)
and in Section 4 we obtain necessary optimality conditions for the approximating
problems.

2. Existence of an Optimal Control for (P)

Consider the following optimal harvesting problem:
T
(P) Maximize / m(t)u(t)y™(¢) dt,
0

subject to u € U, y* being the Carathéodory solution of

Y1)+ 2(t, Po(t)y(1)y(t) = —u(t)y(t), te(0,7),

y(0) = yo € (0, +00).
This is a slightly more general problem than (P) in the previous section.

Theorem 1. There exists at least one optimal control for (P).

The proof is analogous to that of Theorem 3.1 in (Anita, 1998). First of all, we
can prove the following result.

Lemma 1. If {u,} CU satisfies un, ~ u weakly in L*(0,T), then

Yy —y* in L*0,T).
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Proof. The Carathéodory solution to (6) corresponding to u := u,, satisfies

y¥ (t) = exp [— /Ot (un(s) + <I)(s, Po(s)y™» (s))) ds] Y0, (7

for any ¢ € [0,7] and this implies

0 <y“(t) <y, foranytel0,T].
If we denote by

vp(t) = ® (¢, Po(t)y*~(t)), ae. te(0,7),
then we observe that

0<w,(t) <M, ae te(0,T),

where M € (0,+00) is a constant. For a subsequence (also denoted by {v,}) we
have

v, = v, weakly in L*(0,T).
The last convergence and (7) allow us to conclude that
y'r =g, in L*(0,T),
where § is the Carathéodory solution to
y' () +o()y(t) = —u®)y(t), te(0,T),

y(0) = yo.

The last two convergence results imply that v(t) = ®(¢, Py (t)3(¢)) for almost all
t € (0,T) and consequently § = y*. |

Proof of Theorem 1. Consider now

T
d= sup/ m(t)u(t)y™(t) dt.
u€U Jo

It is obvious that d € [0,+00) and that there exist u, € U such that

T
d— % < / m(t)un(t)y*" (t)dt <d, VneN.
0

There exists a subsequence (also denoted by {u,}) such that
up, = u* weakly in L%(0,7T)
and by Lemma 1 we obtain

y =y in L*(0,T).
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The last two convergence results imply that
my¥ —my* in L*(0,T)
(because m € L*(0,T)), and so

*

T T
/ m(t)u, (t)y" (t) dt — / m(t)u*(t)y" (t)de
0 0

together with

T
d= /O m(®)u* () (&) dt.

We thus conclude that (u*,y*’) is an optimal pair for problem (P). ]

3. A Fractional Step Scheme

We shall prove that Problem (P) can be ‘approximated’ (for € — 07) by the following
sequence of optimal control problems:

P.) Masximize /D L m(ut)y o) dt,
subject to u € U, y* being the Carathéodory solution to
y' () +r(Oy(t) = —u(t)y(®), t € (ie, (i + De),
y(ie+) = F((i + 1)e—;ie,y(ie—)), i=0,1,...,N—1, e=T/N,
y(0-) = yo,
where F(t;ie, %) is the Carathéodory solution to
F'(t) + @(t, RB(t)F(1))F(t) = y()F(t), t€ (ie, (i + 1)e),
{ Flie+) = z.

Here v € C([0,T)) .is arbitrary. For other results concerning some fractional step
schemes we refer to (Anita, 1988; Barbu, 1988; 1994; Barbu and Tannelli, 1993).

Using an analogous argument as in the previous section it is possible to prove
that (Pc) has at least one optimal pair. In the same manner as in (Anita, 1998) we
can prove the following result.

Lemma 2. If u. — u weakly in L2(0,T) for e — 0% (uc € U), then
yes =y in BV([0,T]),

for e — 0F.
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Consider ¢, ¢e: U — [0,+00) defined by

T
b(u) = / m(tyu(t)y () dt
and
T
be(u) = / m(tyu(t)yl () dt

respectively, and u} as an optimal control for (P.). We conclude this section with
the main result.

Theorem 2. If u* is a weak limit point of {u?} in L%(0,T), then u* is an optimal
control for (P) and, in addition,

lim §(uZ) = g(u”) (8)
and
lim g (u2) = g(u). ©)

Proof. Since

T X T
s.(u)= [ muou O dt 2 [ meuouOd, for any e,
0 0

using Lemma 2, we conclude that

T T
/ m(t)u* (H)y® (t) dt > / m(t)u(t)y*(t)dt, for any u € U.
0 0
This means that u* is an optimal control for (P).
Now, since
ul = u* weakly in L2(0,T)

and
v - y* in L2(0,T),

we infer that (9) holds.

Using now the convergence
Y% —»y*  in L*0,7T)

(see Section 2) we obtain relation (8). |



120 S. Anita

4. The Maximum Principle for (P,)

We shall establish here the maximum principle for Problem (P.). For that purpose,
suppose
(H6a)  m e C([0,1)),
!
(H6b) v - ™ s not constant on any subset of a positive measure,
m

which is fullfilled under certain additional assumptions on py (see Anita, 1998) (y €
C([0,T]) is chosen in order to satisfy (H6b)).

The main result of this section is as follows:

Theorem 3. If (uc,y.) ts an optimal pair for (P.) and if q is the Carathéodory
solution to

q'(s) —vy(s)q(s) + 7:1;((;))(](8) =ue(s)(1+ q(s)), s€E (ie, (i+ 1)), (10a)
qlie—) = %5—((& + l)e—;ie,yg(ia—))q(ia—k), (10b)
q(T+) =0, (10c)
then
{ 0 if 1+q(s) <0,
ue(s) = (11)
L if 144q(s) >0.

Proof. Since (u.,ye) is an optimal pair, we have

T . T
/ m(s)ue (5)ge (s) ds > / m(s)(ue + 1) (s)y 7 (s) ds
0 0

for any v € L*(Q) such that u. +nv € ¥ and n > 0 small enough. Consequently,
we have

T yu5+771_) __ y T
/ m(s)us(s)g—n——i(s) ds+/ m(s)v(s)y<t"(s)ds < 0.
0 0
Passing to the limit (n — 01), we get
T
| mls) ez + o)) s <o, (12)
0 ,
where z is the Carathéodory solution to
2'(s) +v(s)z(s) = —uc(s)z(s) — v(s)y.(s), s € (ig, (i + 1)e], (13a)

. OF
z(ie+) = 55(@' + De—;ie,ye(ie—))z(ie=), i=0,1,...,N~1, (13b)

z(0—) = 0. (13c)
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Let ¢ be the solution to (10). Multiplying (10a) by m(s)z(s) and integrating
the result over [0,T], we obtain:

T T
/ ¢ (s)m(s)z(s) ds — / Y(8)a(s)ym(s)z(s) ds
0 0

T
/ m'(s)q(s) )ds—/ ue(8)(1 + g(s))m(s)z(s) ds.

After an easy calculation involving (13a), we obtain

2

[m(('é +1)e)z((i +1)e = )g((i + e~ ) - m(ie)z(is+)q(i5+)]

i
o

%
T

T
+ ; m(s)q(s)(uez+vye)(s) ds :/0 ue(s) (1 + q(s))m(s)z(s) ds.

Using now (13b)-(13c), we deduce that

T T
/ m(8)(s)u(s)ye (s) ds = / m(s)ue(s)z(s) ds
0 0

and, via (12), we obtain

T
/0 m(s)v(s)(1 + q(s))ye(s)ds <0,

(for any v € L*(Q) such that u. +nv € U, for n > 0 small enough) which is
equivalent to (11). [ |

Remark. If we choose v such that

m/(t)

m(t)’

for any ¢ € [0,77], then in any interval (i, (i + 1)e) (i € {0, 1,...,N —1}) the
function ¢ has at most one point where it takes the value —1. Indeed, for any
7 € (ie, (i + 1)) such that g(r) = —1, eqn. (10a) implies ¢'(t) < O for any ¢ in a
neighbourhood of 7. This implies that there is at most one point with this property
in the interval 7 € (ie, (i + 1)¢).

Consequently, 1+ ¢ has at most one zero in every interval (ie, (i + 1)e) and
therefore u, has the form

L if ¢t € [ig, 1],
0 if te[r(i+1)e

¥(t) >

ug(t) = (14)

where 7 is a point in [ie, (i+1)e] (ue has at most one switching point in [ie, (i + 1e]).
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5. Conclusion

The fractional step scheme we have used allows us to conclude that there is a sequence
of bang-bang controllers with the structure as in (14) such that

lim ¢(u7) = ¢(u”)

e—0+F

(the optimal harvest is ‘approximated’ by the harvest corresponding to the effort u.).

Relation (14) allows us to obtain excellent numerical results for the approximation
of the optimal harvest, ¢(u*).
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