OPTIMAL HARVESTING OF THE NONLINEAR POPULATION DYNAMICS

SEBASTIAN ANITA*

This paper deals with an optimal harvesting problem for a nonlinear agedependent population dynamics. The existence and uniqueness of a positive solution for the model considered is demonstrated. The existence of an optimal harvesting effort and the convergence of a certain fractional step scheme are investigated. Necessary optimality conditions for some approximating problems are established.

Keywords: population dynamics, Carathéodory solution, optimal harvesting, fractional step scheme, necessary optimality conditions

1. Introduction

For a single population species denote by p(a,t) the density of individuals of age $a \in (0, a_{\dagger})$, at the moment $t \in (0, T)$ (here $a_{\dagger}, T \in (0, +\infty)$; a_{\dagger} is the maximal age for the considered population species). Consider the following model for the population dynamics:

dynamics:
$$\begin{cases} p_{t} + p_{a} + \mu(a, t)p + \Phi(t, P(t))p = -u(t)p, & (a, t) \in Q, \\ p(0, t) = \int_{0}^{a_{\dagger}} \beta(a, t)p(a, t) da, & t \in (0, T), \\ P(t) = \int_{0}^{a_{\dagger}} p(a, t) da, & t \in (0, T), \\ p(a, 0) = p_{0}(a), & a \in (0, a_{\dagger}), \end{cases}$$
(1)

where $Q = (0, a_{\dagger}) \times (0, T)$. System (1) describes the evolution of an age-structured population subject to harvesting. Here $\beta(a, t)$ is the fertility rate, $\mu(a, t)$ is the mortality rate and u(t) is the harvesting rate (effort).

Note that P(t) is the total population so that in (1) the term $\Phi(t, P(t))$ represents an additional mortality rate (due to the crowding) which does not depend on the age (Gurtin and MacCamy, 1979). The harvesting effort acts as a mortality rate.

^{*} Faculty of Mathematics, University 'Al.I. Cuza', Iaşi 6600, Romania, e-mail: sanita@uaic.ro

We shall use the following hypotheses:

(H1)
$$\beta \in L^{\infty}(Q), \quad \beta(a,t) \geq 0, \quad \text{a.e. in } Q,$$

$$(\text{H2a}) \hspace{1cm} \mu \in L^1_{\text{loc}}\big([0,a_\dagger) \times [0,T]\big), \quad \mu(a,t) \geq 0, \quad \text{a.e. in } Q,$$

$$(\text{H2b}) \qquad \int_0^{\min\{a_{\uparrow},t\}} \mu(a_{\uparrow}-h,t-h) \, \mathrm{d}h = +\infty, \quad \text{ a.e. } t \in (0,T),$$

(H3)
$$\Phi \colon [0,T] \times [0,+\infty) \to [0,+\infty)$$
 is continuously differentiable,

and the initial density p_0 satisfies

(H4)
$$p_0 \in L^{\infty}(0, a_{\dagger}), \quad p_0(a) > 0, \quad \text{a.e. on } (0, a_{\dagger}).$$

Hypotheses (H1), (H2a), (H3) and (H4) are all in accordance with practical observations of biological populations. We also refer to (Iannelli, 1995; Webb, 1985).

As regards hypothesis (H2b), let us observe that this is the necessary and sufficient condition for a_{\dagger} to be the maximal age of the population species (i.e. $p(a_{\dagger},t)=0$ a.e. $t \in (0,T)$, where p is the solution to (1)). We shall sketch the proof for the case when u:=0 (otherwise we can put $\mu:=\mu+u$). Indeed, if we denote by p the solution to (1) corresponding to u:=0, then we have

$$p(a_{\dagger}, t) = \exp \left\{ -\int_{0}^{\min\{a_{\dagger}, t\}} \left[\mu(a_{\dagger} - h, t - h) + \Phi(t - h, P(t - h)) \right] dh \right\}$$
$$\times p(a_{\dagger} - \min\{a_{\dagger}, t\}, t - \min\{a_{\dagger}, t\})$$

for almost all $t \in (0,T)$ and, since the application $t \mapsto \Phi(t,P(t))$ is bounded and $p(a_{\dagger}-\min\{a_{\dagger},t\},t-\min\{a_{\dagger},t\})>0$ for almost all $t \in (0,T)$, we conclude that

$$p(a_{\dagger},t) = 0 \Leftrightarrow \exp\left\{-\int_{0}^{\min\{a_{\dagger},t\}} \mu(a_{\dagger}-h,t-h) \,\mathrm{d}h\right\} = 0,$$

which is equivalent to (H2b).

Suppose that the harvesting effort (which is the control) u belongs to:

$$\mathcal{U} = \left\{ v \in L^{\infty}(0,T); \quad 0 \le v(t) \le L, \quad \text{a.e. on } (0,T) \right\}$$

 $(L \in (0, +\infty))$. If we denote by p^u the solution to (1), we may formulate the optimal harvesting problem as:

(P₀) Maximize
$$\int_0^T \int_0^{a_{\dagger}} u(t)w(a)p^u(a,t) da dt$$
,

subject to $u \in \mathcal{U}$. Here w(a) is a certain weight (it is possible to consider it as the cost of an individual of age a) which satisfies

(H5)
$$w \in L^1(0, a_{\dagger}), \quad w(a) > 0, \quad \text{a.e. on } (0, a_{\dagger}).$$

We deal here with a slightly more general problem than that in (Aniţa, 1998). Since the model (1) is separable (Aniţa, 1998) we can get a solution to (1) (in the sense precised in the above-mentioned paper) of the form

$$p(a,t) = y(t)\tilde{p}(a,t), \tag{2}$$

where \tilde{p} is the solution to:

$$\begin{cases}
\tilde{p}_{t} + \tilde{p}_{a} + \mu(a, t)\tilde{p} = 0, & (a, t) \in Q, \\
\tilde{p}(0, t) = \int_{0}^{a_{\dagger}} \beta(a, t)\tilde{p}(a, t) da, & t \in (0, T), \\
\tilde{p}(a, 0) = p_{0}(a), & a \in (0, a_{\dagger}).
\end{cases}$$
(3)

System (3) has a unique solution, i.e. $\tilde{p} \in L^{\infty}(Q)$ and

$$D\tilde{p}(a,t) = -\mu(a,t)\tilde{p}(a,t),$$
 a.e. in Q , (4a)

$$\lim_{h \to 0^+} \tilde{p}(h, t+h) = \int_0^{a_\dagger} \beta(a, t) \tilde{p}(a, t) \, \mathrm{d}a, \quad \text{a.e. } t \in (0, T), \tag{4b}$$

$$\lim_{h \to 0^+} \tilde{p}(a+h,h) = p_0(a), \qquad \text{a.e. on } (0,a_{\dagger}), \tag{4c}$$

which is strictly positive (Iannelli, 1995). Here $D\tilde{p}$ is the directional derivative

$$D\tilde{p}(a,t) = \lim_{h \to 0} \frac{1}{h} \left[\tilde{p}(a+h,t+h) - \tilde{p}(a,t) \right].$$

Note that by (4a) a solution \tilde{p} to (4) must be an absolutely continuous function on almost every line of equation a-t=k, $(a,t)\in \bar{Q}$, $k\in\mathbb{R}$, so that (4b) and (4c) are meaningful.

Using now (2) and (1), we obtain

$$\left\{ \begin{array}{l} \Big[y'(t)+\Phi\big(t,P_0(t)y(t)\big)y(t)+u(t)y(t)\Big]\tilde{p}(a,t)=0, \quad \text{a.e. } (a,t)\in Q,\\ \\ y(0)=1, \end{array} \right.$$

and since $\tilde{p}(a,t) > 0$ a.e. in Q, we deduce that y is the solution to

$$\begin{cases} y'(t) + \Phi(t, P_0(t)y(t))y(t) + u(t)y(t) = 0, & \text{a.e. } t \in (0, T), \\ y(0) = 1, \end{cases}$$
 (5)

where $P_0(t) = \int_0^{a_\dagger} \tilde{p}(a,t) \, \mathrm{d}a, \ t \in [0,T].$

It was proved in (Aniţa, 1998) that problem (1) has a unique solution which is strictly positive almost everywhere in Q. It was shown that this solution p^u satisfies (2) a.e., where y is the unique Carathéodory solution to (5).

If we denote by y^u the Carathéodory solution to (5), then Problem (P₀) is equivalent to the following one:

(P) Maximize
$$\int_0^T m(t)u(t)y^u(t) da dt$$
,

subject to $u \in \mathcal{U}$, where $m(t) = \int_0^{a_{\dagger}} w(a)\tilde{p}(a,t) da$, $t \in [0,T]$.

In conclusion, (P₀) is equivalent to (P), because

$$\int_0^T \int_0^{a_{\dagger}} u(t)w(a)p^u(a,t) da dt = \int_0^T m(t)u(t)y^u(t) dt,$$

thus any result in this paper can be easily translated into a result for the original problem. We notice that (P) depends on the initial datum $p_0(a)$ via the term $P_0(t)$.

We mention that the optimal harvesting problem for a linear age-structured population with some assumptions on the structure of the problem was previously studied in (Aniţa, 1998; Brokate, 1985; Gurtin and Murphy, 1981; Murphy and Smith, 1990). The optimal harvesting effort for periodic linear age-dependent population dynamics was studied in (Aniţa et al., 1998).

The paper is organized as follows. In Section 2, we prove the existence of an optimal control for (P). Section 3 concerns a fractional step scheme for Problem (P) and in Section 4 we obtain necessary optimality conditions for the approximating problems.

2. Existence of an Optimal Control for (P)

Consider the following optimal harvesting problem:

(P) Maximize
$$\int_0^T m(t)u(t)y^u(t) dt$$
,

subject to $u \in \mathcal{U}, y^u$ being the Carathéodory solution of

$$\begin{cases} y'(t) + \Phi(t, P_0(t)y(t))y(t) = -u(t)y(t), & t \in (0, T), \\ y(0) = y_0 \in (0, +\infty). \end{cases}$$
 (6)

This is a slightly more general problem than (P) in the previous section.

Theorem 1. There exists at least one optimal control for (P).

The proof is analogous to that of Theorem 3.1 in (Aniţa, 1998). First of all, we can prove the following result.

Lemma 1. If
$$\{u_n\} \subset \mathcal{U}$$
 satisfies $u_n \to u$ weakly in $L^2(0,T)$, then $y^{u_n} \to y^u$ in $L^2(0,T)$.

Proof. The Carathéodory solution to (6) corresponding to $u := u_n$ satisfies

$$y^{u_n}(t) = \exp\left[-\int_0^t \left(u_n(s) + \Phi(s, P_0(s)y^{u_n}(s))\right) ds\right] y_0, \tag{7}$$

for any $t \in [0,T]$ and this implies

$$0 \le y^{u_n}(t) \le y_0$$
, for any $t \in [0, T]$.

If we denote by

$$v_n(t) = \Phi(t, P_0(t)y^{u_n}(t)), \text{ a.e. } t \in (0, T),$$

then we observe that

$$0 < v_n(t) < M$$
, a.e. $t \in (0, T)$,

where $M \in (0, +\infty)$ is a constant. For a subsequence (also denoted by $\{v_n\}$) we have

$$v_n \to v$$
, weakly in $L^2(0,T)$.

The last convergence and (7) allow us to conclude that

$$y^{u_n} \to \tilde{y}$$
, in $L^2(0,T)$,

where \tilde{y} is the Carathéodory solution to

$$\begin{cases} y'(t) + v(t)y(t) = -u(t)y(t), & t \in (0, T), \\ y(0) = y_0. \end{cases}$$

The last two convergence results imply that $v(t) = \Phi(t, P_0(t)\tilde{y}(t))$ for almost all $t \in (0, T)$ and consequently $\tilde{y} = y^u$.

Proof of Theorem 1. Consider now

$$d = \sup_{u \in \mathcal{U}} \int_0^T m(t)u(t)y^u(t) \,\mathrm{d}t.$$

It is obvious that $d \in [0, +\infty)$ and that there exist $u_n \in \mathcal{U}$ such that

$$d - \frac{1}{n} \le \int_0^T m(t) u_n(t) y^{u_n}(t) \, \mathrm{d}t \le d, \quad \forall \ n \in \mathbb{N}^*.$$

There exists a subsequence (also denoted by $\{u_n\}$) such that

$$u_n \to u^*$$
 weakly in $L^2(0,T)$

and by Lemma 1 we obtain

$$y^{u_n} \to y^{u^*}$$
 in $L^2(0,T)$.

The last two convergence results imply that

$$my^{u_n} \to my^{u^*}$$
 in $L^2(0,T)$

(because $m \in L^{\infty}(0,T)$), and so

$$\int_0^T m(t)u_n(t)y^{u_n}(t) dt \to \int_0^T m(t)u^*(t)y^{u^*}(t) dt$$

together with

$$d = \int_0^T m(t)u^*(t)y^{u^*}(t) dt.$$

We thus conclude that (u^*, y^{u^*}) is an optimal pair for problem (P).

3. A Fractional Step Scheme

We shall prove that Problem (P) can be 'approximated' (for $\varepsilon \to 0^+$) by the following sequence of optimal control problems:

(P_{\varepsilon}) Maximize
$$\int_0^T m(t)u(t)y_{\varepsilon}^u(t) dt$$
,

subject to $u \in \mathcal{U}, y_{\varepsilon}^{u}$ being the Carathéodory solution to

$$\begin{cases} y'(t) + \gamma(t)y(t) = -u(t)y(t), & t \in (i\varepsilon, (i+1)\varepsilon), \\ y(i\varepsilon+) = F((i+1)\varepsilon-; i\varepsilon, y(i\varepsilon-)), & i = 0, 1, \dots, N-1, & \varepsilon = T/N, \\ y(0-) = y_0, & \end{cases}$$

where $F(t; i\varepsilon, x)$ is the Carathéodory solution to

$$\begin{cases} F'(t) + \Phi(t, P_0(t)F(t))F(t) = \gamma(t)F(t), & t \in (i\varepsilon, (i+1)\varepsilon), \\ F(i\varepsilon+) = x. \end{cases}$$

Here $\gamma \in C([0,T])$ is arbitrary. For other results concerning some fractional step schemes we refer to (Aniţa, 1988; Barbu, 1988; 1994; Barbu and Iannelli, 1993).

Using an analogous argument as in the previous section it is possible to prove that (P_{ε}) has at least one optimal pair. In the same manner as in (Aniţa, 1998) we can prove the following result.

Lemma 2. If
$$u_{\varepsilon} \to u$$
 weakly in $L^{2}(0,T)$ for $\varepsilon \to 0^{+}$ $(u_{\varepsilon} \in \mathcal{U})$, then $y_{\varepsilon}^{u_{\varepsilon}} \to y^{u}$ in $BV([0,T])$,

for $\varepsilon \to 0^+$.

Consider ϕ , $\phi_{\varepsilon}: \mathcal{U} \to [0, +\infty)$ defined by

$$\phi(u) = \int_0^T m(t)u(t)y^u(t) dt$$

and

$$\phi_{arepsilon}(u) = \int_0^T m(t)u(t)y_{arepsilon}^u(t)\,\mathrm{d}t$$

respectively, and u_{ε}^* as an optimal control for (P_{ε}) . We conclude this section with the main result.

Theorem 2. If u^* is a weak limit point of $\{u_{\varepsilon}^*\}$ in $L^2(0,T)$, then u^* is an optimal control for (P) and, in addition,

$$\lim_{\varepsilon \to 0^+} \phi(u_{\varepsilon}^*) = \phi(u^*) \tag{8}$$

and

$$\lim_{\varepsilon \to 0^+} \phi_{\varepsilon}(u_{\varepsilon}^*) = \phi(u^*). \tag{9}$$

Proof. Since

$$\phi_\varepsilon(u_\varepsilon^*) = \int_0^T \!\! m(t) u_\varepsilon^*(t) y_\varepsilon^{u_\varepsilon^*}(t) \; \mathrm{d}t \geq \int_0^T m(t) u(t) y_\varepsilon^u(t) \; \mathrm{d}t, \quad \text{for any } u \in \mathcal{U},$$

using Lemma 2, we conclude that

$$\int_0^T m(t)u^*(t)y^{u^*}(t) dt \ge \int_0^T m(t)u(t)y^u(t) dt, \quad \text{for any } u \in \mathcal{U}.$$

This means that u^* is an optimal control for (P).

Now, since

$$u_{\varepsilon}^* \to u^*$$
 weakly in $L^2(0,T)$

and

$$y_{\varepsilon}^{u_{\varepsilon}^*} \to y^{u^*}$$
 in $L^2(0,T)$,

we infer that (9) holds.

Using now the convergence

$$y^{u_{\varepsilon}^*} \to y^{u^*}$$
 in $L^2(0,T)$

(see Section 2) we obtain relation (8).

4. The Maximum Principle for (P_{ε})

We shall establish here the maximum principle for Problem (P_{ε}) . For that purpose, suppose

(H6a)
$$m \in C^1([0,T]),$$

(H6b)
$$\gamma - \frac{m'}{m}$$
 is not constant on any subset of a positive measure,

which is fullfilled under certain additional assumptions on p_0 (see Aniţa, 1998) ($\gamma \in C([0,T])$ is chosen in order to satisfy (H6b)).

The main result of this section is as follows:

Theorem 3. If $(u_{\varepsilon}, y_{\varepsilon})$ is an optimal pair for (P_{ε}) and if q is the Carathéodory solution to

$$q'(s) - \gamma(s)q(s) + \frac{m'(s)}{m(s)}q(s) = u_{\varepsilon}(s)(1 + q(s)), \quad s \in (i\varepsilon, (i+1)\varepsilon), \quad (10a)$$

$$q(i\varepsilon-) = \frac{\partial F}{\partial x} ((i+1)\varepsilon-; i\varepsilon, y_{\varepsilon}(i\varepsilon-)) q(i\varepsilon+), \tag{10b}$$

$$q(T+) = 0, (10c)$$

then

$$u_{\varepsilon}(s) = \begin{cases} 0 & \text{if } 1 + q(s) < 0, \\ L & \text{if } 1 + q(s) > 0. \end{cases}$$
 (11)

Proof. Since $(u_{\varepsilon}, y_{\varepsilon})$ is an optimal pair, we have

$$\int_0^T m(s)u_{\varepsilon}(s)y_{\varepsilon}(s) ds \ge \int_0^T m(s)(u_{\varepsilon} + \eta v)(s)y_{\varepsilon}^{u_{\varepsilon} + \eta v}(s) ds$$

for any $v \in L^{\infty}(Q)$ such that $u_{\varepsilon} + \eta v \in \mathcal{U}$ and $\eta > 0$ small enough. Consequently, we have

$$\int_0^T m(s) u_{\varepsilon}(s) \frac{y_{\varepsilon}^{u_{\varepsilon} + \eta v} - y_{\varepsilon}}{\eta}(s) ds + \int_0^T m(s) v(s) y_{\varepsilon}^{u_{\varepsilon} + \eta v}(s) ds \le 0.$$

Passing to the limit $(\eta \to 0^+)$, we get

$$\int_0^T m(s)(u_{\varepsilon}z + vy_{\varepsilon})(s) \, \mathrm{d}s \le 0, \tag{12}$$

where z is the Carathéodory solution to

$$z'(s) + \gamma(s)z(s) = -u_{\varepsilon}(s)z(s) - v(s)y_{\varepsilon}(s), \qquad s \in (i\varepsilon, (i+1)\varepsilon],$$
(13a)

$$z(i\varepsilon+) = \frac{\partial F}{\partial x} ((i+1)\varepsilon -; i\varepsilon, y_{\varepsilon}(i\varepsilon-)) z(i\varepsilon-), \quad i = 0, 1, \dots, N-1, \quad (13b)$$

$$z(0-) = 0. (13c)$$

Let q be the solution to (10). Multiplying (10a) by m(s)z(s) and integrating the result over [0,T], we obtain:

$$\int_0^T q'(s)m(s)z(s) ds - \int_0^T \gamma(s)q(s)m(s)z(s) ds$$
$$+ \int_0^T m'(s)q(s)z(s) ds = \int_0^T u_{\varepsilon}(s)(1+q(s))m(s)z(s) ds.$$

After an easy calculation involving (13a), we obtain

$$\sum_{i=0}^{N-1} \left[m((i+1)\varepsilon)z((i+1)\varepsilon -)q((i+1)\varepsilon -) - m(i\varepsilon)z(i\varepsilon +)q(i\varepsilon +) \right]$$

$$+ \int_0^T m(s)q(s)(u_\varepsilon z + vy_\varepsilon)(s) \, \mathrm{d}s = \int_0^T u_\varepsilon(s)(1 + q(s))m(s)z(s) \, \mathrm{d}s.$$

Using now (13b)-(13c), we deduce that

$$\int_0^T m(s)q(s)v(s)y_{\varepsilon}(s) ds = \int_0^T m(s)u_{\varepsilon}(s)z(s) ds$$

and, via (12), we obtain

$$\int_0^T m(s)v(s) (1+q(s)) y_{\varepsilon}(s) ds \le 0,$$

(for any $v \in L^{\infty}(Q)$ such that $u_{\varepsilon} + \eta v \in \mathcal{U}$, for $\eta > 0$ small enough), which is equivalent to (11).

Remark. If we choose γ such that

$$\gamma(t) > \frac{m'(t)}{m(t)},$$

for any $t \in [0,T]$, then in any interval $(i\varepsilon,(i+1)\varepsilon)$ $(i\in\{0,1,\ldots,N-1\})$ the function q has at most one point where it takes the value -1. Indeed, for any $\tau \in (i\varepsilon,(i+1)\varepsilon)$ such that $q(\tau)=-1$, eqn. (10a) implies q'(t)<0 for any t in a neighbourhood of τ . This implies that there is at most one point with this property in the interval $\tau \in (i\varepsilon,(i+1)\varepsilon)$.

Consequently, 1+q has at most one zero in every interval $(i\varepsilon,(i+1)\varepsilon)$ and therefore u_ε has the form

$$u_{\varepsilon}(t) = \begin{cases} L & \text{if } t \in [i\varepsilon, \tau], \\ 0 & \text{if } t \in [\tau, (i+1)\varepsilon], \end{cases}$$
 (14)

where τ is a point in $[i\varepsilon, (i+1)\varepsilon]$ (u_{ε} has at most one switching point in $[i\varepsilon, (i+1)\varepsilon]$).

5. Conclusion

The fractional step scheme we have used allows us to conclude that there is a sequence of bang-bang controllers with the structure as in (14) such that

$$\lim_{\varepsilon \to 0^+} \phi(u_{\varepsilon}^*) = \phi(u^*)$$

(the optimal harvest is 'approximated' by the harvest corresponding to the effort u_{ε}).

Relation (14) allows us to obtain excellent numerical results for the approximation of the optimal harvest, $\phi(u^*)$.

References

- Aniţa S. (1988): Approximating linear optimal control problems via Trotter formula. Nonlin. Anal., Vol.4, No.4, pp.375–388.
- Aniţa S. (1998): Optimal harvesting for a nonlinear age-dependent population dynamics.
 J. Math. Anal. Appl., Vol.226, No.1, pp.6-22.
- Aniţa S., Iannelli M., Kim M.-Y. and Park E.-J. (1998): Optimal harvesting for periodic age-dependent population dynamics. — SIAM J. Appl. Math., Vol.58, No.5, pp.1648– 1666.
- Barbu V. (1988): A product formula approach to nonlinear optimal control problems. SIAM J. Control Optim., Vol.26, No.3, pp.497-520.
- Barbu V. (1994): Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer.
- Barbu V. and Iannelli M. (1993): Approximating some non-linear equations by a fractional step scheme. Diff. Integral Eqns., Vol.1, No.1, pp.15–26.
- Brokate M. (1985): Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biol., Vol.23, No.1, pp.75-101.
- Gurtin M.E. and MacCamy R.C. (1979): Some simple models for nonlinear age-dependent population dynamics. Math. Biosci., Vol.43, No.2, pp.199-211.
- Gurtin M.E. and Murphy L.F. (1981): On the optimal harvesting of persistent agestructured populations. — J. Math. Biol., Vol.13, No.2, pp.131-148.
- Iannelli M. (1995): Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs-C.N.R., Giardini Editori e Stampatori in Pisa.
- Murphy L.F. and Smith S.J. (1990): Optimal harvesting of an age-structured population.

 J. Math. Biol., Vol.29, No.1, pp.77–90.
- Webb G. (1985): Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcel Dekker.