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PERIODICITY OF THE POPULATION SIZE
OF AN AGE-DEPENDENT MODEL WITH
A DOMINANT AGE CLASS BY MEANS
OF IMPULSIVE PERTURBATIONS!

VaLERY COVACHEV*

For an age-dependent model with a dominant age class an w-periodic regime
of the population size is sought by means of impulsive perturbations. For both
noncritical and critical cases of first order the problem is reduced to operator
systems solvable by a convergent simple iteration method.
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1. Model Description

The following model is described in (Kostova, 1995; Kostova and Milner, 1995), where
the existence of oscillatory solutions is proved. For two fixed ages o1, o3 such that
0 <01 <0y < o the age distribution u(a,t) of a population is considered, where a
is the age and ¢ stands for time, with dynamics described by the following integro-
differential equation with an age-boundary condition in integral form:

%Z + %% = —4(a, Q)u(a, 1), a,t >0,
u0,t) = [ T80, Quia, ) da, >0, (1)
0
u(,0) = uo(a), a0,

where

a2

Q=0Q() =/ u(a, t) da

o1
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is the dominant age cohort size and (a,Q) and S(a,Q) are an age-specific death
rate and the birth modulus when the dominant age group is of size @, respectively.
It is assumed that §, 8 and wg are nonnegative, and that uo is integrable (so that
the initial population is finite). This model is a generalization of the classical one of
Gurtin and MacCamy (1974), which is obtained by setting o, =0 and o2 = oo.

Further on in (Kostova, 1995; Kostova and Milner, 1995) the special case

ﬂ(Q)> ac€ [01702],
Bla,Q) =

0, otherwise,

is considered. This means that the dominant age class is the only one capable of
having offspring, i.e. births are possible only in the age interval [o7,05] and the
fertility rate depends just on the size of the dominant age group itself (and not on the
age within the group). Moreover, 8(Q) € C*(Ry;R;) and the mortality rate § > 0
is assumed constant. Then for the total population size,

P(t) = /'00 u(a,t) da,

0

the equation

P+5P=8(Q)Q @)

is derived, where

Qt) = Pt —o01)e™° = P(t—039)e™ 2%  for t> o, (3)
go—t .

Q) = e—ét/ uo(a)da for ¢ <oy,
o1—1

while, for 01 <t < 02, Q(t) satisfies the integral equation (assumed to be uniquely
solvable)

oa—t

Ot) = /O 7 0 8(Q(a)) Qa) da + / uo(a) da. @)

0

Thus, for ¢ > 0y, P(t) satisfies a nonlinear scalar delay equation (2) with Q
given by (3), while for ¢ € [0,05], Q(¢) and eventually P(t) can be expressed in
terms of the initial function ug(a) of the age-dependent model (1):

Pt)=e% {/000 ug(a) da + /Ot eéaﬁ(Q(a))Q(a) da,] . (5)

Thus we find the initial function Py(t), t € [0,05] of the above-mentioned delay
equation.
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2. Problem Statement

We fix w > 0 much larger than the age o3, and try to obtain an w-periodic regime
of the population size by means of impulsive perturbations for a suitably chosen
initial function ug. More precisely, suppose that at certain moments t; such that
tivo = t;+w for all i € Z, the population size P(t) is abruptly changed while for the
moment equation (2) with (3) is assumed to hold for all ¢t € R, t # t;. We normalize
the quantities in eqn. (2) as follows:

§= t/w7 H(S) = P(ws)’ D = wi, B(Q) = W,B(Q)

Henceforth we write again ¢, § and /3 instead of s, D and B, respectively, z
instead of II, and h = g5 /w will be a small parameter, while the small quantity o; /w
will be neglected for the sake of simplicity. We suppose that the time interval between
two successive abrupt changes (impulse effects) t;+; —¢; is large in comparison with
the ‘age’ h for all 7 € Z, and look for 1-periodic solutions to the problem

=6+ H(hx,3), t#t,
(6)
A(E(ti) =Bz;+a;, 1€LZ,
where Z(t) = z(t — h), Az(t;) = z(t; + 0) — z(t; — 0) is the magnitude of the
impulse effect at the moment ¢;, z; = z(t;) = z(t; — 0), H(h,z,7) = S(Q)Q, Q =
Qh,z, )=z ~7e M, 0<t; <ty <1

Remark 1. The assumption that o;/w = 0 is of a technical character. It leads to
system (6) with just one small delay of the argument. Similar systems were studied
in (Bainov and Covachev, 1994; 1996; Boichuk and Covachev, 1997). In a subsequent
paper the case of several small delays of the argument is considered.

Remark 2. We see that the nonlinearity H(h,z,Z) is not precisely of the form
studied in (Boichuk and Covachev, 1997). However, its particular form much simplifies
our calculations.

Suppose that z(t) is a 1-periodic solution to the problem (6). Thus we find
an w-periodic solution P(t) of eqn. (2) with (3) satisfying the respective impulse
conditions. However, if P(t) is the population size of the age-dependent model (1),

for 0 <t < oy it must satisfy (2) with Q on the right-hand side determined from (4),
ie.

P(t)e® = /Doo up(a) da +/[; eéaﬂ(Q(a))Q(a) da,
or, by virtue of (4),

o0
/ uo(a) da + Q(t)e = P(t)et. )
o2—t

Since Q(t) can be expressed from (4) in terms of up(a) by means of an integral
operator, the initial function ug(a) of (1) must satisfy (7). This is a counterpart of
the well-known fact that if a delay differential equation has a periodic solution, then
its initial function must satisfy an integral equation.
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3. Main Result

3.1. Preliminaries

We can easily find that the fundamental solution X (¢) to the homogeneous system

T = -‘5.'13, t ?é ti,
(8)
Ax(ti) = B;z;, 1€7Z,
is 1-periodic if and only if
(14 B;)(1+ B,) = €°. (9)

If (9) is violated, we have to do with the so-called noncritical case considered in
(Bainov and Covachev, 1994; 1996) Green’s function G(t,7) of the periodic problem
for a nonhomogeneous system corresponding to (8) is given by

X()(1-X(1)) 7 x1(r), 0<r<t<l,
G, 1) =

-1

XA+6(1-X1) XYr), 0<t<r<1L

A 1-periodic solution to system (6) must satisfy

/GtT)H(hm()z('r-— dT+ZGtt+O)
i=1 .
For h small enough this equation has a unique solution provided by the Implicit
Function Theorem (Bainov and Covachev, 1994) (or the Contraction Mapping Prin-
ciple (Bainov and Covachev, 1996)). This yields the existence of a unique w-periodic
solution to (2).

Next, we consider the critical case when (9) holds. Then

exp(—9t), 0<t<t,
X(t) =< (14 Bp)exp(—dt), t1 <t <ts,
exp(6(1 —t)), tp <t<1

Since X1 = X(t1+0) = (14 By)e™ %, X, = X (ty 4+ 0) = e®0~*2)  the nonho-
mogeneous system

T = —dz, t#t;,
Az(t;) = Bizi +a;, i€ 7,

has a 1-parametric family of 1-periodic solutlons Zg (t ¢) if and onIy if the nonhomo-
geneities a; and ay satisfy

e’a; 4+ @1 (1 4 By)a, = 0, (10)
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and _
cexp(—ét), 0<t<ty,
zo(t,c) = < c(l+ By)exp(—6t) + ayexp (6(t1 — 1)), 1 <t <ty
cexp(6(1—1)), ta <t <1

3.2. Equation for the Generating Amplitudes

Let us find conditions for the existence of 1-periodic solutions z(t,h) of (6) depending
continuously on A and such that for some ¢ € R we have z(¢,0) = z¢(¢,¢). In (6)
we change the variables according to the formula

(E(t, h) = :I:O(ta C) +y(tah) (11)

and are led to the problem of finding 1-periodic solutions y = (¢, h) to the impulsive
system of functional differential equations

Z:I= —5y+H(h,w(t,h),z(t—h,h)), t#tia
(12)
Ay(ti) = Biyi, i€Z,

such that y(¢,h) = 0as h — 0.

We can formally consider (12) as a linear nonhomogeneous system. Then it has
a l-periodic solution y if and only if

/1 X~Yr)H(h,2(r,h),z(r — h,h)) dT = 0. (13)
0

We divide the left-hand side of (13) by h and then study its behaviour as h — 0.
We can represent the integral in (13) by a sum of integrals over intervals containing
no points of discontinuity of the integrand. It is obvious that for 7 € (¢;,t; + h),
¢ = 1,2, the interval (r — h,7) contains the point of discontinuity ¢; while for 7
inside the remaining intervals the interval (7—h,7) contains no such points. We write
AY = (t1,t1 + h) U (t2,t2 + h), Al =1[0,1]\ A® and make use of the representation

i

Jo = Jap+ Jap-

As in (Boichuk and Covachev, 1997), denote by e(h,z) the expressions tending
to 0 as h — 0, and satisfying a Lipschitz condition with respect to z with a con-

stant tending to 0 as h — 0. Making use of the particular form of the nonlinearity
H(h,z,%) and of the linear part of the equation, for 7 in the ‘good’ set A? we find

Q(h,z(r,h),z(r — h,h))/h = e(h, z).
Thus

h! X Y()H (h,z(r, k), z(T — h, b)) dT = g(h, z).
Ab
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On the other hand, for 7 = 1,2 we have

ti+h
! X~Y(r)H (h,z(r,h),z(T — h,h)) dr

ti
= Xih1<pi(c’ h)ﬂ(‘pi(Q h)) + 6(}1,, 5'3):
were @;(c, h) are linear terms with respect to c,
(,Di(c, h) = Biﬂi(ti, h) + a;.

Thus (13) takes on the form

2
Z X7 wi(e, h)B(pi(c, b)) + (R, z) = 0. (14)

We have

@i(e,h) = ¢ic,0) + Biys, i=1,2.
For ¢i(c) = pi(c,0), i =1,2, we find

¢1(c) = Bie e +ay,

cpg(c) = Bz€_6t2(1 + Bl)C + Bzed(tl_h)al + as.

Passing to the limit h — 0 in (14), we derive the so-called equation for the
generating amplitudes (Grebennikov and Ryabov, 1979)

e®11 () B(g1(c)) + 2D (1 + B1)<p2(c)ﬂ(<p2(c)) =0. ‘ (15)

If in the solvability condition (10) a; and a, are not zero, then (15) can also be
written as

01(0)B(p1(c)) / (02(0)B(w2(c))) = a1/as. (16)

On the other hand, if a; = ay = 0, neglecting the solution ¢ = 0 of (15) which yields
the trivial solution z = 0 of (6), by virtue of (9) we get

B1(1 + Bz)ﬂ(Ble_‘”lc) + (]. + Bl)Bzﬂ(Bze_dtz(l + BI)C) =0. (17)

The precise form of (16) or (17) depends on the form of the function 3.
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3.3. Critical Case of First Order

Now suppose that c¢* is a real root of (15). Then the 1-periodic solution y(t,h) of
system (12) such that y(¢,0) = 0 can be represented in the form

y(t,h) = X(t)e+ hyM(t, h), (18)

where the unknown real constant ¢ = ¢(h) must satisfy an equation derived below
from (14), while the unknown 1-periodic function y™®) (¢, ) can be represented as

1
yO(t,h) = b1 / G(t,7)H (b, z0(r,¢") + y(r, h),
0

zo(T — h,c*) +y(r — h,h)) dr (19)
in terms of the generalized Green’s function
T Hg(t,7), 0<T<t<l,
G(t,7) =
0, 0<t<7<1,

and g(t,7) is a piecewise constant function:

r

1, [T,t] C [O,tl]U(tl,tz]U(tg,l],

1+B;, 0<7<t<t<ty,
g(t,7) =<
e, 0<T<ti <ty <t<l,

[ 1+Bs, ti<7<ta<t<l

By arguments similar to those above we find

2

y (k) =D Gt i+ 0)pilc*, h)B(wilc*, 1)) + e(h, z(t, b))

i=1 ‘

We perform linearization with respect to y making use of the expansions

pi(c*, h)B(wi(c*, b)) = (pi(c*) + Biyi) B(pil(c*) + Biy;)

= pi(c*)B(pi(c)) + BriBiyi + B2i(yi),

where

Bri = B(pi(c)) + B(pi(c))wi(c?),
pB' is the derivative of 8, while B2;(y) is such that

B2:(0) =0, %ﬂ%(o) = 0.
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Now, since c* satisfies (15), eqn. (14) becomes

ZXi—l{ﬁliBiy(ti,h) + ﬁzi(y(ti,h))} +e(h,z) =0.

In view of the representation (18), let us write

2 B
By = ;ﬂu——l B,
Then we have

Boe = — 2 Xi_l {hﬂliBiy(l)(ti, h) ~+ Ba; (y(ti, h)) } + E(h, .Z‘) (20)

i=1

and

2
y (k) =) Gt b+ 0){901'(0*)6(901'(0*)) + BuBi[X (t:)c

i=1

+hyW (ti, B)] + Bai (y(ti, h))} +e(h,z(t,h)). (21)

Thus problem (6) is reduced to the equivalent operator system (11|.—c+—a root of (15)),
(18), (20), (21).

It is easy to see that By # 0 is equivalent to the simplicity of the root ¢* of
eqn. (15). This is the so-called critical case of first order. Then eqn. (20) can be
solved with respect to ¢ and we obtain a Fredholm operator system of the second
type to which a convergent simple iteration method can be applied (Grebennikov and
Ryabov, 1979). Thus to any simple real root of eqn. (15) for h small enough (i.e.
for o, small enough with respect to w) there corresponds a 1-periodic solution to
problem (6) tending to zo(t,c*) as h — 0, i.e. an w-periodic solution to eqn. (2).

We could also apply the same method to the 2- and 3-dimensional systems ob-
tained in (Swick, 1980; Yuan, 1988).

4. Conclusions

In this paper we considered an age-dependent model for which the dominant age class
is the only one capable of having offspring, and the upper bound o3 of the age of this
class is much larger than its lower bound ;. For any w > 0 much larger than o, we
showed that an w-periodic regime of the population size can be obtained by means of
impulsive perturbations for a suitably chosen initial function. The assumption that
just two impulses take place during a period was made for the sake of convenience. It
allowed us to simplify some equations and at the same time to show the application
of our general methods in the noncritical and critical cases.
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