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BETA FUZZY LOGIC SYSTEMS: APPROXIMATION
PROPERTIES IN THE SISO CASE

ADEL M. ALIMI*, RapHiA HASSINE™,
MoOHAMED SELMI™

In this paper, a Single-Input Single-Output (SISO) Sugeno fuzzy model of the
zeroth order with Beta membership functions for input variables is adopted.
After the introduction of Beta Fuzzy Logic Systems (BFLS) a constructive the-
ory is developed to establish the fact that they are universal approximators.
Based on this theory, an algorithm, which can actually construct a BFLS ap-
proximating a given continuous function with an arbitrary degree of accuracy, is
described. We then show that BFLSs satisfy more critical properties which are
the best approximation property and the interpolation property. We complete
the paper with a series of numerical comparisons between the approximation
performances of BFLSs and other classes of widely used fuzzy logic systems.
These comparisons confirm that BFLSs perform best in all the cases studied.

Keywords: Beta function, universal approximation property, best approxima-
tion property, interpolation property, Sugeno fuzzy model, SISO systems

1. Introduction

Fuzzy Logic Systems (FLS) have recently attracted considerable attention and have
been successfully applied in various fields (Abe and Lan, 1995; Castro and Delgado,
1996; Dickerson and Kosko, 1996; Gorrini et al., 1995; Kosko, 1992; 1993; Laukonen
and Passino, 1994; Lee, 1990; Lewis et al., 1995; Mendel, 1995; Nguyen et al., 1996;
Wang, 1992; Wang and Mendel, 1992; Zadeh, 1965). One of the main advantages
of FLSs is that they can be designed on the basis of incomplete and approximate
information, thus providing simple and fast approximations of the unknown or very

complicated models.

There are two major types of FLSs: Mamdani fuzzy systems (Mamdani and As-
silian, 1975) and Takagi-Sugeno fuzzy systems (Sugeno and Kang, 1988; Takagi and
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Sugeno, 1985). The main difference between the two families lies in the consequence of
the fuzzy rules which is a fuzzy set for the former and a crisp value for the latter.
Many researchers have shown that Mamdani fuzzy systems are universal approxima-
tors (e.g., Kosko, 1992; 1993; Nguyen and Kreinovich, 1992; Wang, 1992; Wang and
Mendel, 1991; 1992; Wang et al., 1997; Zeng and Singh, 1994; 1995), but few were
interested in the Sugeno fuzzy model. Recently, Ying (1998a) has proved that the
Sugeno fuzzy model with a linear rule consequent is a universal approximator. In
this paper, we are interested in a SISO Sugeno fuzzy model of the zeroth order. The
advantage of such a model is that it is very simple: the consequence of each fuzzy
rule is a constant and we do not need a defuzzification step to construct such a Sys-
tem. The Sugeno fuzzy model of the zeroth order is also simpler than that with a
linear rule consequent. In fact, its number of design parameters is relatively small
and there is no need for a simplified model that reduces the number of these pa-
rameters (Ying, 1998a; 1998b; 1998¢c; Ying and Sheppard, 1997). Besides, another
important point which affects the behaviour of FLSs are the membership functions
for the input variables. Various types of membership functions were proposed, e.g.
triangular functions (Pedrycz, 1994), pseudo trapezoidal functions (Zeng and Singh,
1994; 1995), functions using translations and dilations of one fixed function (Mao et
al., 1997), normal peak functions (Wang et al., 1997), etc. In this paper, we consider
Beta Fuzzy Logic Systems (BFLS), i.e. the FLSs in which Beta functions (Johnson,
1970) are used as the membership functions of the input variables.

The paper is organised as follows: in Section 2, we recall some definitions which
will be useful. Next, we introduce Beta fuzzy sets, give their essential properties and
define Beta Fuzzy Logic Systems (BFLS). In Section 4, we deal with the property of
universal approximation and prove by a constructive theory that BFLSs satisfy this
property. Based on this theory, we describe an algorithm that can actually construct
a BFLS approximating arbitrarily well a given continuous function. A more critical
property which is the best approximation property is introduced in Section 5 and
BFLSs are shown to satisfy this property. We also show that BFLSs satisfy the
interpolation property. We complete the paper with a series of numerical simulations
comparing the approximation performances of BFLSs with other widely used classes
of FLSs. These comparisons confirm that BFLSs perform best in all the cases studied.

2. Preliminaries

In the remainder of this paper we adopt the SISO Sugeno fuzzy model of the zeroth
order with multiplication as a ¢-norm. Such a fuzzy system is modelled by the function

UCR — VCR,
N (1)
Aiaz
s YDy,
=1 ) Aj(z)

Jj=1

where:
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z is the input variable,

N is the number of fuzzy rules of the form
R;: if (z is A;) then (y = ui),
y; is a constant in V' which represents the consequent of the fuzzy rule R;,

A = (A1, As,...,Ay) is a linguistic term characterised by its membership
function pg,(z), i=...,N.

It is clear that the Sugeno fuzzy model of the zeroth order is a special case of the

Takagi-Sugeno fuzzy model with a linear rule consequent. For the latter each fuzzy

rule

is of the form
R;: if (zis 4;) then (y = a;z + b;).

We will now recall some useful definitions which can be found in (Wang et al.,

1997; Zeng and Singh, 1994; 1995), etc.

Definitions 1. U always denotes the universe of discourse which is a subset of R.

1.

Normal peak function: Let A(z) be a fuzzy set defined on the universe of
discourse U. A is called a normal peak function if there exists a unique point
zo € U such that A(z) < A(zo) for any z € U and A(zg) = 1; zo is the peak
point of A.

. Normal basis set: A collection of fuzzy sets (A4;)1<i<n defined on U is said to

be a normal basis set if, for each i € {1,2,...,N}, A; is a normal peak function
and Ef\;l Ai(z)=1 forany z € U.

. A 2-phase normal basis set: Let (A;)1<i<n be a collection of fuzzy sets defined

on U. We suppose that (A;)1<i<n is a normal basis set. Then (4;)i1<i<n is
said to be 2-phase if, for any = € U, there are at most two consecutive normal
peak functions A; and A;y1 such that A;(z) #0 and Ajpa(z) #0.

Pseudo Trapezoid-Shaped Function: Let U be a bounded interval of R; a
pseudo trapezoid-shaped function A(z;a,b,c,d,h) is every continuous function
on U given by
I{z), =z €]a,b,
h, =ze€l[bd,
D(z), =z €le,d],
0, z € U\[a,d],

A(z;a,b,c,d,h) =

where a, b, ¢ and d are points of U such that a <b<c¢<d, a<d and h is
a positive real number. I is a strictly increasing positive (or null) function on
[a,d] and D is a strictly decreasing positive (or null) function on ¢, d]. While
h = 1, we write A(z;a,b,c,d) instead of A(z;a,b,c,d,1). In this case, A is
said to be a normal pseudo-trapezoid shaped function.
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5. Normal subset: Let A be a fuzzy set defined on a subset U of R?; the normal
subset of A is the set

M(A)={z; z €U and A(z) =1}. (2)

6. Order between fuzzy sets: Let A and B be two fuzzy sets defined on a subset
U of R. We say that A > B if and only if M(A) > M(B).

Recall that M(A) > M(B) <= Vz € M(4), Yy € M(B), z > y.

7. Complete partition: Fuzzy sets (A;)1<i<n are said to be a complete partition
of U if for every x € U there exists 7 € {1,..., N} such that A4;(z) > 0.

8. Consistency: Fuzzy sets (Ai)1<i<n are said to be consistent in U if the

following property is satisfied: If A;j(zo) = 1, for zp € U, then A;(zy) =
0, for every i # j.

3. Beta Fuzzy Logic Systems

Beta functions have been proposed to be used as membership functions of the in-
put variables (Alimi, 1998; Alimi, 1997a; 1997b; Johnson, 1970). This subsection is
devoted to the introduction of the Beta function and its main properties.

Definition 2. Let a,b € R satisfy a < b and let p,q > 0. A Beta function is defined

over R by
B(z) = (Z:Z)p@:i)q o €.t @

0 otherwise,

where ¢ = (pb+qa)/(p+q).

We can see that a Beta function depends on four parameters, which gives it
great flexibility, permitting to reproduce most of the shapes of membership functions
in general use (see Fig. 1). In the remainder of this paper, we write

B(e) = B(z;p,q,a,b). (4)

Proposition 1. Beta functions have the following properties:

1. Every Beta function is continuous on R and has compact support.
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Fig. 1. Flexibility of Beta functions on [0,1].

2. Every Beta function is a normal peak function, the peak point being

b+ qa
p+q’

It is clear that c €]a,b|.

3. The restriction of a Beta function to [a,b] is a pseudo-trapezoidal-shaped func-
tion.

Proof.
1. This result is trivial.

2. B is differentiable over ]a,b[ and

oy pb+qa— (p+q)zx .
O e e ©)
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for every z €|a,b[. Moreover, f'(xz) = 0 if and only if z = ¢, §'(z) > 0 over
la,c[ and B'(x) < 0 over ]c, b, so that the Beta function achieves its maximum
at ¢ which is in ]a, b[, and one can easily check that B(c) = 1. In fact, the term
(¢—a)7P(b—¢)~7 has been chosen to normalise the Beta function: due to this
term we have 0 < B(z) < 1.

3. We have S'(z) > 0 over Ja,¢[ and B'(z) < 0 over ]c,b[, so 8 is strictly
increasing over ]a,c[ and strictly decreasing over Je,b[. In consequence, it is a
pseudo-trapezoidal-shaped function. [ ]

Definition 3. A SISO Beta Fuzzy Logic System (BFLS) is every FLS given by (1),
where a Beta function is chosen as the membership function of the input variables.

Definition 4. The Beta Basis Functions (BBF’s) (B;)1<i<n are given by

Biw) = -2 (7)

Bi(z)
=1

M

Proposition 2. (B;)i<;<n s a normal basis set.

Proof. One can easily verify that each ; is a normal peak function and that
N
E i=1 BZ(CB) =1. | |

4. BFLSs are Universal Approximators
4.1. Universal Approximation Property

Let U =[A,D] be a compact set of R and (C(U),|| - |loo) the set of all continuous
functions from U to R, endowed with the uniform metric (i.e. the metric given by
I fllco = sup,ey |f(z)| for every f in C(U)).

Definition 5. A subset A of C(U) satisfies the universal approzimation property
with respect to the norm || - ||« if for every e > 0, and for every f in C (U), there
exists g in A such that ||f — gl < €. In other words A is dense in (C(U), ]| - |loo).

In this section, we show by a constructive theory that BFLSs satisfy this property.
For this purpose, we suppose in the remainder of this section that the BFLSs are given
by

f(x)zz Bi(x; pi, qi, s, bs) v, (8)

=1 1 B;(z;ps, 45, a5, b5)
]:



Beta fuzzy logic systems: Approximation properties in the SISO case 863

where (,B,-(m; Di, i, Gy bi)) L<icn 182 family of Beta functions satisfying the following
hypotheses: T

(H]) A= C1,
(Hy) ¢ < a1 < by <cipq forevery i€ {l,...,N -1},
(Hg) D= CN.

Recall that ¢; = (p;b; + gia;)/(p; + g;). Let us note that if we take the restriction of
f to U, this restriction remains in C(U) even if y; and yn are not zero.

Proposition 3. Under hypotheses (Hy)-(Hs) we have:

(P1) (Bi)i<i<n are pseudo-trapezoidal-shaped and normal.

(P2) (Bi)1<'i<N are consistent and complete in the universe of discourse U.
(P3) P <Pa<---<PBn.

(P4) (Bi)i<i<n is a 2-phase normal basis set.

Proof.
(P1) It is obvious.

(P3) Bi(z) =1 iff z = ¢;. Moreover, Bj(c;) = 0 for every i # j, so (ﬁi)1<i<N
are consistent. In addition to that, the supports of the Beta functions overlap
because aiy1 < b;. Hence for any z € U thereis ¢ € {1,..., N} such that

Bi (:IJ) > 0.

(P3) Wehave M(B;) = {c;} and ¢; < ¢iy1, 50 M(B;) < M (Bi41) for every i € {15
i < N —1}. In consequence, f; < 2 <--- < fBn.

(P,) Every z € U is at most in the support of two consecutive Beta functions.
Moreover, Zfil B;(z) =1, so (Bi)i<i<n is a 2-phase normal basis set. [ ]

Figure 2 shows a Beta function family satisfying hypotheses (H;)—(Hs).

Lemma 1. Let U = [A, D] be a compact set of R. Let g be a continuous function
defined on U. If &; = Sup,ceupp(sy) 19(8) — ¥il and e =max{e; ; 1 <i< N}, where
supp(f;) is the support of B;, then

llg — flleo <, (9)

where f(z) = L, Bi(@)yi, Bi(z) = Bi(z)/ T, fil) and (Bi)icicn is o Beto
function family satisfying hypotheses (Hy)-(Hs).
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Fig. 2. A Beta function family satisfying hypotheses (H;)-(Hs) with N = 5.

Proof. We can easily verify that the intervals [b;_1,a;11], ]@iy1,b;[, where i €
{1,...,N}, cover U (we adopt the convention by = A and an41 = D).

If z €U, then z € [bi_1,ai11] or z €layr, bl If ze€ [bi—1,@i41], then B;(z) #
0 and Bj(z) = 0 for every @ # j, so Bi{(z) = 1 and Bj(z) = 0,¥i # j. In
consequence,

l9(z) = f(z)| = lg(z) —wi| < sup |g(x) —wi| <es (10)
z€supp(Bi)

If 2 €lait1,bi], then Bi(x) # 0, Biy1(z) # 0 and Bj(z) = 0 for every j # i and
j #1+ 1. Hence

lg(z) — £ ()|

I

l9(z) — Bi(z)ys — Biy1(2)Yit1]

<max{ sw lg@-ul, sw |g(@) - pinl}
z€supp(Bi) » z€supp(Bi+1)

= max{e;,gi+1} < €. [ ]
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Lemma 2. Let g be a continuous function defined on U = [A, D] which is a compact
set of R and let § = max{b; —a;; 1 <i < N} and fs(z) = Zf;l B;(z)y;, where

R :1C)
i) =5 5

and
(IBi(m;pi; qi, G4, bz))lflﬁN

is a Beta function family satisfying the hypotheses (Hy)-(Hz). If m; < y; < M,
where m; = infefq, 5, 9(2), and M; = sup,eq, p,) 9(@), then

tim |5 — glloe = 0. (11)

Proof. Given € > 0, there exists 6(¢) > 0 such that if |z — 2’| < 8(¢), then |g(z) —
g(z")| < €, because g is continuous on U = [A, D] which is a compact set so it is
uniformly continuous.

For 6 < §(¢) let us show that sup,cy |g(z) — fo(x)|] < e. It is well-known that
m; < y; < M;. One can easily find z; € [a;,b;] such that g(z;) = y;. Accordingly,
SUDPzesupp(B:) g(.’L‘) - yl«l = SUPgzesupp(8i) |g($) - g(xz)la

m; <y < M;

= |g(z) — yi| £ M; —my,
mng(ﬂU)SMi} lo(a) = v

Because z,; € [a;, bi], we have 6 < &(¢) and |z — z;| < 6(¢).

The difference M; —m; is less than e. Furthermore, g is continuous over [a;, b;]
which is a compact set, so its supremum and infumum are achieved. In consequence,
M; —m; = g(t;) — g(s;), si and t; are two points of [a;,b;], so [s; ~ t;] < 4.
Accordingly, |g(z) — g(z:)] < € = SUDzesupp(s;) 19(z) — ¥il < €. Thus, using the
previous lemma, we conclude that

sup |g(z) — vl <e. (12)
zcU

Theorem 1. Let g be a continuous function defined on U = [A,D] and € > 0.
Then there is a BFLS given by (8) such that

llg — Fllo < €. (13)

Proof. Let 6(N) = (D — A)/(N —1) and z;(N) = A+ (i — 1)d(N), where i €
{0,1,...,N +1}. Then

A=z(N)<z(N)<---<zny(N)=D.
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Further, we construct the fuzzy sets
Ai(z,N) = B(z;p,p, zo,z2) restricted to [A, D],
Ai(z,N) = B(z;p,p,Ti-1,Zi+1) Tor 1€ {2,...,N — 1},
An(z,N) = B(z;p,p,xN-1,TN+1) restricted to [A, D],

where p is a strictly positive real number.

The consequent of each fuzzy rule is y;(N) = g(z;(N)). Then m; < y;(V) <
M;, where m; = minge(g,_; 2.4,)9(¢) and M; = maXye(s,_, 0:4,] 9(2). Recall that
supp(4;) = [z;—1,Ts+1). From Lemma 2 we deduce that-

Am g = falle = lim [lg = fxlleo = 0,

where fn(z) = Zfil Bi(z, N)y;(N) and B;(z,N) = Ai(z,N)/Ziil Ai(z,N). [ |
Corollary 1. Let LP(U) denote the set of all functions from U to R such that
I fllp < oo, where [ fllp = (Jy IF )P dt)7. Then the set of BFLSs is dense in Lr(U).

Proof. The proof is immediate while using the density in LP(U) of continuous func-
tions defined on compact supports, and the fact that U is bounded. [ |

4.2. A Constructive Learning Algorithm

In this section, an algorithm that can actually construct a BFLS approximating a
given continuous function with a given degree of accuracy, is described.

Algorithm. Let g be a continuous function to be approximated on [A,D] and ¢ a
strictly positive real number. We begin with N = 2.
Step 1. Let 6 = (D—A)/(N~1) and z;(N) = A+(i—1)8, where 1 € {0,..., N+1}.

Step 2. Construct Beta fuzzy sets as B;(z) = 8(z; 1,1, 24—1,2s41) for
ie{l,...,N}.

Step 3. Construct the BFLS as follows:

1)

flz) = Z Nﬁz’(w; L,1,2-1,%it1)

=1 _Z:lﬁj($§1;1>$j—lamj+l)
]:

where y; = g(z;).
Step 4. If ||f — gllco < & then STOP, otherwise set N = N + 1 and go back to
Step 1.

Remark 1. It is true that, for i = 0, g = A — § is outside the domain of the
definition of the function g. The same happens for i = N: zy = D + § is also



Beta fuzzy logic systems: Approximation properties in the SISO case 867

outside the domain of the definition of g. We only need to take the restriction of the
function fny to [A4,D]. This restriction gives a universal approximator to g.

Theorem 2. The foregoing algorithm converges.

Proof.  The function family (Bi(z;1,1,Zi—1,%i11))1<icn  satisfies hypotheses
(H;)-(Hj). In fact

1. = (zp+z2)/2=21=A
2. ¢ = (i1 +Tiy1)/2 = Zi, Gip1 =3 and b; = Ty, SO (H,) is satisfied, and
3. en=azn=D.

Using Theorem 1, we conclude that

Jin 1f = glleo = 0. (14)

5. BFLSs are Best Approximators

In this section, we deal with the essential definitions and properties concerning the
best approximation property (Rudin, 1974; Yosida, 1974).

Definition 6. Let A be a subset of (C(U),|| - |leo), where U C R™.
1. We define the distance of an element f € C(U) to A by

d(f,A) = inf Ilf = glloo- (15)

2. An element fy € C(U) is said to be a best approzimation from f to A if

d(f, A) = |If = folloo-

3. A subset A of C(U) is said to be an existence set if, for every f € C(U), there
is an element fo € A such that ||f — folleo = d(f,A). In this case we say that
A has the best approzimation property.

4. A subset A of (C(U), [l - Iloo) is a Chebyshev set if, for every f € C(U), there
is a unique element fo € A such that ||f — folleo = d(f, A).

Proposition 4.

1. Let A be a subset of (C(U), I} - HOO) If A is an existence set, then it is closed.

2. Ewvery closed and bounded subset of a finite-dimensional linear subspace is com-
pact.

8. If A is a compact set of (C(U), ] - Hoo), then A is an existence set.
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5.1. BFLSs are Best Approximators with Respect to |||,

Poggio and Girosi (1990) proved that multilayer perceptroh neural networks of the
backpropagation type do not possess the best approximation property. If we consider
such a network with m hidden units, then the functions that it computes belong to
the set

| o™ = {f eCU); f(@) = Zcia(f.wi +8,); ¢;,0; € R and ; € Rn},
i=1

where ¢ is a sigmoid function. It has been proved that ¢™ is not closed, so it cannot
constitute an existence set (Girosi and Poggio, 1990).

On the other hand, the same authors proved that radial basis function networks
are best approximators (Girosi and Poggio, 1990). We know that BFLSs and Beta
neuro-fuzzy systems are functionally equivalent (Alimi, 1998). The question to raise
is as follows: Do BFLSs possess the property of best approximation? The answer is
positive and to prove it, we need the following lemmas.

Lemma 3. Let By be the set of all functions defined on U and given by
flz) = Zfil B;(z)y;, where B;(z) = 5Z(x)/Z;V:1 Bj(z) and y; € R. Suppose that
(Bi)i<i<n is a Beta function family satisfying hypotheses (Hy)—(Hz). Then By is a
linear N-dimensional subspace of C(U).

Proof. It is clear that By is a linear subspace of C(U). Since (Bj)i<i<n is a
generating family of By, to prove that the dimension of By is equal to NV, it suffices
to prove that (B;)i<i<n are linearly independent. Suppose that Zf\;l Bi(z)y; =0,
for every x € U. Let us show that y; = 0. For = = ¢;;, we have Zfil Bi(ciy)yi = 0,
80 i, = 0 because B; (c;,) =1 and B;(c;,) =0 for all 7 5 4. [

Lemma 4. Let the hypotheses of Lemma 3 be satisfied. If f is an element of C(U)\
By, then the set A= {g € Bn;||f = glloo < Ifllec} is compact in (C(U),|| - lle)-

Proof. Tt is clear that A is closed and bounded and By is finite-dimensional, so A4
is compact. |
Now, we will give the main result of this section.

Theorem 3. Under the same hypotheses as in Lemma 8, the set By has the property
of the best approzimation.

Proof. The proof consists in showing that By is an existence set. Consider a fixed
element fy of C(U). The closest point to fo in By is in the set

{g € BN; ”g - fOHoo < Hf - fOHoo}:

where f is an arbitrary fixed element of C(U). By Lemma 4 the previous set is
compact, and the result follows. ]

In the next section, we will see that if we are looking for a best approximation
in a Hilbert space, then it is unique.
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5.2. Existence and Unicity of the Best Approximation in L*(U)

Let us denote by L?(U) the space of all integrable functions defined from U to R,
1
which satisfy ||f|l2 = (J;; |f()|*dt)* < +o0, endowed with the scalar product

(rlo) = [ swoeat (16)
It is well-known that L2(U) is a Hilbert space.

Theorem 4. Under the same hypotheses as in Lemma 3, the set By is a Chebyshev
set with respect to the norm || - ||2, i.e. for every f € L2(U) there is a unique fo € By
such that

IF = folla = inf 1If = gll an)

Proof. Let d = infyepy |f — gll2- If d = 0, then f € By. Since By is a linear
subspace of a finite dimension N, it is closed and the result is proved.

If d > 0, set By, as the closed ball with centre f and radius d + 1/n, where
n is a non-negative integer. The set P, = B, N By is convex and closed as the
intersection of two sets which are convex and closed (B is finite-dimensional, so it
is convex and closed). Moreover, P, is non-empty. The sought element fq is in the
set P = Npeg+ Pn. We will show that P is non-empty and reduced to one point. Let
a and b be two elements of P, and m = (a +5)/2. Then m is also an element of
P, since it is convex. The parallelogram law gives

201 —mi + lIb - alf3 = 2(Ib = 713 + 1 — ll3)-

The quantities ||f —m||2, |f — ol and ||f — b|| are between d* and d*+1/n?, so

lla—bl3 < % (—71;+2d). (18)

We then conclude that the diameter of P, tends to 0 as n — oo. {F,} is then a
sequence of closed, embedded, non-empty sets whose diameters tend to 0. Moreover,
the sets {P,} are in By which is complete, so their intersection is non-empty and
reduced to a unique point fo. ]

6. BFLSs Satisfy the Interpolation Property

In the previous sections, we have shown that for every continuous function defined
on a compact set of R, we can construct a BFLS approximating it arbitrarily well.
We have also proved that there is a best approximator to any continuous function
in the set By of BFLSs with N fuzzy rules. In this section, given a continuous
function f defined on U and taking the values yi1,y2,...,yn at IV distinct points
Z1,T2,...,Zn of U, we are interested in finding a BFLS modelled by g that also
satisfies g(x;) = y; for every i € {1,2,...,N}.
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Theorem 5. Let f be a continuous function defined on U such that f(x;) =vy; for
oll 1 € {1,2,...,N}, where z; are N distinct points of U and y; € R. Then there
is a BFLS ¢ E BN such that

g9(zi) = f(z:) Vie{l2,...,N}. (19)

Proof. Because z; are all distinct, we can arrange them such that z; < --- < z,,.

Let d; = inf((zit1 — 2:)/3, (zi —2i-1)/3), ai = =z —d; and b; = z; + d.
Consider the function

Bilz) = «T—é&i?“'“")(l’i‘m) if 2 € fas,bi],

0 otherwise.

Then Bi(z;) = Bi((a; +b:)/2) =1 and Bi(z;) =0 for i # j. The function

=3 utl
=LA

satisfies g(z;) =y; forall 1 =1,2,..., N. H

7. Simulation Results

In order to confirm our theoretical results, we have performed two types of numerical
simulations. Mitaim and Kosko (1996) compared the performances of different mem-
bership functions of the Standard Additive Model (SAM). In the one-dimensional
case, they considered the following six functions:

Fi(@) = 3z(z — 1)(z — 1.9)(z — 0.7)(z + 1.8), —2<z<2, (20

(z — 0.2)(z — 0.7)(z + 0.8)

f2(z) = 10tan™! ~ 714 ,

100(z + .95)(z + .6)(z + 4)(z — .1)(z — 4)(z — .8)(z — .9)
(z+1.7)(z — 2)2 ’

fa(z) =

(22)

fa(z) = 8sin(10z? + 5z + 1), » -1<2<1,  (23)

z—0.2)(z - 0.7)(z + 0-8)} “1<z<1,  (29)

_ 1 [(
fs(z) = 10tan [ @+ 14)(z— L.z +0.7

folz) = 10(6—5|z| 1 ¢—8le—0.8]/10 +e—10|z+0.6])’ “1<e<1l. (25)
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They used a supervised gradient descent to tune all the parameters of the SAM in

order to minimise the squared error E(z) = 1(f(z) — F(a:))2 Here f(z) is an ap-

proximated function chosen from among fi, fa,...,fs and F(z) is the SAM. They
compared popular membership functions such as triangles, trapezoids and Gaussian
with sinc (sinc (z) = sinz/z) and concluded that the sinc function chosen as the
if-part set function is the most likely to produce a quick and accurate function ap-
proximation.

In the first series of our numerical simulations, we considered the Sugeno fuzzy
model of the zeroth order with 12 fuzzy rules:

flz) = Z *gAi—(ﬂ“yi, (26)
=1 3. Aj(z)
j=1

where the functions A; were chosen as Beta, Gaussian and sinc functions. The
approximated functions were the same as those chosen by Mitaim and Kosko. We
used a modified version of the supervised gradient descent (Box et al., 1989; Grace,
1994) to tune all the parameters of the fuzzy sets in order to minimise the relative

error
B, = % (%) (27)

We computed the relative error between the approximated function and the output
of the FLSs. The training as well as the testing sets were 200 randomly chosen
points of the domain of definition for each function. We obtained the results given
in Table 1. They clearly show that BFLSs are the best. This fact can be explained
as follows: Beta functions depend on four parameters p, ¢, a, and b. Parameters a
and b determine the support of the Beta function which can be translated, shrunk
or dilated according to the values of @ and b. Furthermore, p and g allow the Beta
functions to have different shapes which are symmetric if p = ¢ and asymmetric if
p # q. This flexibility in shape added to the fact that Beta functions are of compact
support allows BFLSs to be very good function approximators.

Table 1. Relative approximation errors of functions fi—fs by different FLSs.

l function I BFLS Gaussian FLS sinc FLS
fi 5.5580 x 1075% | 1.3229 x 10~*% | 4.6308 x 10~2%
fo 1.7984 x 107%% | 1.8675 x 107*% | 8.1124 x 10~%%
fs 1.3350 x 107%% | 6.6626 x 107%% | 2.9980 x 10~%%
f4 5.2980 x 1073% | 2.6678 x 10~1% | 1.5692 x 10™'%
fs 2.8628 x 10™4% | 3.8963 x 1074% | 1.0076 x 102%
fe 2.1288 x 1073% | 1.2755 x 1072% | 3.2081 x 1072%
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In the second series of our numerical simulations, five other functions were chosen:

square () = sign( cos(z/3)), —3r <z < 3m, (28)
parabola (z) = 22, 0<z <3, (29)
sine (z) = sin(z), =37 <z < 3n, (30)
beakedsine (z) = sin(z) exp(—0.1z), —37 <z < 3, (31)
logarithm (z) = log(z), 02<z<3. (32)

For each approximated function we took a fixed number of fuzzy rules. We also tuned
the parameters of Beta fuzzy sets and Gaussian fuzzy sets in order to minimise the
relative error E,. The training as well as the testing sets were 200 randomly chosen
points of the domain of definition for each function. We got the results listed in
Table 2 that confirm again the superiority of BFLSs.

Table 2. Relative approximation errors of different functions by BFLSs and Gaussian FLSs.

L function | number of rules BFLS Gaussian FLS ]
square 3 8.5122 x 1072% | 3.6484 x 10~1%
parabola 3 34133 x 1074% | 3.4133 x 10~*%
sinus 6 3.9851x 1072% | 4.0113 x 10~2%
beakedsine 6 9.4938 x 1073% | 9.4965 x 1073%
logarithm 4 5.3821 x 1073% | 7.1865 x 10~3%

8. Conclusion

In this paper, we have suggested a new membership function family for the design
of FLSs. The paper consists of two complementary parts: a theoretic part in which
theoretic foundations of BFLSs are given, and a numeric one consisting of a numerical
comparison between BFLSs and other common FLSs.

In the first part, we have proved that under certain minor hypotheses on the
Beta membership functions, BFLSs satisfy the following properties:

e Universal approximation property: This property ensures that every continuous
function on a compact set I/ can be uniformly approximated by a BFLS. Based
on this property, an algorithm that can actually construct a BFLS approximat-
ing a given continuous function arbitrarily well is described. The number of
fuzzy rules must be increased so as to get a better approximation.
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e Best approximation property: Here, we are interested in finding a best approx-
imator to a given function in the set By of BFLSs with N fuzzy rules. We
have shown that if By is a linear subspace of (C(U),|| - |loo) of dimension N,
then there is a best approximator to any continuous function in the set By.
Moreover, if we are looking for a best approximator to f € (L*(U),|| - ||2), then
this approximator is unique.

¢ Interpolation property: This property ensures that for every continuous function
f defined on U and taking the values y1,y2,...,y~v at N distinct points
z1,%3,...,zn of U, we can find a BFLS modelled by g that also satisfies
g(z;) = y; for every i € {1,2,...,N}.

In the last part of our paper, we performed two types of numerical simulations in
order to confirm that BFLSs offer quick and accurate function approximation. In the
first case, we compared the performances of BFLSs, Gaussian FLSs and sinc FLSs.
Table 1 shows that the relative error E, between the approximated function and
the BFLS is smaller in all the cases studied. In fact, Beta functions depend on four
parameters p, q, a, and b, which gives them a great flexibility. In the other series of
our numerical simulations five other functions were chosen. For each approximated
function we took a fixed number of fuzzy rules. The results of Table 2 confirm once
again that BFLSs are the best.
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